Modellierung des zeitlichen Verhaltens mit Warteschlangen

Größe: px
Ab Seite anzeigen:

Download "Modellierung des zeitlichen Verhaltens mit Warteschlangen"

Transkript

1 H HOCHCHLE FÜ TECHIK A PPEW I L Modellierug des zeitliche Verhaltes mit Warteschlage Prof. Dr.-Ig. Adreas ikel adreas.rikel@hsr.ch Tel.: Mobil:

2 Ihalt H HOCHCHLE FÜ TECHIK A PPEW I L Problembeschreibug Wartesysteme Die M/M/1 Queue Die M/M/ Queue Feedback Ceter Close Queuig ystem

3 Problembeschreibug H HOCHCHLE FÜ TECHIK A PPEW I L Das logische Verhalte vo Ereigisströme ka durch die klassische Asätze der ML ud Erweiteruge bereits hiläglich gut beschriebe werde Activity-, Colaboratio-, Prozessdiagramme Aber: Durch die Ereigisverarbeitug werde icht ur logische Etscheiduge getroffe oder Trasformatio durchgeführt, soder jede Ereigisverarbeitug beötigt Zeit ud/oder essource, d.h. durch de uterschiedliche zufällige Zeitbedarf der Ereigisbearbeitug : köe sich Ereigisse überhole aces dies führt ggf. zu eiem uterschiedliche logische ystemverhalte warum? tehe icht geüged essource zur Ereigisbearbeitug zur Verfügug: taue sich Ereigisse i eiem beliebig grosse Wartebereich reies Wartesystem taue sich Ereigisse i eiem begrezte Wartebereich; ist keie Warteplatz mehr frei, gehe die Ereigisse verlore Warte- Verlustsystem Köe Ereigisse verlore gehe, d.h. keie Pufferug reies Verlustsystem 3

4 Fragestellug g H HOCHCHLE FÜ TECHIK A PPEW I L Wie gross ist die mittlere Aufethaltsdauer im ystem? Akuftsprozess: Wie viele Ereigisse komme im Mittel pro Zeiteiheit a? Welcher Verteilugsfuktio folgt der Ereigisstrom? Wie Gross ist die Warteschlage? mittlere Wartezeit? die Wartewahrscheilichkeit? Wie Gross ist die Verlustwahrscheilichkeit? oder Blockierugswahrscheilichkeit? erviceprozess: Wie lage Dauert die mittlere ervicezeit? Welcher Verteilugsfuktio folgt die ervicezeit? wie viele essource stehe zur Verfügug? wie gross ist die Auslastug der essource? 4

5 Wartesysteme: imple Queue I M/M/1/fifo H HOCHCHLE FÜ TECHIK A PPEW I L Die M/M/ 1/fifo oder M/M/1 Queue im Warteschlagesystem oder queueig ceter gehe geerell keie Toke verlore werde keie eue Toke erzeugt. sid alle Werte Mittelwerte, hier jeweils Markov Prozess, d.h. eg. expoetiell beschriebe erierugsfrei! der Eigagswartepuffer ist uedlich groß der Zeichevorrat der Quelle ist uedlich die Bediestrategie i ist first i first out 5

6 Wartesysteme: imple Queue II, M/M/1 H HOCHCHLE FÜ TECHIK A PPEW I L : esidece Time = Waitig Time + ervice Time Quelle Toke Wii Waitig Time ervice Time = A/T A/T: Arrival ate Legede: A: Azahl der akommede Toke C: Azahl der abgefertigte Toke T: Beobachtugszeit des ystem B: Gesamtzeit, i der das ystem aktiv war busy time : tilizatio, ist gegebe zu: = B/T erver : ervice Time = B/C für ei B C Durchsatz: = C/T stabiles ud A T B C C T C T ystem B: Gesamtzeit i der das ystem aktiv war busy time B T folgt gilt mit 6 :

7 Wartesysteme: imple Queue III, M/M/1 H HOCHCHLE FÜ TECHIK A PPEW I L Quelle Toke Waitig Time W= Q * = A/T Queue Queuelegth: Q = = B/C Durchsatz: = C/T Little s Gesetz gilt = da gilt Q = * ; 1 Q Bedigug für ei stabiles ystem W W Little s Gesetz: <ate> * <Zeit> Bsp. Wegberechug

8 Wartesysteme: Zusammefassug M/M/1 H HOCHCHLE FÜ TECHIK A PPEW I L / Beispiel: Bestimme ie die mittlere Aufethaltdauer eies Tokes bezoge auf die mittlere Bediezeit der Bediestatio eies M/M/1 ystem als Fuktio der tilizatio ud iterpretiere ie das Ergebis! Zusammefassug M/M/1 = + = Q = /1 - * Q = /1- * W = * / 1 - = B/C *C/T = 8

9 Wartesysteme: Twi Ceter I, die Parallelschaltug vo bzw. M/M/1 Queues H HOCHCHLE FÜ TECHIK A PPEW I L = + Q Q=/ * = C/T = A/T = + Q Q = = C/T = + Q * = C/T Q = / 9

10 Wartesysteme: Twi Ceter II, die Parallelschaltug vo bzw. M/M/1 Queues H HOCHCHLE FÜ TECHIK A PPEW I L Für die M/M/1-Queue galt: Q Q 1 Q 1 W 1 = A/T = + Q Q = / * = C/T Das Twi Ceter folgt: = C/T Q 1 Q 1 Q mit * fo lgt erver tilisatio Q 1 = + Q Q = / ist die Wahrscheilichkeit, das der erver besetzt ist! Keie äherugslösug * = C/T 10

11 Wartesysteme: Dual erver M/M/ I H HOCHCHLE FÜ TECHIK A PPEW I L = + Q Q = / = C/T = A/T s* = C/T = + Q = C/T Q = / Aus icht der Warteschlage halbe Bediezeit: * = 0.5 ter Eibezug der Wartewahrscheilichkeit wird = + * Q 11

12 Wartesysteme: Dual erver M/M/ II H HOCHCHLE FÜ TECHIK A PPEW I L = A/T = C/T Q mit Q Am.: Die etwickelte Formel stelle für erver ei exaktes Ergebis dar. Die Extrapolatio vo auf mit =/ ist eie äherug.. Eie gute ährug wird erzielt für < 0,33 Für größere muß die Erlag Fuktio zur exakte Berechug beutzt werde. iehe Literatur, z.b. Kleirock 1 Q 1 Multiplikatio mit 1 1

13 H HOCHCHLE FÜ TECHIK A PPEW I L Wartesysteme: Multi erver igle Queue M/M/ y g, 1 C = A/T = C/T C/T 3 Erlag C-Fuktio 1!, k C 1 0!! 1 k k k 13

14 Wartesysteme: Vergleich zwische Twi Ceter ud Dual erver H HOCHCHLE FÜ TECHIK A PPEW I L eihe1 eihe 14

15 Wartesysteme: Feedback-Ceter I H HOCHCHLE FÜ TECHIK A PPEW I L ystem p = A/T ervice Device p p dev C sys = = 1-p = : effektive Akuftsrate t 15

16 Wartesysteme: Feedback-Ceter II H HOCHCHLE FÜ TECHIK A PPEW I L ystem p V = C dev /C sys V= dev / = A/T ervice Device V = 1/1-p p p C dev dev C sys = 1-p = D = V = D/1-D : effektive Akuftsrate V : mittlere Azahl der Eigabe Visits im Verhältis zum rsprugsverkehr, Bsp. 500/400 =1.5 Vermehrug der Toke um de Faktor 1.5 D: mittlere akkumulierte ervicezeit, je größer die Azahl der zurückgeleitete Toke sid, desto größer die akkumulierte ervicezeit 16

17 Wartesysteme: Closed Queueig Ceter I H HOCHCHLE FÜ TECHIK A PPEW I L = A/T begrezte Azahl vo Toke s = C/T Offees ystem Die Modellierug eies ystems durch ei offees Queueig Ceter ist eie gute Beschreibug für Modelle mit viele Verkehrsteilehmer bzw. mit eier uerschöpfliche Produktio vo Toke I mache ituatio kokurriere jedoch eie begrezte Azahl vo Toke um eie essource. Azahl der Toke begrezt id alle Toke i der Queue, so werde keie eue Toke produziert, ud der Verkehr geht gege 0 Bspiele: estaurat Begrezte gerige Azahl vo utzer eier Applikatio 17

18 H HOCHCHLE FÜ TECHIK A PPEW I L Wartesysteme: Closed Queueig Ceter II y g Azahl der Toke Für Q galt: Q Beschreibe die Z Q Dekzeit Z Z Z Z s Q Q Z Q Z Q Z espose Time Law: Lasowska et al 1984, Abschätzug Z Für die tilisatio 18, Abschätzug für m erver m s s Für die tilisatio gilt weiterhi:

19 Wartesysteme: Zusammefassug H HOCHCHLE FÜ TECHIK A PPEW I L Wartesysteme beschreibe ysteme i dee keie Toke verlore gehe. Wartesysteme diee zur Beschreibug des mittlere zeitliche Verhaltes eies ystems. Daraus lässt sich: Die mittlere Wartezeit bestimme Der durchschittliche peicherplatzbedarf abschätze Diee zur aalytische tersuchug des eigeschwugee ystemzustades Die hier vorgestellte Formel gelte für Markov Akufts- ud Bedieprozesse Eie experimetelle Methode, mit der auch der Eischwigvorgag ud beliebige Akufts- ud Bedieprozesse beschriebe werde köe, ist die imulatio 19

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Master Modul IV im SS 2016: Technisch-ökonomische Wartesysteme

Master Modul IV im SS 2016: Technisch-ökonomische Wartesysteme Operatios Research ud Wirtschaftsiformatik Prof. Dr. P. Recht // Übuge DOOR Master Modul IV im SS 206: Techisch-ökoomische Wartesysteme Aufgabe Übugsblatt Wird i der Übug am 8. April 206 besproche. Wiederholug

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Handout. Instationäre Wärmeleitung. ka t. kat V. ktg D. Mit dem Körperfaktor G = bzw. = folgt. ktga. ktg = D. λkörper. ktga. kdfog. Mit = + folgt.

Handout. Instationäre Wärmeleitung. ka t. kat V. ktg D. Mit dem Körperfaktor G = bzw. = folgt. ktga. ktg = D. λkörper. ktga. kdfog. Mit = + folgt. T T T T k ex t ρcv D G Mit dem Körerfaktor G bzw. folgt V V D kt ρc V ktg ρc D Körer Körer Mit a bzw. ρc folgt ρc a ktg ρc D ktga D Körer at at Mit Fo bzw. D Fo folgt D D ktga D Körer kdfog Körer Mit +

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Election: Nachrichtenkomplexität. Mittlere Nachrichtenkomplexität (1) - Beispiel: Sei k = n = 4 - Über alle Permutationen mitteln (wieviele?

Election: Nachrichtenkomplexität. Mittlere Nachrichtenkomplexität (1) - Beispiel: Sei k = n = 4 - Über alle Permutationen mitteln (wieviele? Electio: Nachrichtekompleität - Message-etictio-Prizip vo Chag ud Roberts 979 - war eier der erste verteilte Algorithme Mittlere Nachrichtekompleität () - Beispiel: Sei k = = - Über alle Permutatioe mittel

Mehr

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE Defiitio ach DIN4004 Als Zuverlässigkeit ( reliability ) gilt die Fähigkeit eier Betrachtugseiheit ierhalb vorgegebeer Greze dejeige durch de Awedugszweck bedigte Aforderuge zu geüge, die a das Verhalte

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Teil VII : Zeitkomplexität von Algorithmen

Teil VII : Zeitkomplexität von Algorithmen Teil VII : Zeitkomplexität vo Algorithme 1. Algorithme ud ihr Berechugsaufwad. Aufwadsabschätzug Wachstum vo Fuktioe 3. Aufwad vo Suchalgorithme K. Murma, H. Neuma, Fakultät für Iformatik, Uiversität Ulm,

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

Teil VII : Zeitkomplexität von Algorithmen

Teil VII : Zeitkomplexität von Algorithmen Teil VII : Zeitkomplexität vo Algorithme. Algorithme ud ihr Berechugsaufwad. Aufwadsabschätzug Wachstum vo Fuktioe. Aufwad vo Suchalgorithme K. Murma, H. Neuma, Fakultät für Iformatik, Uiversität Ulm,

Mehr

Ulrich Stein Fehlerrechnung

Ulrich Stein Fehlerrechnung Fehlerrechug Verteilug vo Messwerte Mittelwert Stadardabweichug Stadardfehler Rude vo Messwerte Darstellug vo Messwerte (Stellezahl) Fehlerfortpflazug Messergebisse Messug physikalische Realität Messgerät,

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Kapitel Markov-Modelle mit unendlicher Population

Kapitel Markov-Modelle mit unendlicher Population Kapitel 3 3.2 Markov-Modelle it uedlicher Populatio Das M/M/ Modell Dabei hadelt es sich u ei Syste it gleichartige Server. Bei > Bedieer ist die Zeit bis zur ächste Akuft bzw. de ächste Abgag wieder expoetiell

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

Behörde für Schule und Berufsbildung Abitur 2010 Lehrermaterialien zum Leistungskurs Mathematik. Übergangsmatrix. und

Behörde für Schule und Berufsbildung Abitur 2010 Lehrermaterialien zum Leistungskurs Mathematik. Übergangsmatrix. und aupttermi Abitur 21 II2 Krake üher LA/AG 2 I eier Geflügelfarm bricht eie Viruserkrakug aus, die für die Tiere teilweise tödlich verläuft, für Mesche aber ugefährlich ist, we das Fleisch durchgebrate verzehrt

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Teilaufgabe 1.0 Bei der Firma Kohl kommen morgens alle im Büro Beschäftigten nacheinander ins Großraumbüro.

Teilaufgabe 1.0 Bei der Firma Kohl kommen morgens alle im Büro Beschäftigten nacheinander ins Großraumbüro. mathphys-olie Abiturprüfug Berufliche Oberschule 014 Mathematik 13 Techik - B I - Lösug Teilaufgabe 1.0 Bei der Firma Kohl komme morges alle im Büro Beschäftigte acheiader is Großraumbüro. Teilaufgabe

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Numerische Integration (s. auch Applet auf

Numerische Integration (s. auch Applet auf Numerische Itegratio (s. auch Applet auf www.mathematik.ch) Voraussetzuge ud Zielsetzug Voraussetzug: Eie Fuktio f sei auf dem abgeschlossee Itervall I = [a,b] stetig. b Gesucht: Bestimmtes Itegral J =

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Starke und schwache Einwegfunktionen

Starke und schwache Einwegfunktionen Starke ud schwache Eiwegfuktioe Daiela Weiberg weiberg@iformatik.hu-berli.de Semiar: Perle der theoretische Iformatik Dozete: Prof. Johaes Köbler, Olaf Beyersdorff Witersemester 2002/2003 2. Dezember 2002

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Stochastik. Bernoulli-Experimente und Binomialverteilung. Allg. Gymnasien: ab J1 / Q1 Berufl. Gymnasien: ab Klasse 12.

Stochastik. Bernoulli-Experimente und Binomialverteilung. Allg. Gymnasien: ab J1 / Q1 Berufl. Gymnasien: ab Klasse 12. Stochastik Allg. Gymasie: ab J / Q Berufl. Gymasie: ab Klasse 2 Alexader Schwarz www.mathe-aufgabe.com August 208 Aufgabe : Ist der Zufallsversuch eie Beroulli-Kette? We ja, gib die Läge ud die Trefferwahrscheilichkeit

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken Semiar: Radomisierte Algorithme Routeplaug i Netzwerke Marie Gotthardt 3. Oktober 008 Ihaltsverzeichis 1 Routeplaug i Netzwerke 1.1 Laufzeit eies determiistische Algorithmus'................ 1. Radomisierter

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9

, h(1) =, h(2) = c. a) Säulendiagramm siehe Tafel- oder Folienskizze b) Ermittlung von c: Die Summe der relativen Häufigkeiten muss 1 sein: c = 4 9 Techische Uiversität Müche SS 2006 Zetrum Mathematik Blatt 3 Prof. Dr. J. Hartl Dr. Haes Petermeier Dr. Corelia Eder Dipl.-Ig. Marti Nagel Höhere Mathematik 2 (Weihestepha). Jeder der Bewoher eies Stadtviertels

Mehr

Abiturprüfung Mathematik 13 Technik B I - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik B I - Lösung mit CAS GS 04.06.2016 - m16_13t-b1_lsg_cas_gs.pdf Abiturprüfug 2016 - Mathematik 13 Techik I - Lösug mit CAS Teilaufgabe 1.0 Eiem Eishockey-Traier stehe isgesamt 15 Spieler zur Verfügug, wobei es sich um zwölf

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10.

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10. Aufgabe Der Vechtaer Esse auf Räder -Service beötigt eie eue Küche zur Zubereitug der Mahlzeite. Sie köe zwische de Modelle A ud B wähle. Die Eiahme durch die Auslieferug der Esse sid uabhägig davo, welche

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier: Uterrichtsmaterialie i digitaler ud i gedruckter Form Auszug aus: Vo Kurve ud Fläche Das komplette Material fide Sie hier: School-Scout.de Das bestimmte Itegral ach Riema Eizelstude 69 Klasse 11 ud 12

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte Modul 0 Regressiosgerade ud Korrelatio Has Walser: Modul 0, Regressiosgerade ud Korrelatio ii Ihalt Die Regressiosgerade.... Problemstellug.... Berechug der

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

2.3 Einführung der Bruchzahlen

2.3 Einführung der Bruchzahlen . Eiführug der Bruchzahle..1 Bruchzahlaspekte Sei m (mit m ), eie Bruchzahl. (1) Teil vom Gaze (Siehe dazu de folgede Abschitt..!) () Maßzahl: Bezeichug vo Größe [Siehe Abschitt., Teil I (Größekozept).

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur Techische Uiversität Müche Sommersemester 007 Istitut für Iformatik Prof. Dr. Javier Esparza Diskrete Wahrscheilichkeitstheorie Wiederholugsklausur LÖSUNG Hiweis: Bei alle Aufgabe wird ebe dem gefragte

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Teilaufgabe 1.1 (3 BE) Berechnen Sie die Wahrscheinlichkeit dafür, dass ein im Flughafen zufällig herausgegriffener Pauschalreisender ( ) =

Teilaufgabe 1.1 (3 BE) Berechnen Sie die Wahrscheinlichkeit dafür, dass ein im Flughafen zufällig herausgegriffener Pauschalreisender ( ) = Abiturprüfug Berufliche Oberschule 004 Mathematik 3 Techik - B I - Lösug Teilaufgabe.0 A eiem Flughafe sid 0% der Reisede Ferreisede. Uter de Ferreisede befide sich 5% Nicht-Pauschalreisede. Der Ateil

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Schätzung der Kovarianzmatrix

Schätzung der Kovarianzmatrix Schätzug der Kovariazmatrix Aus eiem Esemble vo Beobachtuge {x i } ka die Kovariazmatrix (Zetralmomete) geschätzt werde: C = E{( x µ )( x µ ) } = R µ µ xx x x xx x x ˆ 1 C ˆ ˆ xx = xk µ x xk µ x k = 1

Mehr

Klausur 3 Kurs 11ma3g Mathematik

Klausur 3 Kurs 11ma3g Mathematik 202-06-2 Klausur 3 Kurs ma3g Mathematik Lösug I eier Lotto-Ure befide sich 49 Kugel, die mit de Zahle vo bis 49 beschriftet sid. Eie eizige Kugel wird gezoge. Bereche Sie die Wahrscheilichkeit, dass diese

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Uabhägigkeit, bedigte Wahrscheilichkeite 2.1 Stochastische Uabhägigkeit vo Ereigisse Im Folgede gehe wir vo eiem W-Raum (Ω, A, P aus. Der Begriff der stochastische Uabhägigkeit

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler Statistik ud Wahrscheilichkeitsrechug Testatprüfug am Doerstag 5.Mai Wa? Doerstag, 5. Mai, 8:00 Uhr Dauer der

Mehr

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Ordetlicher Termi 018 H043 ABSCHLUSSPRÜFUNG AN DEN GYMNASIEN Fachrichtug: LI0 - REALGYMNASIUM LI03 - REALGYMNASIUM - SCHWERPUNKT ANGEWANDTE NATURWISSENSCHAFTEN Arbeit aus: MATHEMATIK Löse Sie

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Schätzung der Kovarianzmatrix

Schätzung der Kovarianzmatrix Schätzug der Kovariazmatri Aus eiem Esemble vo Beobachtuge { i } ka die Kovariazmatri (Zetralmomete) geschätzt werde: C E{( )( ) } R ˆ 1 k ˆ k ˆ k 1 Schätzwert (edliche Summe): C ( )( ) ud dem Schätzwert:

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

2. Übung Algorithmen II

2. Übung Algorithmen II Johaes Sigler, Prof. Saders 1 Johaes Sigler: KIT Uiversität des Lades Bade-Württemberg ud atioales Forschugszetrum i der Helmholtz-Gemeischaft Istitut für Theoretische www.kit.edu Iformatik Orgaisatorisches

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 9 1 Ihalt der heutige Übug Statistik ud Wahrscheilichkeitsrechug Iformatioe zur Testatprüfug Besprechug der der Hausübug

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr