Übungsblatt

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt"

Transkript

1 Übungsblatt ) Zerlegen Sie folgene gebrochen rationale Funktionen in rein reelle Partialbrüche: a) f() = c) h() = b) g() = ) Untersuchen Sie as asymptotische Verhalten (Pole, Verhalten für ± ) folgener Funktionen: a) f() = b) f() = Skizzieren Sie iese Funktionen anhan Ihrer Analyse. Hinweise: Bestimmen Sie ie Polstellen aus en Nullstellen es Nenners un em Vorzeichenverhalten er Gesamtfunktion nahe ieser Nullstellen. Das Verhalten für ± wir aus em Resultat einer Polynomivision ersichtlich. 3) Beweisen Sie folgene Eigenschaften er Hyperbelfunktionen: a) cosh () sinh () = 1 b) sinh( + y) = sinh() cosh(y) + cosh() sinh(y) c) (sinh()) = cosh() Hinweis: Verwenen Sie en Zusammenhang zwischen en Hyperbelfunktionen un er Eponentialfunktion, sowie ie Beziehung ep(a) = a ep(a). ) Geben Sie (argumentativ, ohne Beweis) zu folgenen Funktionen jeweils ein Intervall an, in em ie Funktion monoton ist, un bilen Sie ort ie Umkehrfunktion: a) f() = + 1 b) f() = sin (arctan()) Geben Sie abei Definitions- un Wertebereiche an: für ie ursprüngliche Funktion, für as gewählte monotone Intervall, un für ie ermittelte Umkehrfunktion. 5) Bilen Sie ie 1. un. Ableitung er folgenen Funktionen: ( ) a) y = sin 1 b) y = arccot() c) y = sinh(ln ) ) y = sin ( 3 1 ) e) y = ) Untersuchen Sie ie folgenen Grenzwerte, ohne ie Regel von e L Hospital zu benutzen: tan() 0 1 cos() Hinweis zu (a): Erweitern Sie mit 1 + cos() un verwenen Sie sin ()+cos () = 1. 1

2 7) Untersuchen Sie folgene Grenzwerte unter Verwenung er Regel von e L Hospital: ( 1 0 sin() 1 ) n b) lim e 8) (Klausuraufgabe MfC1 vom..013) Gesucht ist er Grenzwert lim 1 + (1) a) Zeigen Sie rechnerisch, aß man iesen Grenzwert nicht urch Operationen er Art lim f() = f(lim ) bestimmen kann. Welcher Ausruch resultiert abei un warum ist as kein akzeptables Ergebnis? b) Zeigen Sie rechnerisch, aß man iesen Grenzwert ebenfalls nicht mit er Regel von L Hospital bestimmen kann. Warum nicht? c) Die Grenzwertbestimmung ist sehr einfach möglich, wenn man vor er Grenzwertbilung en Bruch mit 1 erweitert. Welcher Grenzwert ergibt sich araus? ) Was ergibt sich für en Grenzwert lim 1 + nach em Resultat von Teilaufgabe (c)? Warum ist ieses Resultat falsch? (Hinweis: Ermitteln Sie ie Symmetrie er Funktion!) Worin besteht ie Schwierigkeit beim Weg von Teilaufgabe (c)? Welcher Grenzwert ist für Gl. emzufolge er richtige? () 9) Entwickeln Sie ie folgenen Funktionen in Taylorreihen um 0 = 0, auf möglichst einfache Weise (i..r. unter Verwenung von Stanartaylorreihen). Machen Sie, wenn nötig, Angaben über einen ggf. beschränkten Gültigkeitsbereich Ihrer Entwicklung! a) y = a a, bis zur 5. Ornung b) y = e sin(), bis zur. Ornung Hinweis zu (a): Nutzen Sie ie Verwantschaft es gegebenen Ausrucks mit er Summenformel für ie geometrische Reihe aus. Zusatz: Versuchen Sie, iese Reihen auch irekt aus er Grunefinition er Taylorreihe herzuleiten. 10) (Klausuraufgabe MfC1 19.Okt.010) Gegeben sin ie Funktionen y = f() = ln ( 1 + ) ( ) 1 un z = g() = ln 1 + a) Welcher sehr einfache Zusammenhang (rechnerisch un graphisch) besteht zwischen f() un g()? (Hinweis: Verwenen Sie ie Haupteigenschaft es Logarithmus in er Formulierung ln(u n ) = n ln(u) für einen geeigneten Wert von n.)

3 b) Testen Sie rechnerisch, ob f() gerae oer ungerae ist. Was folgt araus für ie Symmetrie von g()? c) Bestimmen Sie für f() un g() alle Nullstellen, ie -Werte un Funktionswerte aller Maima un Minima, sowie ie -Werte un Steigungen aller Wenepunkte. Gegen welche Funktionswerte streben f() bzw. g() für ±? ) Verwenen Sie Stanartaylorreihen, um ie ersten vier nicht verschwinenen Terme er Taylorentwicklung von f() um en Entwicklungspunkt 0 = 0 zu finen. Verifizieren Sie ie Koeffizienten für 0, 1 un mit Hilfe Ihrer Ableitungsresultate aus Teilaufgabe (c). Benutzen Sie as Resultat von Teilaufgabe (a), um aus ieser Taylorreihe für f() irekt ie ersten vier Terme er Taylorreihe für g() zu erzeugen. Wie äußert sich as Resultat von Teilaufgabe (b) in iesen Reihen? e) Skizzieren Sie f() un g() qualitativ, in einem Intervall, as alle Wenepunkte enthält. 11) (Klausuraufgabe MfC1.Okt.013) Gegeben ist ie Funktion y = f() = ep( arctan ()) a) Skizzieren Sie en Verlauf von arctan(). Gegen welchen Wert strebt arctan() für ±? Berechnen Sie en Grenzwert von f() für ±. b) Bilen Sie ie 1. un. Ableitung von f(). c) Ermitteln Sie ie Terme nullter, erster un zweiter Ornung er Taylorentwicklung von f() um 0 = 0 mit Hilfe er allgemeinen Taylorreihenefinition un en Ableitungen aus Teilaufgabe (b). ) Ermitteln Sie ie Terme nullter bis vierter Ornung er Taylorentwicklung von f() um 0 = 0 unter Verwenung von arctan() = ± un einer weiteren, geeigneten Stanartaylorreihe. Weitere Aufgaben 1) Zerlegen Sie folgenen gebrochen rationalen Funktionen in rein reelle Partialbrüche: a) f() = b) f() = ) Beweisen Sie folgene Eigenschaften er Hyperbelfunktionen: a) (cosh()) = sinh() b) (sinh() cosh()) = cosh() Hinweis: Verwenen Sie en Zusammenhang zwischen en Hyperbelfunktionen un er Eponentialfunktion, sowie ie Beziehung ep(a) = a ep(a). 3

4 1) Geben Sie (argumentativ, ohne Beweis) zu folgenen Funktionen jeweils ein Intervall an, in em ie Funktion monoton ist, un bilen Sie ort ie Umkehrfunktion: a) f() = ln(tan( )) Geben Sie abei Definitions- un Wertebereiche an: für ie ursprüngliche Funktion, für as gewählte monotone Intervall, un für ie ermittelte Umkehrfunktion. 15) Bilen Sie ie 1. un. Ableitung er folgenen Funktionen: a) y = cot (arcsin()) b) y = sin ( ) c) y = ) Untersuchen Sie ie folgenen Grenzwerte, ohne ie Regel von e L Hospital zu benutzen: sinh() e 17) Untersuchen Sie folgene Grenzwerte unter Verwenung er Regel von e L Hospital: b) lim (tanh() 1) 18) Entwickeln Sie ie folgenen Funktionen in Taylorreihen um 0 = 0, auf möglichst einfache Weise (i..r. unter Verwenung von Stanartaylorreihen). Machen Sie, wenn nötig, Angaben über einen ggf. beschränkten Gültigkeitsbereich Ihrer Entwicklung! a) y = cosh(), bis zur 6. Ornung b) y = ln ( e ), bis zur. Ornung Zusatz: Versuchen Sie, iese Reihen auch irekt aus er Grunefinition er Taylorreihe herzuleiten. 19) (Klausuraufgabe Mathematik für Chemiker 1, Uni Stuttgart, ; leicht moifiziert:) Gegeben ist ie Funktion a) Ermitteln Sie f(0). f() = sin() sinh() b) Skizzieren Sie ie Funktionen sin() un sinh(). Diskutieren Sie auf ieser Grunlage Definitionsbereich, Symmetrie, Nullstellen un Verhalten bei ± von f().

5 c) Nähern Sie sin() un sinh() urch Taylorreihen um = 0 bis zum Glie fünfter Ornung. Ermitteln Sie abei ie Taylorreihe von sinh() aus er Definition von sinh() un er Stanartaylorreihe für e. Konstruieren Sie mit Hilfe ieser Reihen urch Polynomivision eine gebrochen rationale Näherungsfunktion g() an f(). ) Ermitteln Sie alle Etremwerte von g(); schätzen Sie ie ungefähren -Werte er Minima ab (ohne Taschenrechner!). Bestimmen Sie alle Nullstellen von g(). Verifizieren Sie urch eplizite Bestimmung es Grenzwerts, aß g( = 0) = f( = 0) gilt. f() un g() haben bei = 0 ein Maimum. Bestimmen Sie as Verhalten von g() bei ±. Geben Sie ungefähr en Wertebereich von f() an. Skizzieren Sie f() un g() anhan aller hier gesammelten Informationen. 0) (Klausuraufgabe Mathematik für Chemiker 1, :) Betrachten Sie ie Funktion y = f() = ln(). a) Ist iese Funktion bei = 0 efiniert? (Begrünung) Ermitteln Sie en Grenzwert lim 0+ f(). b) Beantworten Sie folgene Fragen für f(): Definitionsbereich? -Werte aller Nullstellen? (, y)-werte aller Etrema? Sin ies jeweils Maima oer Minima? (, y)-werte aller Wenepunkte? (keine Bestimmung er Art er Wenepunkte) Gegen welchen Wert strebt ie Tangentensteigung von f() bei 0+? c) Entwickeln Sie ie Funktion ln() in eine Taylorreihe um 0 = 1 urch Verwenung einer geeigneten Stanartaylorreihe (nur bis zum.glie!) un einer einfachen Substitution. Verwenen Sie as Resultat, um ein Näherungspolynom P () für f() = ln() aufzustellen. Zwischenergebnis: P () = 3 / + 3/ ) Diskutieren Sie P () aus Teilaufgabe (c): -Werte aller Nullstellen; -Werte aller Etremwerte; (, y)-werte aller Wenepunkte; Tangentensteigung bei = 0. e) Skizzieren Sie f() un P () un vergleichen Sie mit kurzen Stichworten as Verhalten ieser beien Funktionen bei = 0, bei = 1 un für > 1. 5

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

IMA II - Lösungen (Version 1.04) 1

IMA II - Lösungen (Version 1.04) 1 IMA II - Lösungen Version.04 Übungsserie Aufgabe Ableitung über Differenzenquotient Der Differenzenquotient, auch bekannt als mittlere Änerungsrate, wir gebilet urch Betrachtung von Sekantensteigungen

Mehr

Mathematik 1. Klausur am 12. Februar 2018

Mathematik 1. Klausur am 12. Februar 2018 Mathematik 1 Klausur am 12. Februar 218 Aufgabe 1 (13 Punkte. Entscheien Sie, ob folgene Aussagen wahr oer falsch sin. Achtung: Für jee richtige Antwort erhalten Sie einen Punkt, für jee falsche Antwort

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Übungsblatt 2: Lösungen

Übungsblatt 2: Lösungen Übungsblatt 2: Lösungen 3..208 ) Bei Teilaufgabe (c) liegt eine unecht gebrochen rationale Funktionen vor, daher ist hier eine einleitende Polynomdivision zur ufspaltung in einen polynomialen nteil (symptote)

Mehr

Übungsblatt 2: Lösungen

Übungsblatt 2: Lösungen Übungsblatt 2: Lösungen 3..206 ) Bei Teilaufgabe (c) liegt eine unecht gebrochen rationale Funktionen vor, daher ist hier eine einleitende Polynomdivision zur ufspaltung in einen polynomialen nteil (symptote)

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Kapitel 5 Stetigkeit un Differenzierbarkeit 5.1 Stetigkeit Unstrenge Definitionen : Eine Funktion heißt stetig, wenn - man ihren Graphen mit em Bleistift ohne Absetzen zeichnen kann; - kleine Änerungen

Mehr

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung.

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung. Kapitel 8: Potenzreihen un elementare Funktionen 8.3 Elementare Funktionen Die Exponentialfunktion ist für z C efiniert urch expz) := k! zk, hat Konvergenzraius r =, un aher ist expz) für alle z C stetig.

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0, . Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Dr. Tatiana Samrowski Institut für Mathematik Universität Zürich Übungen zum Vorkurs Mathematik Mengenlehre Aufgabe : Stellen Sie die folgenden Menge durch Aufzählen ihrer Elemente dar: A = { N : ist Primzahl

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

d dx y(x) = y 0 exp(a (x x 0 )). 8.3 Elementare Funktionen Anfangswertproblem für gewöhnliche Differentialgleichung.

d dx y(x) = y 0 exp(a (x x 0 )). 8.3 Elementare Funktionen Anfangswertproblem für gewöhnliche Differentialgleichung. 8.3 Elementare Funktionen Die Exponentialfunktion ist für z C efiniert urch 1 expz) := k! zk, k=0 hat Konvergenzraiusr =, un aher ist expz) für allez C stetig. Für reelle Argumente ist exp : R R unenlich

Mehr

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3.

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3. Übung (9). Drücken Sie 3 ³ b (4 a ( 5) c) aus urch a b c. Geben Sie auch eine geometrische Deutung es Resultats an.. Vereinfachen Sie: ( x 4 y) (3 y 5 x). ³ ³³ ³ 3. Vereinfachen Sie en Ausruck a 3 b 3

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabenblatt D Differenzialrechnung Prof Dr Peter Plappert Fachbereich Grundlagen Die Aufgaben dieses Aufgabenblattes sollen ohne die Benutzung von Taschenrechnern bearbeitet

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

24 Partialbruchzerlegung und elementare Stammfunktionen

24 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen Aufgabe: Versuchen Sie, 0 d und 4 0 d 6 und zu berechnen. 4. Rationale Funktionen. a) uotienten

Mehr

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR.

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR. - Aufgaben Aufgabe : Abschlussprüfung 999 / AI Gegeben ist ie Funktion f( x) sin ( x ) = un x IR. a) Ermitteln Sie alle Nullstellen un Extrempunkte er Funktion f. b) Zeichnen Sie en Graphen er Funktion

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 4 Aufgaben Verständnisfragen Aufgabe 4. Bestimmen Sie ein Polynom vom Grad 3, das die folgenden Werte annimmt 0 p) 3 3 Aufgabe 4. Jede Nullstelle ˆ eines Polynoms p mit p) = a 0 + a +...+ a n n

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung

Aufgabenkomplex 1: Funktionen, Interpolation, Grenzwerte, Ableitung Technische Universität Chemnitz 2. April 202 Fakultät für Mathematik Höhere Mathematik I.2 Aufgabenkomple : Funktionen, Interpolation, Grenzwerte, Ableitung Letzter Abgabetermin: 24. April 202 (in Übung

Mehr

Aufgaben zu Kapitel 4

Aufgaben zu Kapitel 4 Aufgaben zu Kapitel 4 Aufgaben zu Kapitel 4 Verständnisfragen Aufgabe 4. Bestimmen Sie ein Polynom vom Grad 3, das die folgenden Werte annimmt 0 p) 3 3 Aufgabe 4. Jede Nullstelle ˆ eines Polynoms p mit

Mehr

Demo-Text für Hyperbolische Funktionen. Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus. u. a.

Demo-Text für   Hyperbolische Funktionen. Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus. u. a. Höhere Analysis Hyperbolische Funktionen Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus u. a. Tet Nr. 50 Stand: 5. Mai 08 Demo-Tet für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem.

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem. . Reelle Funktionen. Grundbegriffe Wenn man den Elementen einer Menge D (Definitionsbereich) in eindeutiger Weise die Elemente einer Menge B (Bildbereich; Wertebereich; Wertevorrat) zuordnet, spricht man

Mehr

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden.

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden. Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Elementare Funktionen. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f( definiert werden. { { 2

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Technische Universität Hamburg Harburg WiSe 016/17 Kai Rothe Brückenkurs Mathematik Beispielaufgaben 5 Aufgabe 1: Für folgende Funktionen gebe man den Definitionsbereich D und Wertebereich W an und berechne,

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17 Themenkatalog Mengenlehre Aussagenlogik Relationen Funktionen Vollstänige Inuktion Folgen Reihen Grenzwerte Funktionseigenschaften Differentialrechnung Integralrechnung Mathe-Party Fula Wintersemester

Mehr

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ;

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ; Einige Graphen spezieller Funktionen Lineare Funktion: f = a C b. Der Graph ist eine Gerade (Linie), der Koeffizient a bei gibt die Steigung der Geraden (den Tangens des Winkels, den die Gerade mit der

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

hat. Dann hat zumindest die dritte Ableitung ebenfalls die Nullstelle x 0.

hat. Dann hat zumindest die dritte Ableitung ebenfalls die Nullstelle x 0. Differentialrechnung Graphen mit Flachpunkt un Wenepunkt Quelle: Akaemiebericht Theorie Es gibt Funktionen, eren zweite Ableitung eine mehrfache Nullstelle x 0 hat. Dann hat zuminest ie ritte Ableitung

Mehr

Stetigkeit und Differentation von Funktionen einer Veränderlichen

Stetigkeit und Differentation von Funktionen einer Veränderlichen KAPITEL 6 Stetigkeit un Differentation von Funktionen einer Veränerlichen. Funktionengrenzwerte.. Grenzwerte. Gegeben sei I R ein Intervall, a I {, } un f : I\{a} R. Die Funktion f kann sehr wohl auch

Mehr

Prüfungsleistung Mathematik 1 (TI 1)

Prüfungsleistung Mathematik 1 (TI 1) Hochschule Ulm Klein 08. Juli 00 Prüfungsleistung Mathematik (TI ) Name:... Matrikel-Nr.:... Punkte:... Note:... Bemerkungen: - alle Hilfsmittel zugelassen (kein Laptop / Handy) - Lösungswege müssen erkennbar

Mehr

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018 HM I Tutorium 8 Lucas Kunz. Dezember 08 Inhaltsverzeichnis Theorie. Stetigkeit und Grenzwerte............................ Sinus und Cosinus.................................3 Tangens und Cotangens............................

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe Scheinklausur Höhere Mathematik Musterlösung 0. 0. 0, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 5 6 7 8 9 0 Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise:

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss emanuel.duss@gmail.com 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von

Mehr

Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen

Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 30. September 0 Die Bernoulli-Zahlen gehören zu den wichtigsten Konstanten der Mathematik. Wir

Mehr

Mathematik IT 3 (Analysis) Probeklausur

Mathematik IT 3 (Analysis) Probeklausur Mathematik IT (Analysis) Probeklausur Datum: 08..0, Zeit: :5 5:5 Name: Matrikelnummer: Vorname: Geburtsdatum: Studiengang: Aufgabe Nr. 5 Σ Punkte Soll 5 9 7 Punkte Ist Lösungen ohne begründeten Lösungsweg

Mehr

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES ARBEITSUNTERLAGEN zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES Vorbemerkung Ziel des Propädeutikums ist es, die Schulmathematik wieder ins Gedächtnis zu rufen und eine gemeinsame Grundlage für die

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017 HM I Tutorium 9 Lucas Kunz. Dezember 017 Inhaltsverzeichnis 1 Theorie 1.1 Exponentialfunktion.............................. 1. Sinus und Cosinus................................ 1.3 Tangens und Cotangens............................

Mehr

Aufgabenkomplex 1: Funktionen, Interpolation, Ableitung

Aufgabenkomplex 1: Funktionen, Interpolation, Ableitung Technische Universität Chemnitz 7. April 010 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple 1: Funktionen, Interpolation, Ableitung Letzter Abgabetermin: 7. April 010 in Übung oder Briefkasten

Mehr

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern 014 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSBEREICH BESTIMMEN Bei einem Bruch darf der Nenner nicht null werden, d.h. es muss gelten: x 5 0 x

Mehr

Übungen zum Mathematischen Vorkurs

Übungen zum Mathematischen Vorkurs Übungen Sommersemester 4 - Übungsblatt Aufgabe. Vereinfachen Sie folgene reelle Funktionen un Ausrücke un zeichnen Sie iese: Überlegen Sie sich, ob sie abei en Definitionsbereich veränern. a) cos(φ) tan(φ)

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Prüfungklausur HM 1 (Ing), Lösungshinweise

Prüfungklausur HM 1 (Ing), Lösungshinweise Aufgabe : a Welche komplexen Zahlen erfüllen die Gleichung z + i z =? Skizzieren Sie die Lösungsmenge in der Gaussschen Zahlenebene. 6 Punkte b Für welche komplexen Zahlen z gilt (z + i = 8 e π i? Die

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten)

Mathematikaufgaben > Analysis > Kurven (Polarkoordinaten) Michael Buhlmann Mathematikaufgaben > Analysis > Kurven Polarkoorinaten Aufgabe: Gegeben sei für reelle Winkel φ ie Kurve K als Karioie Herzkurve in Polarkoorinaten: im x-y-koorinatensystem. r, φ a Skizziere

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017 Inhalt 1 Motivation Einführung in die Mathematik für Wirtschaftswissenschaften Vorlesung im Wintersemester 2017 Kurt Frischmuth Institut für Mathematik, Universität Rostock WS 2017 2 Grundlagen Begriffe

Mehr