Computational Biology: Bioelektromagnetismus und Biomechanik

Größe: px
Ab Seite anzeigen:

Download "Computational Biology: Bioelektromagnetismus und Biomechanik"

Transkript

1 Coputational Biology: Bioeletroagnetisus und Bioechani Finite Eleente Methode I

2 Gliederung Wiederholung Gewöhnliche Differentialgleichungen Finite Eleente Methode Direte Methode Extrealprinzipien Methode von Galerin Forfuntionen Zusaenfassung Seite

3 Motivation Finite Eleente Methode erlaubt nuerische Berechnung diverser Feldproblee unter Berücsichtigung von Anisotropie Inhoogenität Nichtlinearität Gesucht: Orts-/zeitabhängige Funtion, die Randbedingungen und Anfangswerte erfüllt Bereiche Eletrostati (Quasi-)stationäre eletrische Felder Ausbreitung eletroagnetischer Wellen Teperaturverteilung Kontinuusechani Koerzielle Prograpaete Ansys EMAS... Seite 3

4 Übersicht über Finite Eleente Methode Matheatische Beschreibung des Feldprobles Aufstellen der Eleentatrix Einbringen von Randbedingungen Aufstellen/Lösen von Gleichungssysteen (Systeatrix) Disretisierung des Feldgebiets Zerlegung in finite Eleente Bestiung der Ansatzfuntion für Eleente Feldfuntion u(x, y, z) Seite 4

5 Finite Eleente Methode: Erstellung der Eleentatrix Direte Methode Wahl der Integralgleichung Wahl des Eleenttyps und der Ansatzfuntion Eleentfuntion u e (x, y, z) Methode von Galerin Extrealprinzipen Wahl der Differentialgleichung Eleentatrix Seite 5

6 Direte Methode Wahl von Energie-/Leistungsteren, bspw.: W W e e : = Ú ee dv V gespeicherte eletrische Energie E: eletrische Feldstäre e: Dieletrizitätszahl P L P : L = Ú se dv V eletrische Leistung E: eletrische Feldstäre s: eletrische Leitfähigeit Welast = Ú Ee dv W elast : V Elastische Energie E: Elastizitätodul e: Relative Dehnung Seite 6

7 Extrealprinzipien: Aufgabenstellung Klassische Randwertaufgabe Ê ˆ Á Ë + Ê ( ) ˆ Á x x y u x y Ë x y u,, V xy, u fxy, y ( ) + ( ) = ( ) c 3 G c c, Œ ( ) f Œ C ( G) Œ ( ) «( ) C G V, u C G C G G = G» C Stetigeitsanforderungen C=c»c»c 3 it Dirichletschen und allgeeinen Cauchyschen Randbedingungen für C bzw. C Seite 7

8 Extrealprinzipien: Lösung I Mache Ê u u = ( x y) Ê ˆ Á + ( x y) Ê ˆ ˆ Á Á xy u fxy u dxdy G Ë Ë x Ë y - ÚÚ ( ) + ( ),, V,, + Ú a( ) - ( ) C stationär! s u g s u ds Analogie: I ~ Energieter Ableiten nach Freiheitsgraden liefert Kräfte F. Syste i Gleichgewicht für F=. Beweis ittels Variationsrechnung (siehe Schwarz Methode der finiten Eleente, S. 3) Seite 8

9 Methode von Galerin: Ritz-Ansatz Aufgabe: Bestiung einer Lösungsfuntion u für Differentialgleichungen ausgehend von linear unabhängigen, probleangepassten Funtionen f und Randbedingungen ux c ( ) = f + Â f : f : : = Indiretes Verfahren, d. h., nicht ( ) + ( ) = fux, qux, c f Potentialfuntion, erfüllt inhoogene Randbedingungen u ( x) = c Potentialfuntion, erfüllt hoogene Randbedingungen u ( x) = zu bestiende Koeffizienten u: Potentialfuntion q: Quellter f: Differentialgleichung x: Variable wird gelöst, sondern (Methode der gewichteten Residuen) Seite 9

10 Methode von Galerin II II Ú Rw dx = Residuu: Rux, fux, qux, Gewichtungsfuntion: ( ) = ( ) + ( ) w( x) Galerins Idee: Setze Gewichtungsfuntion gleich probleangepassten Funtionen ( ) wx Galerin-Methode liefert für lassische Randwertaufgabe gleiche Ergebnisse wie Extrealprinzipien! Ê f Á Á Ëf M ˆ Seite

11 Beispiel: Ströung einer Flüssigeit Ströung: stationär Flüssigeit: visos/inopressibel Ausgangsgleichungen: - + p Ê u u ˆ Á = (Moentengleichung) x Ë x y - Ê Á + p v v ˆ = y Ë x y u + v = (Kontinuitätsgleichung) x y u,v: Geschwindigeit in x - bzw. y - Richtung : Zähigeit p: Druc Seite

12 ÚÚ G Bespiel: Grundfuntionen und Einsetzen Linearobinationen der Grundfuntionen: uxy, j xy, u j xy, vxy, y xy, v y xy, pxy, c xy, p c xy, ( ) = ( ) + Â ( ) ( ) = ( ) + Â ( ) ( ) = ( ) + Â ( ) = = q = Einsetzen in Ausgangsgleichung: ÚÚ È q c c Ê ˆ Í + Âp - ÁDf + Â f Î Ë f = u D dxdy j, K, j x = x = È q c c Ê ˆ Í + Âp - ÁDy + Â y v D Î Ë y dxdy j =, K, j y = y = È f f + u + y y Í Â + Âu c j dx dy j =, K, q Î x = x y = y G ÚÚ G Seite

13 Bespiel: Bedingungsgleichungen nach einigen Uforungen (siehe Schwarz Methode der finiten Eleente S. 54-):  u f f dxdy + p j = G =  v y y dxdy + p j = G =  = u ÚÚ ÚÚ ÚÚ G j j j c x c y f y c j dx dy + Âv ÚÚ c x y q  q  = G ÚÚ G ÚÚ G j f j y dx dy + R = j dx dy + S = dx dy + T = RST,, : Zusaenfassung sonstiger Tere j j j Anschließend: Erstellung der Koeffizientenatrix des Systes Seite 3

14 Forfuntionen: Motivation Feldgrößen sind zueist nur an Knotenpunten beannt Berechnung von Flächen-/Voluenintegralen erfordert Interpolation der Feldgrößen über Fläche/Voluen Uwandlung von Koordinatensysteen Natürliche Koordinaten Weltoordinaten u u u(x,y,z)? u 3 u Seite 4

15 r ux K- = r un x ( ) = Â ( ) Interpolation zueist it Polynoen Anforderung an Forfuntion Forfuntionen u: Ansatzfuntion in Abhängigeit von Ortsvariable r x: Ortsvariable u: Feldvariable a - ten Knotenpunt N : Forfuntion in Abhängigeit von Ortsvariable r N x ( ) = Ï Ì Ó an Position von Knotenpunt an Position von Knotenpunt j, jπ Seite 5

16 Herleitung Forfuntionen: Natürliche Koordinaten i i Dreiec r N x i ( ) = r Fx i ( ) r Fx 3 Â j = j ( ) P F P F 3 P 3 F r r r N x N x N x ( ) + ( ) + ( ) = 3 P r N x ( ) = Ï Ì Ó an Position von P an Position von P, jπ j Seite 6

17 Forfuntionen D: Linear Interpolation ( ) = + ux a bx.8 N N ( ) = ( -x) ( ) = x ( ) = ( - ) + N x N x ux xu xu u: Feldvariable in Abhängigeit von Ortsvariable x: Ortsvariable u, u : Feldvariable an Knotenpunt bzw u u Seite 7

18 Berechnung einer Forfuntion: Beispiel Linearer Ansatz D ( ) = + ux a bx Einsetzen an Knotenpunten ( ) = + = fi = ( ) = + = fi + = u a bx u a u u a bx u a b u Lineares Gleichungssyste, Invertieren A A a u a = Ê A u A Ë Á ˆ Ê Á ˆ = Ê Ëb Ë Á ˆ fi Ê u Ë Á ˆ Ê ˆ = Á b Ëu = Ê ˆ - - : it Á Ë - Forfuntion ux ( ) = u + (- u + u ) x = ( -x) u + xu Seite 8

19 Forfuntionen D: Quadratische Interpolation ( ) = + + ux a bx cx ( ) = ( - )( - ) ( ) = ( - ) ( ) = - ( - ) ( ) = ( ) + ( ) + ( ) N x x x N x 4x x N x x x ux N xu N x u N x u N N N x: Ortsvariable u, u, u : Feldvariable an Knotenpunt der Position,.5 bzw. u u u Seite 9

20 Forfuntionen D: D: Kubische Interpolation it it Steigung in in Knotenpunten ( ) = ( ) = ( - ) ( + ) ( ) = ( - ) ( ) = ( - ) 3 ( ) = - ( - ) ( ) = ( ) + ( ) + ( ) + ( ) ux a bx cx dx N x x x N x x x N x x 3 x N x x x ux N xu N xu N x u N x u 3 x: Ortsvariable u,u : Feldvariable an Knotenpunt bzw. u,u: Ableitung der Feldvariable an Knotenpunt bzw..8 N N.6.4. N N 3 u / u u / u Seite

21 Forfuntionen D: D: quadratisches Grundgebiet, bilineare Interpolation ( ) = uxy, a bx cy dxy N 3 ( ) = ( - )( - ).75.5 ( ) = ( - ).5 ( ) = ( -x) y 3 ( ) = xy ( ) = ( ) + ( ) + ( ) + ( ) N x, y x y N x, y x y N x, y N x, y uxy, N xy, u N xy, u N xy, u N xy, u. 3 3 x,y: Ortsvariablen.4 x u u.8.6 y u,u,u,u: Feldvariable an Knotenpunt (,), 3 (,), (,) bzw. (,) u u 3 Seite

22 Forfuntionen D: D: quadratisches Grundgebiet, quadratische Interpolation ( ) = ux, y a bx cy dxy ex fy gx y hxy N ( ) = ( - )( - )( - - ) ( ) = - ( - )( - + ) ( ) = ( - - ) N x, y x y x y N x, y x y x y N x, y xy 3 x y K ( ) = Â ( ) uxy, N xy, 7 = u x,y: Ortsvariablen u -u: 7 Feldvariable an Knotenpunt (,),(.5,) - (,)..4 x.6 u u 7 u 3.8 u 4 u 6.4. u u 5 u.8.6 y Seite

23 Forfuntionen 3D: ubisches Grundgebiet, trilineare Interpolation ( ) = uxyz,, a bx cy dz exy fyz gxz hxyz ( ) = ( - )( - )( - ) N x, y, z x y z M u u 4 u u 5 ( ) = N x, y, z 7 xyz ( ) = Â ( ) uxyz,, N x, y, z 7 = u x, yz, : Ortsvariablen u u 6 u 3 u 7 u -u: 7 Feldvariable an Knotenpunt (,,) - (,,) Seite 3

24 Forfuntionen 3D: ubisches Grundgebiet, trilineare Interpolation z= z=.5 z= ubischer Hexaeder it Länge N x, y, z xyz 7 ( ) = Seite 4

25 Zusaenfassung Wiederholung Gewöhnliche Differentialgleichungen Finite Eleente Methode Direte Methode Extrealprinzipien Methode von Galerin Forfuntionen Seite 5

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Biomechanik III Gliederung Wiederholung: Biomechanik II Spannungsanalyse Materialgleichungen Bewegungsgleichungen Biomechanik III Statische

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011 Finite Elemente Fakultät Grundlagen April 2011 Fakultät Grundlagen Finite Elemente Übersicht 1 Lösungsmethoden Balkenbiegung Wärmeleitung 2 Fakultät Grundlagen Finite Elemente Folie: 2 Lösungsmethoden

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation

Mehr

Einführung FEM, 1D - Beispiel

Einführung FEM, 1D - Beispiel Einführung FEM, D - Beispiel home/eichel/lehre/mhs/fem_intro/deckblatt.tex. p./6 Inhaltsverzeichnis D Beispiel - Finite Elemente Methode. D Aufbau Geometrie 2. Bilanzgleichungen 3. Herleitung der Finiten

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Ferienkurs Analysis 3 für Physiker. Partielle Differentialgleichungen

Ferienkurs Analysis 3 für Physiker. Partielle Differentialgleichungen Ferienkurs Analysis 3 für Physiker Partielle Differentialgleichungen Autor: Benjamin Rüth, Korbinian Singhammer Stand: 9. März 2015 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind partielle

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen Kapitel 8.3 Anwendungen der partiellen Differentiation (Teil 1): Kettenregel und Linearisierung

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Einführung in partielle Differentialgleichungen

Einführung in partielle Differentialgleichungen vdf - Lehrbücher und Skripten Einführung in partielle Differentialgleichungen für Ingenieure, Chemiker und Naturwissenschaftler von Norbert Hungerbühler 2., durchgesehene Auflage 2 Einführung in partielle

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Mathematische Methoden der Physik I

Mathematische Methoden der Physik I Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen

Mehr

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Department Mathematik der Universität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Die ins Netz

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

Kapitel 3 Finite Element Methode

Kapitel 3 Finite Element Methode Kapitel 3 Finite Element Methode. Grundlagen der Methode der Finiten Elemente (FEM) Dir erste Methode bei der Grundzüge der FEM zu finden sind, wurde vor mehr als 5 Jahre von Schellbach beschrieben um

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD 1 Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD Studienarbeit von WOLFGANG GLOBKE Betreuer: Dipl. Inf. Marcus Hausdorf Dr. Werner Seiler Institut für Algorithmen

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Beispiel: Positionsschätzung

Beispiel: Positionsschätzung Das Kalman Filter Beispiel: Positionsschätzung Beispiel: Positionsschätzung. Messung: mit Varianz Daraus abgeleitete Positionsschätzung: mit Varianz ˆX = = f f ( y ) y 3 Beispiel: Positionsschätzung. Messung:

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Geostatistik. Räumliche Variabilität und Interpolationsverfahren

Geostatistik. Räumliche Variabilität und Interpolationsverfahren Geostatistik Räumliche Variabilität und Interpolationsverfahren Inhalte Räumliche Variabilität Beispiele Bedeutung Messung Interpolationsverfahren Nicht - stochastische Beispiele Räumliche Variabilität

Mehr

Finite Elemente I 2. 1 Variationstheorie

Finite Elemente I 2. 1 Variationstheorie Finite Elemente I 2 1 Variationstheorie 1 Variationstheorie TU Bergakademie Freiberg, SoS 2007 Finite Elemente I 3 1.1 Bilinearformen Definition 1.1 Sei V ein reeller normierter Vektorraum. Eine Bilinearform

Mehr

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades

So genannte. Steckbriefaufgaben. für ganzrationale Funktionen. Teil 2: Ganzrationale Funktionen 3. Grades Analysis Funktionsgleichungen aufstellen So genannte Steckbriefaufgaben für ganzrationale Funktionen Teil 2: Ganzrationale Funktionen 3. Grades Lösungen teilweise auch mit ausführlicher Beschreibung des

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

Lineare gewöhnliche Differentialgleichungen und Randwertprobleme

Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Kapitel Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Eine Differentialgleichung (DGL) ist eine Gleichung, in der die Variable x, die gesuchte Funktion y(x) sowie deren Ableitungen vorkommen.

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Differentialgleichungen mit MATHCAD und MATLAB

Differentialgleichungen mit MATHCAD und MATLAB Hans Benker Differentialgleichungen mit MATHCAD und MATLAB Mit 33 Abbildungen Sprin ger 1 Einleitung 1 1.1 Differentialgleichungen in Technik, Natur- und Wirtschaftswissenschaften 2 1.2 Lösung von Differentialgleichungen

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

20. Partielle Differentialgleichungen Überblick

20. Partielle Differentialgleichungen Überblick - 1-0. Partielle Differentialgleichungen Überblick Partielle Differentialgleichungen (PDE = partial differential equation) sind Differentialgleichungen mit mehreren unabhängigen Variablen (und einer abhängigen

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Stochastische FEM mit elementaren Zufallselementen

Stochastische FEM mit elementaren Zufallselementen Stochastische FEM mit elementaren Zufallselementen Hans-Jörg Starkloff Westsächsische Hochschule Zwickau 13. Südostdeutsches Kolloquium zur Numerischen Mathematik 2007 Freiberg, 27. April 2007 Einführung

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Chapter 1 : þÿ b e t a t h o m e L i v e - V i d e o s c h a p t e r

Chapter 1 : þÿ b e t a t h o m e L i v e - V i d e o s c h a p t e r Chapter 1 : þÿ b e t a t h o m e L i v e - V i d e o s c h a p t e r þÿ k ü s s e n d e n F u ß b a l l f a n s a u s D e u t s c h l a n d o d e r Ö s t e r r e i c h o d e r d i e V o o d o o 2 3. n

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

n e x i E B B z dx dn

n e x i E B B z dx dn Vorlesung Physi III WS 01/013 Es ann also nur eine Normalomponente von D und eine Tangentialomponente von H existieren, die Tangentialomponente von E, sowie die Normalomponente von B vershwinden. Daraus

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

3. Das Prinzip der virtuellen Arbeit

3. Das Prinzip der virtuellen Arbeit 3.1 Stab 3.2 Scheibe 3. Das Prinzip der virtuellen Arbeit Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.3-1 3.1 Stab Herleitung des Prinzips der virtuellen Arbeit: Am Stab greifen als äußere

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

Klausur zur HM3 (vertieft) für LRT und MaWi

Klausur zur HM3 (vertieft) für LRT und MaWi Prof. M. Eisermann Höhere Mathematik 3 (vertieft) 1. September 016 Klausur zur HM3 (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Studiengang:

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Kurze Einführung in die Finite-Elemente-Methode

Kurze Einführung in die Finite-Elemente-Methode Kurze Einführung in die Finite-Elemente-Methode Stefan Girke Wissenschaftliches Rechnen 23 Die Finite-Elemente-Methode In diesem Skript soll eine kurze Einführung in die Finite-Elemente-Methode gegeben

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr