Sommersemester Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik

Größe: px
Ab Seite anzeigen:

Download "Sommersemester 2013. Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik"

Transkript

1 Sommersemester 2013 Analytisches CRM Prozess und Methoden Lehrstuhl für ABWL und Wirtschaftsinformatik Katholische Universität Eichstätt-Ingolstadt

2 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

3 Literatur 3 Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R. (2006): Multivariate Analysemethoden Eine anwendungsorientierte Einführung,11. Aufl., Berlin. Berry, M. J. A.; Linoff, G. S. (2000): Mastering Data Mining The Art and Science of Customer Relationship Management, New York. Blattberg, R. C.; Kim, B. D.; Neslin, S. A. (2008): Database Marketing, Analyzing and Managing Customers, New York. Hippner, H.; Hubrich, B.; Wilde, K. D. (Hrsg.) (2011): Grundlagen des CRM. Strategie, Geschäftsprozesse und IT-Unterstützung, 3. Aufl., Wiesbaden. Hippner, H., Küsters, U., Meyer, M., Wilde, K. D. (2001): Handbuch Data Mining im Marketing Knowledge Discovery in Marketing Databases, Wiesbaden.

4 Einführung Curriculum 4 Grundlagen des CRM (Wintersemester) Analytisches CRM (Sommersemester) Datenbanken & Data Warehouse (Sommersemester) CRM IT-Systeme (Sommersemester) CRM in der Praxis (Wintersemester) Das Master-Modul Analytische CRM besteht aus den Veranstaltungen Prozess und Methoden und Anwendungen Gesonderte Anmeldung für beide Veranstaltungen per KU-Campus erforderlich. Vorlesung Prozess und Methoden jeweils 105 Minuten (12:15-14:00) bis Übung Anwendungen beginnt am nach der Vorlesung

5 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

6 Operatives und analytisches CRM Definition 6 Customer Relationship Management (CRM) versucht mit Hilfe moderner Informations- und Kommunikationstechnologien, auf lange Sicht profitable Kundenbeziehungen durch ganzheitliche und individuelle Marketing-, Salesund Servicekonzepte aufzubauen und zu festigen. Zentrale Gestaltungsbereiche des CRM sind die Entwicklung der Strategie für das Management von Kundenbeziehungen (CRM-Strategie) die Ausrichtung aller kundenbezogenen Geschäftsprozesse auf die Erfordernisse dieser CRM-Strategie die Unterstützung dieser kundenbezogenen Geschäftsprozesse durch geeignete IT-Systeme, in Form einer Zusammenführung aller kundenbezogenen Daten (Datenintegration, One Face of the Customer ) kundenindividuelle Ausrichtung und Synchronisation der Kundenansprache (Prozessintegration, One Face to the Customer )

7 Operatives und analytisches CRM Kernprozesse im CRM 7 Kundenwertanalyse Übergreifende Prozesse Kundensegmentierung Kundencharakterisierung Strategische Zielsetzung Strategische Analyse Vision Umfeldanalyse Ressourcenanalyse SWOT- Analyse Strategische Konzeption Strategie Entwicklung Zielgruppenanalyse Maßnahmenspezifische Prozesse Cross-Selling- Analyse Abwanderungsanalyse Analytische CRM-Prozesse Kundenrisikoanalyse Operative CRM-Prozesse Strategischer CRM-Prozess Marketing -Prozesse Sales-Prozesse Leistungs- Service-Prozesse erstellung Kampagne Lead Opportunity Angebot Auftrag Strategie Umsetzung Strategisches Controlling Ergebnis Controlling Prozess Controlling Feedback Support

8 Operatives und analytisches CRM Architektur von CRM-Systemen 8 Marketing- Prozesse Sales- Prozesse Service- Prozesse Back Office Enterprise Ressource Planning Supply Chain Management Interaktionskanäle Customer Touch Points CRM- Anwendungen Basis- Anwendungen Operative CRM-Systeme Analytische CRM-Systeme Pers. Kontakt WWW Telefon Brief/Fax Etc. Außendienst Innendienst CIC Filiale Website Stammdaten Data Mining Operative Kundendatenbank Data Warehouse OLAP In Anlehnung an: Leußer, W.; Hippner, H.; Wilde, K. D. (2011): CRM Grundlagen, Konzepte und Prozesse, in: Hippner et al. 2011, S Etc. Kampagne Opportunity Feedback Lead Angebot/Auftrag Support Aktivitäten Kontakt Eskalation Workflow

9 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

10 Kundendaten Inhalte von Kundendaten 10 Identifikationsdaten Daten zur Identifikation des individuellen Kunden. Umfassen Identifikationsdaten i.e.s. (Kundennummer, Name, Vorname, Anrede, Akademische Titel) auch Adress- und Kontaktdaten, um die Erreichbarkeit des Kunden zu sichern. Deskriptionsdaten Daten zur Beschreibung geschäftsrelevanter Eigenschaften individueller Kunden (Kundenprofil) und ihres sozialen Umfeldes (Soziografie). Transaktionsdaten Daten zur Dokumentation aller Transaktionen, die innerhalb einer Kundenbeziehung stattfinden. Dazu gehören neben den Kaufakten des Kunden (Kaufhistorie) alle vor- und nachgelagerten Kommunikations-Episoden zwischen Unternehmen und Kunden (Kontakthistorie) sowie Daten über das Produktnutzungsverhalten des Kunden.

11 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

12 Data Warehouse und OLAP Data Warehouse 12 Begriffsbestimmung Datenbank, die aus der technischen Sicht Daten aus verschiedenen Datenquellen integriert und aus der betriebswirtschaftlichen Sicht dem Anwender diese Daten zu Analysezwecken zur Verfügung stellt (Bauer/Günzel 2004, S. 5). Datenbank, die als unternehmensweite Datenbasis für alle Ausprägungen managementunterstützender Systeme dient und durch eine strikte Trennung von operationalen und entscheidungsunterstützenden Daten und Systemen gekennzeichnet ist (Mucksch/Behme 2000, S. 6). Bauer, A.; Günzel, H. (2004): Data Warehouse Systeme, 2. Aufl., Heidelberg. Mucksch, H.; Behme, W. (2000): Das Data Warehouse-Konzept als Basis einer unternehmensweiten Informationslogistik, in: Mucksch, H.; Behme, W. (Hrsg.): Das Data Warehouse-Konzept, 4. Aufl., Wiesbaden, S Bange, C. (2006): Werkzeuge für analytische Informationssysteme. In: Chamoni, P.; Gluchowski, P. (Hg.): Analytische Informationssysteme Business Intelligence-Technologien und -Anwendungen, 3. Aufl., Berlin [u.a.], S

13 Data Warehouse und OLAP OLAP (Online Analytical Processing) 13 Begriffsbestimmung und Aufbau OLAP wurde 1993 von Codd/Codd/Salley konzipiert als innovativer Analyseansatz [ ], der eine dynamische Analyse in multi-dimensionalen Datenräumen ermöglichen sollte (Kemper et al. 2006, S. 93). OLAP ist im Gegensatz zu OLTP (Online Transaction Processing) nicht auf die Unterstützung operativer Geschäftsprozesse zugeschnitten, sondern ermöglicht Fachund Führungskräften dynamische und multidimensionale Analysen auf historischen und konsolidierten Datenbeständen (Gluchowski et al. 1997, S. 282; Gluchowski/Chamoni 2006, S. 145). OLAP-Tabellen oder Würfel (Hypercubes) bilden ausgewählte Kennzahlen (Fakten) nach ausgewählten Gliederungskriterien (Dimensionen) aus dem DWH ab. Codd, E.; Codd, S. B.; Salley, C. T. (1993): Providing OLAP to User-Analysts: An IT Mandate. (Zugriff: ). Gluchowski, P.; Chamoni, P. (2006): Entwicklungslinien und Architekturkonzepte des On-Line Analytical Processing, in: Chamoni, P.; Gluchowski, P. (Hrsg.): Analytische Informationssysteme Business Intelligence-Technologien und -Anwendungen, 3. Aufl., Berlin u. a., S Gluchowski, P.; Gabriel, R.; Chamoni, P. (1997): Management-Support- Systeme Computergestützte Informationssysteme für Führungskräfte und Entscheidungsträger, Berlin u. a. Kemper, H.-G.; Mehanna, W.; Unger, C. (2006): Business Intelligence Grundlagen und praktische Anwendungen: Eine Einführung in die IT-basierte Managementunterstützung, 2. Aufl., Wiesbaden.

14 Data Warehouse und OLAP OLAP (Online Analytical Processing) 14 OLAP Werkzeuge

15 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

16 Gegenstand des Data Mining Definition 16 Data Mining nimmt Bezug auf ein Bild aus dem Bergbau (Mining). Dort werden mit massivem Technikeinsatz riesige Gesteinsmengen maschinell abgebaut und aufbereitet, um Edelmetalle und Edelsteine zu fördern. Analog werden beim Data Mining riesige Datenberge mit modernsten Techniken nach neuen, interessanten Mustern ( Nuggets ) durchsucht. Data Mining ist die automatisierte Analyse umfangreicher Datenbestände mit dem Ziel, neue, generalisierbare und handlungsrelevante Strukturen zu erkennen. Hippner, H., Grieser, L., Wilde, K.D. (2011): Data Mining Grundlagen und Einsatzpotenziale in analytischen CRM-Prozessen, in: Hippner, H., Hubrich, B., Wilde, K.D. (Hrsg.): Grundlagen des CRM, 3. Aufl., Wiesbaden, S

17 Gegenstand des Data Mining Methoden 17 Problemtypen des Data Mining Vielzahl von Methoden aus unterschiedlichen Forschungstraditionen : Mathematik, Informatik, Statistik, Künstliche Intelligenz, Neurobiologie In Anlehnung an Hippner, H., Grieser, L., Wilde, K.D. (2011): Data Mining Grundlagen und Einsatzpotenziale in analytischen CRM-Prozessen, in: Hippner, H., Hubrich, B., Wilde, K.D. (Hrsg.): Grundlagen des CRM, 3. Aufl., Wiesbaden, S

18 Gegenstand des Data Mining Prozess 18

19 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

20 Data Mining-Werkzeuge Charakteristika und Anwendungsbeispiel 20 Charakteristika von Data Mining-Werkzeugen Dialogorientierte Unterstützung aller Prozessphasen Breites Methodenangebot für alle Aufgabenbereiche Anwendungsbeispiel Churn-Analyse (Life-Demo) IBM SPSS

21 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

22 Methoden des Data Mining Übersicht 22 Klassifikation Segmentierung Regression Abhängigkeit Neuronale Netze x x x x K & R-Bäume x x Clusteranalyse x Assoziationsanalyse x Lineare Regression x x Log. Regression x x

23 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

24 Künstliche Neuronale Netze Aufbau biologischer neuronaler Netze 24

25 Künstliche Neuronale Netze Aufbau künstlicher neuronaler Netze (KNN) 25

26 Künstliche Neuronale Netze Eingangs- und Aktivierungsfunktion 26 Eingangsfunktion (z. B. Skalarprodukt) ε = n j= 1 w j e j Aktivierungsfunktion (z. B. linear oder Identität) c = χε bzw. c = ε Konstante χ dient als Skalierungsfaktor

27 Künstliche Neuronale Netze Aktivierungsfunktionen 1/2 27 Verlaufsform Mathematische Beschreibung Graphische Darstellung Anmerkungen linear, unbegrenzt c = χ. ε + δ mit χ > 0; ε, δ R Mit χ = 1 und δ = 0 ergibt sich die Identitätsfunktion. Rampenfunktion (linear, begrenzt) β fallsε σ c = α fallsε σ ' χ ε + δ sonst mit β, α, ε, σ, σ, δ R Der untere Schwellenwert σ muss überschritten werden, bis eine Ausgabe erfolgt; ab σ erfolgt keine Änderung der Ausgabe mehr. Die Funktion ist nicht differenzierbar.

28 Künstliche Neuronale Netze Aktivierungsfunktionen 2/2 28 Verlaufsform Mathematische Beschreibung Graphische Darstellung Anmerkungen Schwellenwertfunktion (Treppenfunktion) Sigmoidfunktion β falls ε σ c = α sonst mit β, α, ε, σ R z.b. logistische Funktion: 1 c = δ ε 1 + e mit δ > 0; ε R oder Tangens Hyperbolicus: c = tanh(ε) mit ε R Beim Erreichen von σ erfolgt eine sprungartige Änderung der Aktivität. Hierdurch können Schwierigkeiten beim Lernvorgang hervorgerufen werden. Eingeschränkter Einsatzbereich, da keine kontinuierlichen Werte erzeugt werden können. Die Ausgabe konvergiert gegen α bzw. β. Tangens Hyperbolicus hat beim Lernverfahren Geschwindigkeitsvorteile gegenüber logistischer Funktion. Die Funktion ist differenzierbar (Voraussetzung für den Einsatz bestimmter Lernverfahren).

29 Künstliche Neuronale Netze Struktur eines KNN 29 Ausgangsmuster OUTPUT LAYER Eingangsmuster HIDDEN LAYERS INPUT LAYER

30 Künstliche Neuronale Netze Struktur eines KNN 30 INPUT LAYER HIDDEN LAYER OUTPUT LAYER w 14 = 3 4 w 48 = 1 1 w 24 = Eingangs- muster 2 3 w 37 w w = = 4 6 = 1 Verbindungsgewicht vom Neuron i zum Neuron j: w ij Ausgangs- muster

31 Künstliche Neuronale Netze Lernverfahren 31 Lernen Überwachtes Lernen Lernen von Regeln aus Beispielen mit bekannter Lösung Unüberwachtes Lernen Lernen von Regeln aus dem Vergleich von Objekten

32 Künstliche Neuronale Netze 32 Grundprinzip überwachter Lernverfahren Ausgabe erwünschte Ausgabe verdeckte Schicht(en) Eingabemuster Ausgabeschicht Eingabeschicht Neuronales Netz Differenzvektor (teaching input)

33 Künstliche Neuronale Netze Grundprinzip überwachter Lernverfahren 33 Fehlerfunktion Skalares Maß für die Ähnlichkeit von Soll-/Istausgabe Beispiel: Summe der Abweichungsquadrate D = i i ( A j S j ) i j 2 Nichtlineare Optimierungsmethoden Minimierung der Fehlerfunktion in Abhängigkeit von w ij Gradientenmethoden, z. B. Backpropagation

34 Künstliche Neuronale Netze Grundprinzip unüberwachter Lernverfahren 34 Self-Organizing Maps (SOM) zur Segmentierung Jedes Eingangsneuron ist mit jedem Ausgangsneuron verbunden Gewinner Nachbarn 1 Datensätze anlegen 2 3 Gewichte anpassen Gewinner berechnen Gewinner-Neuron: minimale Distanz zwischen Inputvektor und Gewichtungsvektor des Neurons Gewichtsanpassung bei Nachbar-Neuronen: Anpassung in Richtung des Eingabemusters Input w i,10 (Input-w i,10 ) 2 Input w i,9 (Input-w i,9 ) 2 0,50 0,40 0,01 0,50 0,90 0,16 0,20 0,40 0,04 0,20 0,90 0,49 0,10 0,10 0,00 0,10 0,90 0,64 0,90 0,80 0,01 0,90 0,10 0,64 Summe 0,06 Summe 1,93 NEU ALT i w i,9 = 0,9 * w i,9 + 0,1 * Input 1 0,86 0,9 * 0,90 + 0,1 * 0,50 2 0,83 0,9 * 0,90 + 0,1 * 0,20 3 0,82 0,9 * 0,90 + 0,1 * 0,10 4 0,18 0,9 * 0,10 + 0,1 * 0,90

35 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

36 Klassifikations- und Regressionsbäume Aufgabe und Funktionsprinzip 36 Klassifikation: Zuordnung der Objekte zu vorgegebenen Klassen Regression: Schätzung einer intervallskalierten Zielgröße für ein Objekt Datenbasis: (abhängige) Zielgröße mehrere (unabhängige) erklärende Variablen Voraussetzung: bekannte (klassifizierte) Fälle Modellbildung: Umsetzung bekannter Fälle in Regeln Generalisierung: Regelanwendung auf neue Fälle

37 Klassifikations- und Regressionsbäume Beispiel Produktempfehlungen 37 Ein Produkt wird in zwei verschiedenen Ausführungen angeboten. Die exklusive und die Standard-Produktvariante werden jeweils von sechs Kunden präferiert. Bei zufälliger Auswahl des Produkts bei der Kundenansprache wird nur mit 50 % Wahrscheinlichkeit das richtige Produkt beworben. Ein Entscheidungsbaum kann helfen, die bevorzugte Produktvariante aus den bekannten Merkmalen zu erkennen. Nr. Geschlecht Alter Umsatz Produktvariante 1 männl. 20 mittel Exklusiv 2 weibl. 73 mittel Standard 3 weibl. 37 hoch Exklusiv 4 männl. 33 niedrig Standard 5 weibl. 48 hoch Exklusiv 6 männl. 29 mittel Exklusiv 7 weibl. 52 mittel Standard 8 männl. 42 niedrig Standard 9 männl. 61 mittel Standard 10 weibl. 30 mittel Exklusiv 11 weibl. 26 niedrig Standard 12 männl. 54 hoch Exklusiv

38 Klassifikations- und Regressionsbäume Beispiel Produktempfehlungen 38 Nr. Geschlecht Produktvar. Nr. Alter Produktvar. Nr. Umsatz Produktvar. 1 männl. Exklusiv 1 20 Exklusiv 3 hoch Exklusiv 6 männl. Exklusiv Standard 5 hoch Exklusiv 12 männl. Exklusiv 6 29 Exklusiv 12 hoch Exklusiv 4 männl. Standard Exklusiv 1 mittel Exklusiv 8 männl. Standard 4 33 Standard 6 mittel Exklusiv 9 männl. Standard 3 37 Exklusiv 10 mittel Exklusiv 3 weibl. Exklusiv 8 42 Standard 2 mittel Standard 5 weibl. Exklusiv 5 48 Exklusiv 7 mittel Standard 10 weibl. Exklusiv 7 52 Standard 9 mittel Standard 2 weibl. Standard Exklusiv 4 niedrig Standard 7 weibl. Standard 9 61 Standard 8 niedrig Standard 11 weibl. Standard 2 73 Standard 11 niedrig Standard männlich/weiblich: Erfolgsquote 50 % Alter >/<= 40: Erfolgsquote 66 % Umsatz: Erfolgsquote 75 %

39 Klassifikations- und Regressionsbäume Beispiel Produktempfehlungen 39 Umsatz + Alter Erfolgsquote 100 % Optimierte Werbestrategie: Hoher Umsatz: Exklusive Variante Niedriger Umsatz: Standard-Produkt Mittlerer Umsatz: Alter <= 40: Exklusive Variante Alter > 40: Standard-Produkt Nr. Umsatz Alter Produktvar. 3 hoch 37 Exklusiv 5 hoch 48 Exklusiv 12 hoch 54 Exklusiv 1 mittel 20 Exklusiv 6 mittel 29 Exklusiv 10 mittel 30 Exklusiv 7 mittel 52 Standard 9 mittel 61 Standard 2 mittel 73 Standard 11 niedrig 26 Standard 4 niedrig 33 Standard 8 niedrig 42 Standard

40 Klassifikations- und Regressionsbäume Beispiel Produktempfehlungen 40 Datenbasis 6 x Exklusive Variante 6 x Standard-Produkt Umsatz: hoch Umsatz: mittel Umsatz: niedrig 3 x Exklusive Variante 0 x Standard-Produkt Alter <= 40 3 x Exklusive Variante 0 x Standard-Produkt Abbildung durch Regeln: 3 x Exklusive Variante 3 x Standard-Produkt Alter > 40 0 x Exklusive Variante 3 x Standard-Produkt 0 x Exklusive Variante 3 x Standard-Produkt IF (Bedingung 1) AND... AND (Bedingung r) THEN Klasse = C

41 Klassifikations- und Regressionsbäume Bestandteile: Knoten und Kanten 41 Datenbasis 6 x Medikament Exklusive Variante A 6 x Standard-Produkt Medikament B Wurzel = Knoten ohne Vorgänger Blutdruck: Umsatz: hoch 3 x Medikament Exklusive Variante A 0 x Standard-Produkt Medikament B Blutdruck: Umsatz: normal mittel 3 x Medikament Exklusive Variante A 3 x Standard-Produkt Medikament B Blutdruck: Umsatz: niedrig 0 x Medikament Exklusive Variante A 3 x Standard-Produkt Medikament B Innerer Knoten = Knoten mit Vorgänger und Nachfolger; bestimmt die Aufspaltung der enthaltenen Objekte Alter <= 40 3 x Medikament Exklusive Variante A 0 x Medikament Standard-Produkt B Alter > 40 0 x Medikament Exklusive Variante A 3 x Medikament Standard-Produkt B Kante = Verbindung zwischen Knoten Blatt = Knoten ohne Nachfolger; jedem Blatt wird eine Klassenbezeichnung zugeordnet

42 Klassifikations- und Regressionsbäume Begriffe und Eigenschaften 42 Begriffe: Split Aufteilung in Untermengen Homogener Knoten enthält nur Objekte einer Klasse Binärbaum 2er-Splits pro Knoten Klassifikationsbaum ordinale/nominale Zielgröße Regressionsbaum metrische Zielgröße Eigenschaften: Leichte Verständlichkeit und Interpretierbarkeit Intervallweise Abbildung nichtlinearer Relationen Regeln können sehr komplex werden: Maßnahmen zur Komplexitätsreduktion Stopp-Kriterien Pruning-Strategien

43 Klassifikations- und Regressionsbäume Beispiel Kündigeranalyse (Klassifikationsbaum) 43 Kundenbasis 5000 Kündiger (50,0%) 5000 Nicht-Kündiger (50,0%) Letzte Bestellung < 6 Monate 3000 Kündiger (37,5%) 5000 Nicht-Kündiger (62,5%) Letzte Bestellung > 6 Monate 2000 Kündiger (100,0%) 0 Nicht-Kündiger (0,0%) Kunde seit > 3 Jahren 500 Kündiger (11,1%) 4000 Nicht-Kündiger (88,9%) Alter <= 40 Jahre 2000 Kündiger (100,0%) 0 Nichtkündiger (0,0%) Kunde seit < 3 Jahren 2500 Kündiger (71,4%) 1000 Nicht-Kündiger (28,6%) Alter > 40 Jahre 500 Kündiger (33,3%) 1000 Nicht-Kündiger (66,7%)

44 Klassifikations- und Regressionsbäume Beispiel Kundenwertprognose (Regressionsbaum) 44 Kundenbasis Kunden 1018 Durchschnittsumsatz Letzte Bestellung < 6 Monate 8000 Kunden 1222 Durchschnittsumsatz Letzte Bestellung > 6 Monate 2000 Kunden 200 Durchschnittsumsatz Kunde seit > 3 Jahren 4500 Kunden 1500 Durchschnittsumsatz Alter <= 40 Jahre 2000 Kunden 800 Durchschnittsumsatz Kunde seit < 3 Jahren 3500 Kunden 864 Durchschnittsumsatz Alter > 40 Jahre 1500 Kunden 950 Durchschnittsumsatz

45 Klassifikations- und Regressionsbäume Vorgehensweise Start: alle Objekte befinden sich in einem Knoten 2. Suche nach dem besten Klassifikationsmerkmal 3. Klassifizierung der Objekte nach diesem Merkmal 4. Rekursive Anwendung der Schritte 2 und 3 bis zum Stopp 5. Nachträgliches Zurückschneiden des Baumes (Pruning)

46 Klassifikations- und Regressionsbäume Attributwahl 46 Objektmenge: Split A: generell 20 % Fehler Split B: je nach Gruppe 0 oder 29 % Fehler Was ist besser? Festlegung eines Fehlermaßes

47 Klassifikations- und Regressionsbäume Attributwahl Gini-Index 47 Minimierung der Heterogenität Wahrscheinlichkeit, bei Stichprobe n=2 Objekte aus unterschiedlichen Klassen zu erhalten: 1 - p (0,0) - p (1,1) = 1 - p(0)² - p(1)² Minimum = 0,0: alle Objekte aus einer Klasse Maximum = 0,5: Objekte zweier Klassen gleich häufig Beispiel Anzahl: 30 Kündiger 70 Nicht-Kündiger p: 30/100 = 0,3 70/100 = 0,7 Gini-Index = 1-0,3² - 0,7² = 0,42

48 Klassifikations- und Regressionsbäume Attributwahl Gini-Index 48 Berechnung der Heterogenität in einem Split: Split A: Split B: (A, links) = 0,32 (A, rechts) = 0,32 (B, links) = 0,49 (B, rechts) = 0,0 Gewichteter Durchschnitt A: 0,32 B: 0,44 A wird bevorzugt!

49 Klassifikations- und Regressionsbäume Weitere Heterogenitätsmaße 49 Chi-Quadrat-Test Klassifikationsprobleme Maß für die Abhängigkeit zwischen Merkmal und Zielgröße Auswahl des Merkmals mit dem höchsten Chi-Quadrat-Signifikanzwert Aufbau des Chi-Quadrat-Unabhängigkeitstests (Zugriff: )

50 Klassifikations- und Regressionsbäume Weitere Heterogenitätsmaße 50 F-Test Regressionsprobleme Test auf Signifikanz von Mittelwert-Unterschieden in Stichproben Auswahl des Merkmals mit der höchsten Signifikanz der Mittelwert-Unterschiede Aufbau des F-Tests (Zugriff: )

51 Klassifikations- und Regressionsbäume Stopp-Kriterien 51 Natürliche Stopp-Kriterien Knoten enthält nur Objekte mit dem gleichen Wert der Zielvariablen Alle Testmerkmale ausgeschöpft Weitere Stopp-Kriterien Minimale Objektzahl je Knoten (absolut/prozentual) Grenzwert für Verbesserung der Homogenität Maximale Baumtiefe

52 Klassifikations- und Regressionsbäume Pruning 52 Vereinfachung komplexer Bäume Einfachheit Overfitting/Generalisierungsfähigkeit Top-Down-Pruning: Stopp-Kriterien bei Baumerstellung Bottom-Up-Pruning: Nachträgliches Stutzen Pruning von Splits mit geringem Homogenitäts-Beitrag Pruning zur Beseitigung von Overfitting Überprüfung anhand von Validierungsdaten Baumteile ohne nennenswerten Klassifikations-Beitrag auf Validierungsdaten werden zurückgeschnitten.

53 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

54 Clusteranalyse Aufgabe der Clusteranalyse 54 Segmentierung Bildung möglichst homogener Gruppen aus einer Gesamtheit von Objekten Objekte innerhalb der Gruppen möglichst ähnlich Gruppen untereinander möglichst unterschiedlich Anzahl und Eigenschaften der Gruppen sind zu Beginn nicht bekannt

55 Clusteranalyse Beispiel Kundensegmentierung 55 Serviceanspruch Trittbrettfahrer Premium-Kunden Asketen Graue Mäuse Zahlungsbereitschaft

56 Clusteranalyse Beispiel Kundensegmentierung Mobilkommunikation 56 Merkmale: Anzahl der Gespräche pro Woche Dauer der Gespräche Zeitpunkt (Geschäftszeit, Wochenende,...) Inland-/Auslandsgespräch,... Charakterisierung der Kundengruppe durch typische Merkmalsausprägungen und charakteristische Bezeichnung: Wochenendtelefonierer, Geschäftsreisender-Inland,...

57 Clusteranalyse Proximitätsmaße 57 Proximitätsmaß quantifiziert die Ähnlichkeit oder die Unähnlichkeit von Objekten Proximitätsmaß überführt Rohdatenmatrix in eine Ähnlichkeits- oder Distanzmatrix Ähnlichkeitsmaß: je höher desto größer die Ähnlichkeit Distanzmaß: je höher desto kleiner die Ähnlichkeit

58 Clusteranalyse Proximitätsmaße 58 Rohdatenmatrix Merkmal 1 Merkmal 2... Merkmal J Objekt 1 Objekt 2... Objekt K Ähnlichkeits- oder Distanzmatrix Objekt 1 Objekt 2... Objekt K Objekt 1 Objekt 2... Objekt K

59 Clusteranalyse Proximitätsmaße 59 Proximitätsmaße Metrische Skalen Nominal-Skalen Q-Korrelationskoeffizient City-Block- Metrik Tanimoto- Koeffizient M-Koeffizient Euklidische Distanz Distanzmaße Ähnlichkeitsmaß RR-Koeffizient Ähnlichkeitsmaße

60 Clusteranalyse Proximitätsmaße für metrische Skalen 60 City-Block-Metrik Rohdaten Objekt 1 Objekt 2 M 1 M 2 M d = = = 4 (Quadrierte) Euklidische Distanz d d = d 2 = = = = 2,45

61 Clusteranalyse Proximitätsmaße für metrische Skalen 61 Q-Korrelationskoeffizient Ähnlichkeit = Korrelation der Merkmalsprofile der Objekte Rohdaten Objekt 1 Objekt 2 Objekt 3 Objekt 4 M 1 M 2 M Korrelation zwischen Wertevektoren ,000,000 1,000-1,000,000 1,000,000,000 1,000,000 1,000-1,000-1,000,000-1,000 1,000 Identischer Profilverlauf Korrelation = 1 Entgegengesetzter Profilverlauf Korrelation = -1

62 Clusteranalyse Wahl des Proximitätsmaßes 62 Entscheidender Einfluss auf die Ähnlichkeit der Objekte Abhängig vom Untersuchungsgegenstand: Sind die Profilverläufe von Interesse? z. B. Umsatzentwicklung Q-Korrelationskoeffizient Interessiert der absolute Abstand? z. B. Umsatzhöhe City-Block, Euklid Metrische Skalen Standardisierung der Merkmale Keine Maßstabsinvarianz der Proximitätsmaße

63 Clusteranalyse Nominale Skalen Grundlagen 63 Familienstand: ledig=1/verheiratet=2/geschieden=3 Umcodieren in Binärvariable für jede Ausprägung, da Ähnlichkeit nicht aus den Codierungen bestimmbar Familienstand: 3 neue Binärvariablen: ledig nein=0/ja=1 verheiratet nein=0/ja=1 geschieden nein=0/ja=1

64 Clusteranalyse Nominale Skalen Ähnlichkeit bei Binärvariablen 64 Ähnlichkeit abhängig von Merkmalsübereinstimmung Objekt 2 Eigenschaft vorhanden nicht vorhanden Objekt 1 Eigenschaft vorhanden nicht vorhanden a b Berechnung von Proximitätsmaßen aus a, b, c, d Implizite Gewichtung der Merkmale durch Anzahl der Binärmerkmale Gewichtung der Merkmale c d

65 Clusteranalyse Nominale Skalen Ähnlichkeit bei Binärvariablen 65 M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 Objekt 1 Objekt Objekt 1 Eigenschaft vorhanden nicht vorhanden Objekt 2 Eigenschaft vorhanden nicht vorhanden a=3 c=2 b=3 d=2

66 Clusteranalyse Nominale Skalen Ähnlichkeit bei Binärvariablen 66 Tanimoto-Koeffizient: a a + b + c Simple Matching (M)-Koeffizient: a + d a + b + c + d Russel & Rao (RR)-Koeffizient: a a + b + c + d

Sommersemester 2015. Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik

Sommersemester 2015. Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik Sommersemester 2015 Analytisches CRM Prozess und Methoden Lehrstuhl für ABWL und Wirtschaftsinformatik Katholische Universität Eichstätt-Ingolstadt Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches

Mehr

Customer Relationship Management CRM

Customer Relationship Management CRM Customer Relationship Management CRM 1.1 Zielsetzung von CRM...2 1.2 Komponenten einer CRM-Lösung...4 1.2.1 Aufgabenbereiche eines CRM-Systems...4 1.2.2 Analytisches CRM...7 1.2.3 Operatives CRM...7 1.2.4

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Datenqualitätsmanagement im Customer Relationship Management

Datenqualitätsmanagement im Customer Relationship Management Wolfgang Leußer Datenqualitätsmanagement im Customer Relationship Management Verlag Dr. Kovac Hamburg 2011 Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis XVII XIX XXI

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014 Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung Next Best Product Kundenspezifische Produktangebote in einer Multichannel Umgebung - Mag. Thomas Schierer - Erste Bank der oesterreichischen Sparkassen AG Agenda Erste Bank Allgemeine Information CRM in

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Universität Ulm Seminararbeit zum Thema Data Mining und Statistik: Gemeinsamkeiten und Unterschiede vorgelegt von: Daniel Meschenmoser betreut von: Dr. Tomas Hrycej Dr. Matthias Grabert Ulm, im Februar

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Management Support Systeme

Management Support Systeme Folie 1 Management Support Systeme Literatur zur Vorlesung MSS Gluchowski, Peter; Gabriel, Roland; Chamoni, Peter (1997): Management Support Systeme. Computergestützte Informationssysteme für Führungskräfte

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Feedback-Management als Daten-Schatz für das Multi-Channel-Marketing

Feedback-Management als Daten-Schatz für das Multi-Channel-Marketing Feedback-Management als Daten-Schatz für das Multi-Channel- - Strategische CRM-Unternehmensberatung Vortrag im Rahmen des MTP-Alumni Forums Erfolgsfaktor Kundendialog warum Kunden wiederkommen, Darmstadt,

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

CRM Customer Relationship Management. Dipl.-Psych. Anja Krol

CRM Customer Relationship Management. Dipl.-Psych. Anja Krol CRM Customer Relationship Management Gliederung Entwicklung und Einführung von Bezugspunkte und CRM - Systeme Veränderte Rahmenbedingungen Entwicklung CRM - Systeme» Deregulierung verstärkt internationalen

Mehr

Räumliches Data Mining

Räumliches Data Mining Räumliches Data Mining Spatial Data Mining Data Mining = Suche nach "interessanten Mustern" in sehr großen Datensätzen => explorative Datenanlyse auch: Knowledge Discovery in Databases (KDD) verbreitete

Mehr

Einführung in die Cluster-Analyse mit SAS

Einführung in die Cluster-Analyse mit SAS Einführung in die Cluster-Analyse mit SAS Benutzertreffen am URZ Carina Ortseifen 4. Juli 2003 Inhalt 1. Clusteranalyse im allgemeinen Definition, Distanzmaße, Gruppierung, Kriterien 2. Clusteranalyse

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Datamining Ein kleiner Einblick

Datamining Ein kleiner Einblick Datamining Ein kleiner Einblick Autoren: Boris Kulig u. Bertram Schäfer Inhaltsverzeichnis 1 Begriff, Funktion, Verfahren 1 2 Clusteranalyse 1 2.1 Proximitätsmaße 3 2.1.1 Nominal-Skala 3 2.1.2 Metrische

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation?

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation? 1. Konferenz der A Benutzer KFE in Forschung und Entwicklung Data Mining - Marketing-chlagwort oder ernstzunehmende Innovation? Hans-Peter Höschel,, Heidelberg 1. Konferenz der A Benutzer KFE in Forschung

Mehr

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder.

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. Präsenzübung Service 2.1. CRM Customer-Relationship Management a) Anliegen des CRM Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. CRM, auch Beziehungsmanagement

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Künstliche Intelligenz Dirk Krechel SS 2009

Künstliche Intelligenz Dirk Krechel SS 2009 Künstliche Intelligenz Dirk Krechel SS 2009 Überblick über das Modul 1. Einführung 2. Symbolische Verfahren Logik Aussagenlogik Prädikatenlogik Horn Logik Prolog 3. Suchen und Bewerten Problemlösen durch

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) R.Niketta Multiple Regressionsanalyse Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) Daten: Selbstdarstellung und Kontaktsuche in studi.vz (POK VIII, AG 3) Fragestellung:

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Teil A Grundlagen und Methoden 1. 1 Customer Relationship Management ein Bezugsrahmen 3

Teil A Grundlagen und Methoden 1. 1 Customer Relationship Management ein Bezugsrahmen 3 xi Teil A Grundlagen und Methoden 1 1 Customer Relationship Management ein Bezugsrahmen 3 1.1 Die Entwicklung zum kundenzentrierten Unternehmen 3 1.2 Ziel und Kernkonzepte des CRM 5 1.2.1 Ziel: Profitable

Mehr

CRM Architektur. New Economy CRM Architektur Page 1

CRM Architektur. New Economy CRM Architektur Page 1 CRM Architektur Titel des Lernmoduls: CRM Architektur Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.4.2 Zum Inhalt: Dieses Modul beschreibt mögliche Architekturen von CRM-Systemen. Insbesondere

Mehr

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K.

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. badger Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. Die www.bawagpskfonds.at neue Bank. Die neue BAWAG. www.bawagpsk.com Montag, 25. Februar 2013 BAWAG P.S.K. EINE BANK

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Aufgabe 1. Data Mining a) Mit welchen Aufgabenstellungen befasst sich Data Mining? b) Was versteht man unter Transparenz einer Wissensrepräsentation?

Mehr

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik Hans-Friedrich Eckey SS 2004 Skript zur Lehrveranstaltung Multivariate Statistik Vormerkungen I Vorbemerkungen Das Manuskript beinhaltet den gesamten Stoff, der Bestandteil der Lehrveranstaltung "Multivariate

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Diplomarbeiten. Ansätze zur Kundenbewertung im CRM - Möglichkeiten zur Bestimmung des Kundenpotenzials

Diplomarbeiten. Ansätze zur Kundenbewertung im CRM - Möglichkeiten zur Bestimmung des Kundenpotenzials Diplomarbeiten - Möglichkeiten zur Bestimmung des Kundenpotenzials Datengestützte Validierung von Customer-Lifetime-Konzepten Agenda 1) WEKA-MEDIA-Verlage 2) Ziel der ersten Arbeit: Neu- und Bestandskundenbewertung

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze INAUGURALDISSERTATION zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften an der Wirtschaftswissenschaftlichen

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr