Klausur Technische Mechanik 2

Größe: px
Ab Seite anzeigen:

Download "Klausur Technische Mechanik 2"

Transkript

1 3 α ) (6+2 Punkte) Der nicht maßstabsgetreu dargestellte Kran soll untersucht werden. Der schräge Balken mit der änge 20 hat einen quadratischen, dünnwandigen Querschnitt mit der Kantenlänge 3 und der Wandstärke s. (tanα = 4/3, tanβ = 24/7, / = 60N/mm) a.) Geben Sie im schrägen Balken den Verlauf der inneren Kräfte und Momente an. b.) Bestimmen Sie die Wandstärke s, wenn der Betrag der maximalen Normalspannung σ max = 13N/mm² beträgt. β 5 A 2.) ( Punkte) Das ahrwerk einer kleinen ur x-ebene smmetrischen Elektrolok soll untersucht werden. Der Elektromotor übt auf die Vorderachse nur ein Torsionsmoment aus und stütt sich über einen Bügel am Angriffspunkt der Gewichtskraft 8G und der Widerstandskraft W am Rahmen ab. Dieser Punkt liegt in der Mitte des -förmigen Rahmens mit der änge 4 und der Breite 2. An den Anbindungspunkten der Radachsen an den Rahmen können nur Kräfte in x-und -Richtung übertragen werden. Die Räder haben den Radius, die Pleuelstangen haben den Abstand /2 von den Radachsen. Ihre Befestigungspunkte liegen unterhalb der Radachsen. a.) Wie groß darf W maximal sein, wenn wischen Rad und Schiene der aftreibungskoeffiient µ = 1 wirksam ist? b.) Verwenden Sie das W von a.) und bestimmen Sie das notwendige Motormoment und die inneren Kräfte und Momente im Querbalken AB Der Querbalken hat ein dünnwandiges Rechteckprofil mit der Breite, der öhe 2 und der Wandstärke s. Die maximal ulässige Vergleichsspannung nach Mises ist σ V. c.) Bestimmen Sie, wenn G/(σ V s) = mm² beträgt. d.) Zeichnen Sie den Normalspannungsverlauf in der Balkenmitte (G/(³s) = 0.7N/mm³) Wie lautet die Gleichung der neutralen aser? W 8G B x

2 3.) ( Punkte) Bei der dargestellten Prüfmaschine ist der Riemen im unbelasteten Zustand mit der Kraft G vorgespannt. Der aftreibungskoeffiient bei der Riemenreibung beträgt µ = 1. Zu Prüfwecken wurde die Tischplatte mit der Biegesteifigkeit EI = G 2 in der Mitte um den Betrag u = /6 nach unten durchgebogen. Die üße des Tisches sind starr. An der Nut im Diagonalbalken wirkt näherungsweise nur eine senkrechte Kraft. a.) Wie groß muss die Kraft sein, damit das Bauteil im Gleichgewicht ist? b.) Bestimmen Sie im waagrechten Balken der änge 2 des grauen Rahmens die inneren Kräfte und Momente. c.) Wie groß müsste der Radius R m eines kreisrunden, dünnwandigen Profils gewählt werden, damit in diesem Balken keine Zugspannungen auftreten würden? u u Der Balken hat das dargestellte Profil. d.) Wie groß ist der ehler, wenn statt der maximalen Schubspannung mit der mittleren gearbeitet wird? s x A 2 2 B α 4.) (6+1 Punkte) An einer Wasserhebeanlage läuft die Kette über ein Zahnrad. Es muss nur ein Behälter mit der Gewichtskraft 2G berücksichtigt werden. Die Antriebskraft eigt immer in Umfangsrichtung. Der Angriffspunkt ist um den Winkel α aus der Senkrechten gedreht. 2G a.) Geben Sie die Querkraftverläufe in der an den Punkten A und B gelenkig gelagerten Welle an. b.) Bei welchem Winkel α ist die agerkraft B = ( B ²+ B ²) 1/2 am größten? 5.) (5 Punkte) Ein albkreisbogen mit dem Radius wird näherungsweise durch vier identische gerade Balken dargestellt. In den Teilbalken AB und CD wirken die Torsionsmomente M tab = und M tcd = a.) Bestimmen Sie die Absenkung in -Richtung des Kraftangriffspunktes infolge der inneren Torsionsmomente in Abhängigkeit von, und GI t. A B x C D

3

4

5

6

7

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM s y HTWG Konstanz 26.9.2017 1.) (5+3.5+3 Punkte) Die Frau kann nur mit einer Kraft, die parallel zum Boden ist, auf den Wagen wirken. Am Wagen ist als Gewichtskraft nur G des Kindes zu berücksichtigen

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 1.) (6+2+5 Punkte) Der aufkran ist im Gleichgewicht. Der obere dünnwandige waagrechte Balken hat die Breite, die öhe 1.5 und die Wandstärke s. Die dünnwandige aufradwelle hat den Radius /2 und die Wandstärke

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 1.) (3+6+3 Punkte) Auf den dargestellten smmetrischen Spindelrasenmäher mit der Gewichtskraft G und der Spurweite 4L wirken die dargestellten Kräfte. Keine Kräfte in x-richtung sind u berücksichtigen Die

Mehr

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM 1.) (6+4+2 Punkte) Die grauen Balken haben pro ängeneinheit die Gewichtskraft 60G, die als Streckenlast u berücksichtigen ist (tanα = 7/24). F A α 3/4 C a.) Wie groß sind die inneren Kräfte und Momente

Mehr

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM 1.) (2+6+2 Punkte) Eine Spätzlepresse, an der nur senkrechte Kräfte wirken, soll untersucht werden. Der Zylinder in welchem sich der Teig befindet hat eine Grundfläche von A = ²/2. A B R a.) Welche Kraft

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 y HTWG Konstanz 19.7.2017 1.) (5+4+2+2 Punkte) Am Riemen des Schaufelradbaggers wirkt der Haftreibungskoeffizient µ = ln(5 1/π ). Der Ausleger mit der Schaufel hat den dargestellten Querschnitt (tanα =

Mehr

HTWG Konstanz, Fakultät Maschinenbau, Studiengang WIM 1 Übungen Technische Mechanik F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4. x y z

HTWG Konstanz, Fakultät Maschinenbau, Studiengang WIM 1 Übungen Technische Mechanik F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4. x y z HTWG Konstan, akultät Maschinenbau, Studiengang WIM 1 ufgabe 1: Berechnen sie die Kraftkomponenten, und und den Betrag der Kraft, falls dieser nicht gegeben ist. Berechnen Sie die Summen der Kräfte 1 und

Mehr

HTWG Konstanz, Fakultät Maschinenbau, Studiengang MEP 1 Übungen Technische Mechanik 2

HTWG Konstanz, Fakultät Maschinenbau, Studiengang MEP 1 Übungen Technische Mechanik 2 HTWG Konstan, akultät Maschinenbau, Studiengang MEP 1 ufgabe 1: Wo muss (Position ) die Masse m mit der Gewichtskraft 2.4kN montiert werden, wenn die npresskraft wischen den Rollen N = 10kN betragen soll?

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

Wirkungslinie einer Kraft, Drehmoment, Einfache Maschinen

Wirkungslinie einer Kraft, Drehmoment, Einfache Maschinen Übung 4 Rotations-Mechanik Wirkungslinie einer Kraft, Drehmoment, Einfache Maschinen Lernziele - wissen, dass sich die Wirkung einer Kraft nicht ändert, wenn man die Kraft auf ihrer Wirkungslinie verschiebt.

Mehr

1. Aufgabe: (ca. 12 % der Gesamtpunkte)

1. Aufgabe: (ca. 12 % der Gesamtpunkte) . August 07. Aufgabe: (ca. % der Gesamtunkte) a) Skizzieren Sie an den dargestellten Stäben die Knickformen der vier Euler-Knickfälle inklusive Lagerung und geben Sie zum Eulerfall mit der höchsten Knicklast

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler"

Drehimpuls, Drehmoment, Kraft-/Drehmoment-Wandler Aufgaben 5 Rotations-Mechanik Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler" Lernziele - das Drehimpulsbilanzgesetz verstehen und anwenden können. - wissen, dass sich die Wirkung einer Kraft nicht

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 4 MECHANIK REPETITIONEN 4 DREHMOMENT UND SEILROLLEN 1 DREHMOMENT. 1 Drehbewegung erkennen. 06. Februar

TG TECHNOLOGISCHE GRUNDLAGEN 4 MECHANIK REPETITIONEN 4 DREHMOMENT UND SEILROLLEN 1 DREHMOMENT. 1 Drehbewegung erkennen. 06. Februar 1 Drehbewegung erkennen Dreht sich dieser Körper? Wenn ja, in welche Richtung? Die Länge der Kraftpfeile bzw. der Hebelarme entspricht der Grösse der Kraft bzw. der Länge des Hebelarmes! Zeichnen sie das

Mehr

Übung zu Mechanik 2 Seite 38

Übung zu Mechanik 2 Seite 38 Übung zu Mechanik 2 Seite 38 Aufgabe 64 Gegeben sind die Zustandslinien für Biegemoment und Normalkraft von einem räumlich beanspruchten geraden Stab. a) Bemessen Sie den Stab auf Normalspannungen! Es

Mehr

Drehimpuls, Drehmoment, Einfache Maschinen

Drehimpuls, Drehmoment, Einfache Maschinen Aufgaben 4 Rotations-Mechanik Drehimpuls, Drehmoment, Einfache Maschinen Lernziele - das Drehimpulsbilanzgesetz verstehen und anwenden können. - wissen, dass sich die Wirkung einer Kraft nicht ändert,

Mehr

Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler"

Drehimpuls, Drehmoment, Kraft-/Drehmoment-Wandler Aufgaben 5 Rotations-Mechanik Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler" Lernziele - das Drehimpulsbilanzgesetz verstehen und anwenden können. - wissen und verstehen, dass sich die Wirkung einer

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

Prüfung - Technische Mechanik II

Prüfung - Technische Mechanik II Prüfung - Technische Mechanik II SoSe 2013 2. August 2013 FB 13, Festkörpermechanik Prof. Dr.-Ing. F. Gruttmann Name: Matr.-Nr.: Studiengang: Platznummer Raumnummer Die Aufgaben sind nicht nach ihrem Schwierigkeitsgrad

Mehr

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 10.09.2012 Matrikel: Folgende Angaben sind freiwillig: Name: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die drei Stoffgebiete

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5 Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der esultierenden Aufgabe: Belasteter Balken F 5 F 1 F 2 F 3 F 4 F 5 55 110 a a a a a Gegeben: F1 = 20 N F2 = 15 N F3 = 30 N F4 = 10 N F5 = 45 N a

Mehr

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 1. März 016 Prüfungsklausur Technische Mechanik I Familienname, Vorname Matrikel-Nummer Fachrichtung Aufgabe 1 (3

Mehr

1. Einführung Festigkeitslehre

1. Einführung Festigkeitslehre 1. Einführung estigkeitslehre Themen der estigkeitslehre Zugbeanspruchung Hooksches Gesetz lächenmomente. Grades estigkeitslehre Druckbeanspruchung Abscherung lächenpressung www.lernen-interaktiv.ch 1

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum Fach Urteil BM K8 März 4 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner Literatur

Mehr

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

Übung zu Mechanik 2 Seite 16

Übung zu Mechanik 2 Seite 16 Übung zu Mechanik 2 Seite 16 Aufgabe 27 Ein Stab wird wie skizziert entlang der Stabachse durch eine konstante Streckenlast n beansprucht. Bestimmen Sie den Verlauf der Normalspannungen σ 11 (X 1 ) und

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Statische und dynamische Analyse eines Schildersystems. Esslingen

Statische und dynamische Analyse eines Schildersystems. Esslingen Statische und dynamische Analyse eines Schildersystems für Gebrüder Hohl GmbH Esslingen Dipl.-Ing. Torsten Wehner Lerchenstraße 23 72649 Wolfschlugen wehner@zinsmath.de 3. Dezember 2002 Inhaltsverzeichnis

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM3, Ing.I K8 6.3.13 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner Formelsammlungen

Mehr

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y Aufgabe : ) Biegespannungsverlauf: σ b, ) M M I I bh h b cm cm) cm cm), 8 cm, 56 cm σ b, ) N cm, 8 cm N cm, 56 cm 7, N cm 89, N cm ) Gleichung der neutralen Achse : σ b, ) : M M I 7, N cm 89, N cm P Die

Mehr

ZUGELASSENE HILFSMITTEL:

ZUGELASSENE HILFSMITTEL: ZUGELASSENE HILFSMITTEL: Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Mobiltelefone und andere elektronische Geräte sowie nicht zugelassene Unterlagen bitte vom Tisch räumen.

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite 1/14 Frage 1 ( Punkte) Geben Sie die Fächenträgheitsmomente beügich der y- und der -Achse an! a a a Gegeben: a. y a I yy = I = Fächenträgheitsmoment beügich der y-achse: ( ) I yy = aa a(a) 1 + =

Mehr

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2

Name. Vorname. Legi-Nr. Ermüdungsfestigkeit Welle-Nabe-Verbindung L/2 Dimensionieren Prof. Dr. K. Wegener ame Vorname Legi-r. Zusatzübung 1: Passfederverbindung Voraussetzungen F F Flächenpressung zwischen Bauteilen M Last Ermüdungsfestigkeit Welle-abe-Verbindung F/ L/ F/

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester BM I, S Klausur Datum K8 18. 01. 1 Fach Kinetik+Kinematik Genehmigte Hilfsmittel: Urteil Ergebnis: Punkte Taschenrechner Formelsammlungen

Mehr

Aus Kapitel 4 Technische Mechanik Aufgaben

Aus Kapitel 4 Technische Mechanik Aufgaben 6 Aufgaben Kap. 4 Aus Kapitel 4 Aufgaben 4. Zugproben duktiler Werkstoffe reißen im Zugversuch regelmäßig mit einer größtenteils um 45 zur Kraftrichtung geneigten Bruchfläche. F F 3. Mohr scher Spannungskreis:

Mehr

K5_15-09_L.Docx Seite 1 von 17

K5_15-09_L.Docx Seite 1 von 17 K5 Technische Mechanik Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Elektronische Geräte sowie nicht zugelassene Unterlagen bitte vom Tisch räumen. Mit Annahme der Klausur

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

1. Aufgabe (ca % der Gesamtpunktzahl)

1. Aufgabe (ca % der Gesamtpunktzahl) . Aufgabe (ca. 7.5 % der Gesamtpunktzahl) S 4 b G S S S 3 F A B 8a Das dargestellte Tragwerk besteht aus 4 Stäben und einer starren Scheibe. Es wird durch die Kraft F und durch die Gewichtskraft G (im

Mehr

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft 1. Zeichen eindeutige Fehler in der oberen Hälfte: eine Körperkante uviel / falsch eine Körperkante u wenig Doppelpassungen am Lager Doppelpassung am Zahnrad Lagerung -> Loslagerung falsch, da falsche

Mehr

28. August Korrektur

28. August Korrektur Institut für Technische und um. Mechanik Technische Mechanik II/III Profs. P. Eberhard, M. Hanss SS 2014 P 2 28. August 2014 Bachelor-Prüfung in Technischer Mechanik II/III Aufgabe 1 (6 Punkte) Im skiierten

Mehr

( ) Winter Montag, 19. Januar 2015, Uhr, HIL E 1. Name, Vorname: Studenten-Nr.:

( ) Winter Montag, 19. Januar 2015, Uhr, HIL E 1. Name, Vorname: Studenten-Nr.: Baustatik I+II Sessionsprüfung (101-0113-00) Winter 2015 Montag, 19. Januar 2015, 09.00 12.00 Uhr, HIL E 1 Name, Vorname: Studenten-Nr.: Bemerkungen 1. Die Aufgaben dürfen in beliebiger Reihenfolge bearbeitet

Mehr

4. Torsion. Sie werden z. B. bei Antriebswellen verwendet, die zur Übertragung von Drehmomenten eingesetzt werden

4. Torsion. Sie werden z. B. bei Antriebswellen verwendet, die zur Übertragung von Drehmomenten eingesetzt werden 4. Torsion Die Belastung eines Balkens durch ein Moment um die x- Achse wird als Torsion bezeichnet. Das Torsionsmoment Mx resultiert aus einer über den Querschnitt verteilten Schubspannung. Für Kreis-

Mehr

Arbeit, Leistung und Energie

Arbeit, Leistung und Energie Arbeit, Leistung und Energie Aufgabe 1 Ein Block kann reibungsfrei über einen ebenen Tisch gleiten. Sie üben eine Kraft von 5 Newton in Richtung 37 von der Waagrechten aus. Sie üben diese Kraft aus, während

Mehr

Goldbasispreis: 38 / Platinbasispreis: 32 / Palladiumbasispreis: 24 (Preis/g) Wandstärke: 1.3 mm Breite: 3 mm

Goldbasispreis: 38 / Platinbasispreis: 32 / Palladiumbasispreis: 24 (Preis/g) Wandstärke: 1.3 mm Breite: 3 mm Profile 01 49/01130 49/01130 49/01135 49/01135 333 Gold, Gelb 163 178 333 Gold, Gelb 184 200 333 Gold, Weiss 202 221 333 Gold, Weiss 228 250 585 Gold, Gelb 282 311 585 Gold, Gelb 322 356 585 Gold, Weiss

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof Dr-Ing D Weichert 1Übung Mechanik II SS 28 21428 1 Aufgabe An einem ebenen Element wirken die Spannungen σ 1, σ 2 und τ (Die Voreichen der Spannungen sind den Skien u entnehmen Geg: Ges: 1 σ 1 = 5

Mehr

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013 TM Übung, Aufgaben an der Tafel 9.4.3, Prof. Gerling, SS 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Wir erheben keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Prof. Dr.-Ing. Ams Matrikelnummer: Klausur Technische Mechanik 05/02/13 Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit

Mehr

20 Statik Die resultierende Kraft im ebenen Kräftesystem

20 Statik Die resultierende Kraft im ebenen Kräftesystem 20 Statik Die resultierende Kraft im ebenen Kräftesstem 6.1.3 Beispiel zur Resultierenden im allgemeinen Kräftesstem An einem Brückenträger mit der Segmentlänge a=4m greifen die äußeren Kräfte F 1 =F 2

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Aufgabe 6. Lösungsvorschlag zu Aufgabe 6. Klausur Mechanik II vom 27. März 2007 Seite 1 von 12

Aufgabe 6. Lösungsvorschlag zu Aufgabe 6. Klausur Mechanik II vom 27. März 2007 Seite 1 von 12 Klausur echanik II vom 7. ärz 7 Seite 1 von 1 ufge 6 a Der Querschnitt eines Trägers ist aus drei gleichen Rechtecken zusammengesetzt. a) estimmen Sie I yy und I zz! b) Wie groß ist I yz? y b S Gegeben:,

Mehr

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 Musterlösung ur 10. Übung Mechanik II SS 08 Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 b, h können die Schubspannungen in Richtung der bereichsweise einuführenden

Mehr

Umwelt-Campus Birkenfeld Technische Mechanik II

Umwelt-Campus Birkenfeld Technische Mechanik II 10. 9.4 Stoffgesetze Zug und Druck Zug- und Druckbeanspruchungen werden durch Kräfte hervorgerufen, die senkrecht zur Wirkfläche stehen. Zur Übertragung großer Zugkräfte eignen sich Seile und Stäbe, Druckkräfte

Mehr

Zugstab

Zugstab Bisher wurde beim Zugstab die Beanspruchung in einer Schnittebene senkrecht zur Stabachse untersucht. Schnittebenen sind gedankliche Konstrukte, die auch schräg zur Stabachse liegen können. Zur Beurteilung

Mehr

Vorlesungs-Beispiel Kragträger, Vergleich Schalen- und Balkentheorie. r a

Vorlesungs-Beispiel Kragträger, Vergleich Schalen- und Balkentheorie. r a Vorlesungs-Beispiel Kragträger, Vergleich Schalen- und Balkentheorie Skizze der Aufgabenstellung: L F L F r a p Dr. Hellmann Geg.: L 3 mm, L 5mm, r a mm, F 4 N, E.* 5 MPa, ν.3, σ zul 45MPa Ges.:. Dimensionierung

Mehr

Stahlbau Grundlagen. Das elastische Biegetorsionsproblem 2. Ordnung dünnwandiger Stäbe. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Das elastische Biegetorsionsproblem 2. Ordnung dünnwandiger Stäbe. Prof. Dr.-Ing. Uwe E. Dorka Stahlbau Grundlagen Das elastische Biegetorsionsproblem. Ordnung dünnwandiger Stäbe Prof. Dr.-Ing. Uwe E. Dorka Leitbauwerk Halle Hallenrahmen als Haupttragsstem mit Lasten Ein möglicher Grenustand ist

Mehr

= -15 MPa. Zeichnen Sie den Mohrschen Spannungskreis und bestimmen Sie

= -15 MPa. Zeichnen Sie den Mohrschen Spannungskreis und bestimmen Sie Webinar: Elastostatik Thema: Mohrscher Spannungskreis Aufgabe: Mohrscher Spannungskreis Gegeben seien die folgenden Spannungen: σ x = -40 MPa, σ y = 60 MPa und τ xy = -15 MPa. Zeichnen Sie den Mohrschen

Mehr

Aufgaben Differentialrechnung. Bergwanderung. Darmerkrankung. Katamaran. Museumsfassade. Konzentration eines Medikaments.

Aufgaben Differentialrechnung. Bergwanderung. Darmerkrankung. Katamaran. Museumsfassade. Konzentration eines Medikaments. Aufgaben Differentialrechnung Bergwanderung Darmerkrankung Katamaran Museumsfassade Konzentration eines Medikaments Schiffsrumpf 1 Bergwanderung Ein Wanderer steigt auf einen Berg, dessen Silhouette durch

Mehr

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte)

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 206 P II 2. August 206 Bachelorprüfung in Technische Mechanik II/III Nachname, Vorname E-Mail-Adresse

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben Modulrüfung in Technischer Mechanik am 6. August 206 Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutlich lesbar. Zeichnungen müssen sauber und übersichtlich sein. Die

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum BP I, S K5 Genehmigte Hilfsmittel: Fach Urteil Technische Mechanik Ergebnis: Punkte Taschenrechner Literatur

Mehr

a) b) c) d) e) f) g) h) i)

a) b) c) d) e) f) g) h) i) Ausgabe: 8.1.15 Übung 5: Schub Einleitung und Lernziele strukturen bestehen meist aus dünnwandigen Profilen. Während bei vollen Querschnitten die Schubspannungen oft kaum eine Rolle spielen, ist der Einfluss

Mehr

Stoffgesetze Spannungszustand

Stoffgesetze Spannungszustand 16. 9.4 Stoffgesete Spannungsustand Belastungen ereugen in elastischen Bauteilen einen Spannungsustand, der sowohl vom Ort als auch von der Orientierung (Winkel) des betrachteten Schnittes beüglich der

Mehr

Drehmoment

Drehmoment Drehmoment Drehmoment Ein Drehmoment entsteht, wenn eine Kraft in einem Abstand zu einem bestimmten Drehpunkt wirkt. Das Drehmoment ist ein Vektorprodukt. Der Betrag des Drehmoments ist gleich dem Produkt

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 4 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 9 15 10 9 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

LÖSUNG a) + N + G U l * ] G K l F N a ^xz Q ^ Mi() = F N : l + G:l sin() G:l cos() =! F N = G[cos() sin()] = ; 549 G Fix = N G: cos() G: sin() =! N =

LÖSUNG a) + N + G U l * ] G K l F N a ^xz Q ^ Mi() = F N : l + G:l sin() G:l cos() =! F N = G[cos() sin()] = ; 549 G Fix = N G: cos() G: sin() =! N = KLAUSUR ZUR TECNISCEN MECANIK I Termin:. Septemer AUFGABE ( Punkte) Für das in A. dargestellte System kennt man l =; 5 m, G =5 kn und =. Man estimme a) die Reaktionen in den Bindungen, ) die Schnittgrößen

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

tgt HP 2007/08-5: Krabbenkutter

tgt HP 2007/08-5: Krabbenkutter tgt HP 2007/08-5: Krabbenkutter Zum Fang von Krabben werden die Ausleger in die Waagrechte gebracht. Die Fanggeschirre werden zum Meeresboden abgesenkt. Nach Beendigung des Fanges werden die Ausleger in

Mehr

Für die folgenden Querschnitte sind jeweils die Sicherheiten gegen bleibende Verformung und Dauerbruch nach DIN 743 zu ermitteln.

Für die folgenden Querschnitte sind jeweils die Sicherheiten gegen bleibende Verformung und Dauerbruch nach DIN 743 zu ermitteln. 6 Achsen und Wellen 6.1 Typische Querschnitte Für die folgenden Querschnitte sind jeweils die Sicherheiten gegen bleibende Verformung und Dauerbruch nach DIN 743 zu ermitteln. 1. Wellenabsatz Abbildung

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens . Aufgabe Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens Geg.: Kräfte F, F = F, F Streckenlast q F a Moment M = Fa Maß a 5 F Ges.: a) Lagerreaktionen in B, C und Gelenkkräfte in G, b)

Mehr