7. Mai Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette"

Transkript

1 Ruhr-Universität Bochum 7. Mai / 95

2 Methodenlehre II NA 3/73 Telefon: Internet: Vorlesung: Montag, Uhr Thema: Das allgemeine lineare Modell und seine Anwendungen in der Psychologie 2 / 95

3 Statistik-Team Übung: Dienstag, Uhr, HGA 30 Tobias Kley: Tutorium: SPSS Lars Kuchinke: GA 1/128 CIP-Insel Mo Uhr GA 1/128 CIP-Insel Mo Uhr Marco Grabemann: GAFO 03/974 Di Uhr GAFO 02/365 Mo Uhr Cäcilia Werschmann: GAFO 04/615 Mo Uhr GAFO 04/615 Mo Uhr Max Willenberg: 3 / 95

4 Das allgemeine lineare Modell: Ein mathematisches Modell - viele statistische Verfahren Inhaltsverzeichnis am Beispiel des t-tests 2. Das lineare Regressionsmodell, multiple Regression und Korrelation 3. Das allgemeine lineare Modell 4 / 95

5 Literatur A. Aron, E.N. Aron, E.J. Coups, Statistics for Psychology, 5th Edition, Pearson Prentice Hall J. Bortz, Statistik, 6. Auflage, Springer M. Rudolf, J. Müller, Multivariate Verfahren, Hogrefe P. Zöfel, Statistik für Psychologen, Pearson Studium 5 / 95

6 schließenden Statistik (Wiederholung) am Beispiel des t-tests 6 / 95

7 7 / 95

8 Beispiel 1.1 (Intelligenzquotient) Fragestellung: Haben (15-jährige) Kinder aus Bochum einen höheren Intelligenzquotienten als 100? 10 Kinder (zufällig ausgewählt) machen einen IQ-Test Daten: y 1,..., y 10 i y i i y i Hypothese (IQ der Kinder ist niedriger als 100): H 0 : µ 100 Alternative (IQ ist höher als 100): H 1 : µ > 100 Dabei ist µ der (unbekannte) Erwartungswert der Gesamtpopulation der (15-jährigen) Kinder aus Bochum 8 / 95

9 Prinzip der : Auf Grund der y 1,..., y 10 sollen Aussagen über das Merkmal der Grundgesamtheit getroffen werden. Zum Beispiel (a) Wie groß ist µ (Schätzung)? (b) Kann man ein Intervall bestimmen, in dem µ liegt (Konfidenzintervall)? (c) Gilt oder gilt H 0 : µ 100 H 1 : µ > 100 (IQ ist nicht höher) (IQ ist höher)? (statistischer Test) 9 / 95

10 Grundlegende Schwierigkeit: µ ist der Erwartungswert der Population der 15-jährigen Kinder Auf Basis der soll auf die Grundgesamtheit geschlossen werden Fehler, Unsicherheiten sind möglich! Beispiel: zufällig wählen wir 5 hochbegabte Kinder (IQ 130) für die aus. Vermutlich wird dadurch µ überschätzt! Ziel der : Quantifizierung der Unsicherheit, z.b. mit welcher Wahrscheinlichkeit macht ein statistischer Test einen Fehler, falls (aufgrund von Daten) für H 1 (IQ ist höher als 100) entschieden wird obwohl in Wirklichkeit H 0 gilt? Notwendig für diese Quantifizierung: Mathematische Modellannahmen 10 / 95

11 Zusätzliche Modellannahme: Normalverteilung Allgemein gängige Annahme: Intelligenz in einer bestimmten Altersgruppe der Bevölkerung ist normalverteilt ( 1 ϕ(x) = exp 1 2πσ 2 2 (x µ ) µ : Erwartungswert σ 2 : Varianz σ )2 Deutung: Ist Y der IQ eines zufällig aus der Population ausgewählten Individuums, so gilt P(a Y b) = b a ϕ(x)dx Diese Modellannahme sollte man stets rechtfertigen (wie man das machen kann, sehen wir später) 11 / 95

12 Interpretation der Wahrscheinlichkeiten: a b Die Wahrscheinlichkeit, dass eine Beobachtung zwischen den Werten a und b liegt, entspricht der Fläche unter der Kurve im Intervall [a, b]. In Formeln: P(a Y b) = b a ϕ(x)dx 12 / 95

13 Verschiedene Normalverteilungen N(µ, σ 2 ) Dichten der Normalverteilung mit verschiedenen Parametern N(0,0.707) N(0,1) N(1,1.25) N(2,2) µ: Erwartungswert σ 2 : Varianz Beachte: unter jeder Kurve ist die Fläche genau 1 13 / 95

14 Motivation der Modellannahme der Normalverteilung: 14 / 95

15 Zusätzliche Modellannahme: Normalverteilung: Mathematisches Modell (hier n = 10): y 1,..., y n sind Realisierungen von Zufallsvariablen Y i = µ + ε i y i : IQ-Messung für i-tes Kind (Realisation der Zufallsvariablen Y i ) i = 1,..., m µ: (unbekannter) Erwartungswert der Population (hier der 15-jährigen Kinder aus Bochum) ε 1,..., ε n : unabhängige Zufallsvariable, normalverteilt mit Erwartungswert 0 und Varianz σ 2. Interpretation: Messfehler, genetische Variabilität, Tagesform... Mathematische Statistik z.b. Maximum Likelihood (in diesem Beispiel auch der gesunde Menschenverstand) liefert Schätzer für µ: ˆµ = y = 1 n n y i = i=1 Wie genau ist diese Schätzung? Wie sehr streut diese Schätzung? 15 / 95

16 Zusätzliche Modellannahme: Normalverteilung: Maß für die Genauigkeit: Varianz (je kleiner die Varianz, desto genauer die Schätzung) Mathematische Statistik (Methodenlehre I): die Varianz des Schätzers ˆµ ist: Beachte: Var(ˆµ) = σ2 n (a) Je größer der numfang n, desto kleiner die Varianz von ˆµ. D.h. desto genauer ist die Schätzung. (b) Für die Beurteilung der Genauigkeit muss man die Varianz σ 2 der Population kennen. Mathematische Statistik: Schätzung für den Parameter σ 2 ˆσ 2 = 1 n 1 n (y i y ) 2 = i=1 ˆσ 2 µ = ˆσ2 n = / 95

17 Zusätzliche Modellannahme: Normalverteilung: Oft wird der Schätzer zusammen mit dem Standardfehler angegeben ˆµ = ˆµ + ˆσ µ = ˆµ ˆσ µ = ˆσ µ = ˆσ ˆσ n = 2 n = ist der Standardfehler des Schätzers ˆµ (Schätzung für Streuung des arithmetischen Mittels) ˆσ = ist die aus den Daten geschätzte Standardabweichung (Schätzung für die Streuung einer einzelnen Beobachtung) Deutung: Vor der Datenerhebung ist ˆµ zufällig. Falls die Normalverteilungsannahme korrekt ist, ist auch ˆµ normalverteilt mit: - Erwartungswert µ - Varianz σ 2 /n 17 / 95

18 Verschiedene Normalverteilungen Dichte Y1 ~ N(104.1, 28.32) (Y1 + Y2) 2 ~ N(104.1, 28.32/2) 10 ( Yi) 10 ~ N(104.1, 2.832) i= x 18 / 95

19 1.2 Schätzverfahren (Erwartungswert einer Population unter Normalverteilungsnahme) Daten y 1,..., y n () mit Erwartungswert µ Rechtfertigung der Unabhängigkeits- und Normalverteilungsannahme ˆµ = 1 n n y i Schätzung für den Erwartungswert µ der i=1 Population ˆσ 2 = 1 n 1 n (y i y ) 2 Schätzung für die Varianz der i=1 Population (ˆσ Schätzung für die Standardabweichung) ˆσ 2 µ = ˆσ2 n Schätzung für die Varianz von ˆµ Schätzung für den Standardfehler von ˆµ: ˆσ µ = ˆσ 2 n = ˆσ n 19 / 95

20 SPSS-Output: die Schätzer für die Daten aus Beispiel 1.1 (Intelligenzquotient) Intelligenzquotient Gültige Werte (Listenweise) N Statistik Deskriptive Statistik Mittelwert Standardabweichung Varianz Statistik Standardfehler Statistik Statistik 104,10 1,683 5,322 28,322 ˆµ = (Mittelwert) ˆσ µ = (Standardfehler) ˆσ 2 = (empirische Varianz) ˆσ = (Standardabweichung) 20 / 95

21 Beachte: ˆµ = 1 n n i=1 y i ; ˆσ 2 = 1 n 1 n ˆσ (y i y ) 2 2 ; ˆσ µ = n hängen von den Daten y 1,..., y n ab (sind also vor Datenerhebung zufällig) i=1 (ˆµ a ˆσ µ, ˆµ + a ˆσ µ ) ist (vor der Datenerhebung) ein zufälliges Intervall, das mit einer bestimmten Wahrscheinlichkeit den Erwartungswert µ enthält a 0 = Wahrscheinlichkeit 0 a = Wahrscheinlichkeit 1 Gesucht: zufälliges Intervall, das den unbekannten Erwartungswert mit einer vorgegebenen Wahrscheinlichkeit enthält: Konfidenzintervall 21 / 95

22 Das Konfidenzintervall Gebe eine Wahrscheinlichkeit 1 α vor (z.b. 1 - α = 95%) Bestimme a so, dass das zufällige Intervall (ˆµ a ˆσ µ, ˆµ + a ˆσ µ ) den Parameter µ mit Wahrscheinlichkeit 1 α enthält. Mathematische Statistik liefert a = t n 1,1 α/2 (1 α/2)-quantil der t-verteilung mit n 1 Freiheitsgraden Diese Werte sind tabelliert oder durch Software verfügbar. Das Intervall ) I = (ˆµ t n 1,1 α/2 ˆσ µ, ˆµ + t n 1,1 α/2 ˆσ µ heißt (1 α) Konfidenzintervall für µ. 22 / 95

23 Verschiedene t-verteilungen Dichten der t Verteilung mit verschiedenen Freiheitsgraden t 100 t 4 t f n (t) = 1 πn Γ((n + 1)/2) Γ(n/2) ) (n+1)/2 (1 + t2 n 23 / 95

24 Das Quantil der t-verteilung mit n Freiheitsgraden Dichte der t4 -Verteilung t 4, 0.95 = P(T 4 t 4,0.95 ) = t4,0.95 f 4 (t)dt = / 95

25 Beispiel 1.3 (Fortsetzung von Beispiel 1.1) (1) Berechnung eines 90% Konfidenzintervalls für µ n = 10, ˆµ = 104.1, ˆσ 2 = α = 10% (aus Tabelle bzw. Software) t9,0.95 = % Konfidenzintervall für µ = (101.02, ) (2) Beachte: Ein (1 α)-konfidenzintervall ist ein zufälliges Intervall, das den (unbekannten) Erwartungswert mit Wahrscheinlichkeit 1 α enthält. Die Aussage: das Intervall (101.02, ) enthält den unbekannten Erwartungswert der Population mit Wahrscheinlichkeit 90%, hat keinen Sinn! 25 / 95

26 Erklärung des Begriffs zufälliges Intervall durch ein fiktives Experiment Annahme: das Experiment (Untersuchung des IQ von 10 Kindern) kann N mal (unabhängig) wiederholt werden (z.b mal) jeweils 10 Daten liefern ein (1 α)-konfidenzintervall (z.b. 95 % Konfidenzintervall) Datensatz 1 Konfidenzintervall I 1 Datensatz 2 Konfidenzintervall I 2. Datensatz N Konfidenzintervall I N c.a. (1 α) N (z.b. 95% 1000 = 950) Intervalle enthalten den (unbekannten) Erwartungswert µ der Population 26 / 95

27 1.4 Konfidenzbereich für den Erwartungswert einer Population unter Normalverteilungsannahme Daten y 1,..., y n () mit Erwartungswert µ Rechtfertigung der Unabhängigkeits- und Normalverteilungsannahme Bestimme das t n 1,1 α/2 Quantil der t-verteilung mit n 1 Freiheitsgraden (aus Tabelle oder Software) Das Intervall (ˆµ t n 1,1 α/2ˆσ µ, ˆµ + t n 1,1 α/2ˆσ µ ) ist ein (1 α) Konfidenzintervall für µ In vielen Softwarepaketen erhält man direkt das Konfidenzintervall als Ausgabe (z.b. in SPSS) 27 / 95

28 SPSS-Output: Konfidenzintervall für die Daten aus Beispiel 1.1 (Intelligenzquotient) Test bei einer Sichprobe Testwert = % Konfidenzintervall der Differenz T df Sig. (2-seitig) Mittlere Differenz Untere Obere Intelligenzquotient 2,436 9,038 4,100 1,02 7,18 Beachte: SPSS liefert nur ein Konfidenzintervall für die Differenz µ 100 = 90% Konfidentintervall für den Erwartungswert µ (101.02, ) 28 / 95

29 29 / 95

30 Beispiel 1.5 (Fortsetzung von Beispiel 1.1) Frage: Ist der IQ der Kinder aus Bochum höher als 100? H 0 : µ 100 H 1 : µ > 100 H 0 nennt man Nullhypothese and H 1 heißt Alternative. Intuitiv würde man für H 1 entscheiden, falls der Mittelwert der ˆµ = 1 10 y i 10 groß ist Beachte: ˆµ ändert sich, falls man die Daten anders skaliert! i=1 Besser: entscheide für H 1, falls ˆµ groß im Verhältnis zu dem Standardfehler ˆσ µ ist (Invarianz bzgl. unterschiedlichen Skalierungen) 30 / 95

31 Die Nullhypothese H 0 : µ 100 wird abgelehnt falls Fragen: T = ˆµ 100 ˆσ µ > c Wie legt man den kritischen Wert c fest? Bei dem Verfahren können 2 Fehler auftreten Fehler erster Art: die Nullhypothese H 0 wird abgelehnt, obwohl H 0 in Wirklichkeit stimmt (d.h. der IQ ist nicht höher als 100) Fehler zweiter Art: die Nullhypothese H 0 wird nicht abgelehnt, obwohl in Wirklichkeit die Alternative H 1 zutrifft (d.h. der IQ ist höher als 100) Ziel: kleine Wahrscheinlichkeiten für Fehler erster und zweiter Art 31 / 95

32 Grundlegendes Prinzip der Testtheorie Der kritische Wert c wird festgelegt, in dem man eine maximal tolerierbare Wahrscheinlichkeit α für einen Fehler erster Art vorgibt (α-fehler)! Diese Wahrscheinlichkeit heißt Niveau des Tests Damit hat man keine Kontrolle über die Wahrscheinlichkeit eines Fehlers zweiter Art (β-fehler) Z.B. Wahrscheinlichkeit für Fehler erster Art soll maximal α = 5% = 0.05 sein = (mathematische Statistik, Tabelle, Software) n = 10, c = t n 1,1 α = t 9,0.95 = T = ˆµ = = > ˆσ µ D.h. die Nullhypothese H 0 : µ 100 wird zum Niveau α = 5% zu Gunsten der Alternative H 1 : µ > 100 verworfen (signifikantes Ergebnis zum Niveau 5 %) 32 / 95

33 Erklärung des Begriffs Niveau durch ein fiktives Experiment Annahme: das Experiment (Untersuchung des IQ von 10 Kindern) kann N mal (unabhängig) wiederholt werden (z.b mal) jeweils 10 Daten liefern ein Ergebnis für den Test zum Niveau α (z.b. Niveau 5 %) Datensatz 1 Testergebnis 1 Datensatz 2 Testergebnis 2. Datensatz N Testergebnis N Falls die Nullhypothese H 0 : µ 100 wahr ist, so wird maximal in ca. αn (z.b. 5% 1000 = 50) Fällen für die Alternative entschieden H 1 : µ > / 95

34 Fehler erster und zweiter Art in der Population gilt H 0 H 1 Entscheidung auf- richtige β-fehler grund der Stich- H 0 Enscheidung probe zugunsten richtige von: H 1 α-fehler Entscheidung Beachte: Die Wahrscheinlichkeiten für α-fehler und β-fehler verändern sich gegenläufig Bei festem Niveau (Wahrscheinlichkeit für α-fehler) kann die Wahrscheinlichkeit für einen β-fehler durch Vergrößerung des numfangs verkleinert werden Bei festem nunfang wird nur der Fehler erster Art kontolliert 34 / 95

35 Die Verteilung von T falls µ = 100 ist Dichte der t9 -Verteilung p Wert α = 5 % t 9, 0.95 = T n = Kritischer Wert: t n 1,0.95 = (H 0 wird verworfen, falls T größer als der kritische Wert ist) Blaue Fläche: Niveau (α) Rote Fläche: p-wert: Wahrscheinlichkeit einen Wert größer als zu beobachten: P(T > 2.436) = Beachte: Ist der p-wert < α (wie in diesem Beispiel) dann wird H 0 abgelehnt (signifikantes Ergebnis) 35 / 95

36 Testverfahren für den Erwartungswert einer unter Normalverteilungsannahme 1.6. Einstichproben t-test für rechtsseitige Hypothesen Hypothesen: H 0 : µ µ 0 ; Hypothese) H 1 : µ > µ 0 (rechtsseitige Daten y 1,..., y n () mit Erwartungswert µ Rechtfertigung der Unabhängigkeits- und Normalverteilungsannahme H 0 wird zum Niveau α verworfen, falls T = ˆµ µ 0 ˆσ µ > t n 1,1 α gilt, bzw. falls der p-wert < α ist. ˆµ: Schätzer für µ; ˆσ µ : Schätzer für den Standardfehler von ˆµ 36 / 95

37 Vertauschen der Hypothesen 1.7. Einstichproben t-test für linksseitige Hypothesen Hypothesen: H 0 : µ µ 0 ; Hypothese) H 1 : µ < µ 0 (linksseitige Daten y 1,..., y n () mit Erwartungswert µ Rechtfertigung der Unabhängigkeits- und Normalverteilungsannahme H 0 wird zum Niveau α verworfen, falls T = ˆµ µ 0 ˆσ µ < t n 1,1 α = t n 1,α gilt, bzw. falls der p-wert < α ist. ˆµ: Schätzer für µ; ˆσ µ : Schätzer für den Standardfehler von ˆµ 37 / 95

38 Tests für zweiseitige Hypothesen 1.8. Einstichproben t-test für zweiseitige Hypothesen Hypothesen: H 0 : µ = µ 0 ; Hypothese) H 1 : µ µ 0 (zweiseitige Daten y 1,..., y n () mit Erwartungswert µ Rechtfertigung der Unabhängigkeits- und Normalverteilungsannahme H 0 wird zum Niveau α verworfen, falls T = ˆµ µ 0 > t n 1,1 α/2 ˆσ µ gilt, bzw. falls der p-wert kleiner als α ist. ˆµ: Schätzer für µ; ˆσ µ : Schätzer für den Standardfehler von ˆµ 38 / 95

39 Die Verteilung von T falls µ = 100 ist p Wert α = 2,5 % Dichte der t9 -Verteilung α = 2,5 % p Wert -T n = t 9, = t 9, = T n = Blaue Fläche: Niveau α; Rote Fläche: p-wert (Wahrscheinlichkeit einen Wert zu beobachten, dessen Betrag größer als ist P( T > 2.436) = Beachte: Ist der p-wert < α (wie in diesem Beispiel), dann wird H 0 abgelehnt! 39 / 95

40 SPSS-Output bei Anwendung des t-tests auf die Daten aus Beispiel 1.1 (Intelligenzquotient) Test bei einer Sichprobe Testwert = % Konfidenzintervall der Differenz T df Sig. (2-seitig) Mittlere Differenz Untere Obere Intelligenzquotient 2,436 9,038 4,100 1,02 7,18 Beachte: SPSS liefert nur den p-wert für den zweiseitigen t-test aus Beispiel 1.8! Den p-wert für den einseitigen Test erhält man als 0.038/2 = / 95

41 Beispiel: t-test für den Vergleich von zwei verbundenen n Eine der wichtigsten Anwendungen der in 1.6, 1.7 und 1.8 vorgestellten Verfahren besteht in dem Vergleich von verbundenen n (vorher-nachher Untersuchungen) Beispiel: Untersuchung der Einstellungen von 9 Jungen gegenüber neutralen Personen vor und nach einem Frustrationserlebnis (Sündenbockfunktion). VPn Einstell- vorher ung- nachher / 95

42 Prinzip: Differenzenbildung Prinzip: (1) Falls kein Unterschied zwischen den Einstellungen vor und nach dem Frustrationserlebnis besteht sollten die Differenzen (nachher-vorher) klein seien. (2) Durch Differenzenbildung (nachher - vorher) erhält man die Daten 1,..., 9 (3) Rechtfertigung der Voraussetzungen für den t-test aus 1.8 für diese Daten. (4) Wende den t-test für eine auf die Daten 1,..., 9 an und teste die Hypothesen Wegen H 0 : µ = 0, H 1 : µ 0 T = = 3.27 > 2.31 = t 8,0.975 besteht zum Niveau α = 0.05 ein signifikant Unterschied. 42 / 95

43 SPSS Output: t-test für gepaarte n Paaren 1 vorher nachher Statistik bei gepaarten n Mittelwert 33,44 30,78 N 9 9 3,358 3,346 Korrelationen bei gepaarten n N Korrelation Signifikanz Paaren 1 vorher & nachher 9,733,025 Standardfehler des Mittelwertes 1,119 1,115 Test bei gepaarten n Mittelwert Standardabweichung Standardabweichung Gepaarte Differenzen Standardfehler des Mittelwertes 95% Konfidenzintervall der Differenz Untere Obere Paaren 1 vorher - nachher 2,667 2,449,816,784 4,550 Test bei gepaarten n Sig. T df (2-seitig) Paaren 1 vorher - nachher 3,266 8, / 95

44 1.9 Bemerkungen (zu den statistischen Verfahren 1.2, 1.4, 1.6, 1.7, 1.8) Mathematische Statistik unter der Normalverteilungsannahme sind alle hier vorgestellten Verfahren optimal die Normalverteilungsannahme kann (und sollte) man rechtfertigen. Mögliche Verfahren sind: statistische Tests für die Hypothese H 0 : Y 1,..., Y n normalverteilt In SPSS üblich sind - Kolmogorov-Smirnov-Test - Shapiro-Wilk Test Explorative Verfahren. In SPSS üblich: QQ-Plot besteht die Normalverteilungsannahme diese Überprüfung nicht, so sind z.b. nichtparametrische Verfahren anzuwenden 44 / 95

45 SPSS Output: QQ-Plot für die Daten aus Beispiel Q-Q-Diagramm von Normal von Intelligenzquotient Erwarteter Wert von Normal Beobachteter Wert 45 / 95

46 Der QQ-Plot Unter der Modellannahme gilt: die Größen Y i sind normalverteilt mit Erwartungswert µ und Varianz σ 2 Der QQ-Plot vergleicht grafisch die empirischen Quantile der Daten y 1,..., y n mit den Quantilen der Normalverteilung mit Erwartungswert ˆµ und Varianz ˆσ 2. (1) 1/n-Quantil der y 1,..., y n = kleinste der Beobachtungen y (1) (in Beispiel 1.1 ist y (1) = 97) (1 1/2)/n-Quantil der Normalverteilung mit Erwartungswert ˆµ und Varianz ˆσ 2 = (im Beispiel 1.1 ist z (1) = = ) (2) 2/n Quantil der y 1,..., y n = zweitkleinste der Beobachtungen y (2) (in Beispiel 1.1 ist y (2) = 98 ) (2 1/2)/n-Quantil der Normalverteilung mit Erwartungswert ˆµ und Varianz ˆσ 2 = (in Beispiel 1.1 ist z (2) = = ) (3) usw. Der QQ-Plot ist das Streudiagramm der Daten (y (1), z (1) ),..., (y (n), z (n) ) In in vielen Fällen enthält dieses Diagramm noch die Winkelhalbierende des entsprechenden Quadranten 46 / 95

47 47 / 95

48 Beispiel 1.10 (Erkennen von Zahlenreihen) Studierende der Fachrichtungen Mathematik (M) und Psychologie (P) machen einen Zahlengedächtnistest Wie viele Ziffern können sich maximal gemerkt werden Wiedergabe in Original und umgekehrter Reihenfolge Daten (P. Zöfel: Statistik für Psychologen) M P M P Frage: Haben Studierende der Mathematik ein besseres Zahlengedächtnis als Studierende der Psychologie? 48 / 95

49 Mathematisches Modell (n 1 = 14, n 2 = 8) Y ij := µ i + ε ij j = 1,..., n i ; i = 1, 2 Y ij : Ergebnis der j-ten Versuchsperson in Gruppe i (Mathematik: i = 1, Psychologie i = 2) µ i : unbekannter Erwartungswert in der Population i (Mathematik: i = 1, Psychologie: i = 2) ε ij : Meßfehler, Tagesform... n i : numfang in Gruppe i Normalverteilungs und Unabhängigkeitsannahme - in jeder Gruppe (i = 1, 2) liegt eine Normalverteilung mit Erwartungswert µ i und Varianz σi 2 vor - in jeder Gruppe sind die Beobachtungen unabhängig - unabhängige n 49 / 95

50 Schätzer Schätzer werden wie in 1.2 für jede Gruppe durchgeführt Mathematiker (i=1) : ˆµ 1 = y 1 = 1 n 1 n 1 y 1j = ˆσ 2 1 = 1 n 1 1 j=1 n 1 (y 1j y 1 ) 2 = 3.94 ˆσ µ1 = j=1 ˆσ 2 1 n 1 = 0.53 Psychologen (i=2): ˆµ 2 = y 2 = 1 n 2 n 2 y 2j = ˆσ 2 2 = 1 n 2 1 j=1 n 2 (y 2j y 2 ) 2 = 4.79 ˆσ µ2 = j=1 ˆσ 2 2 n 2 = 0.77 Auch Konfidenzbereiche werden gruppenweise bestimmt z.b. unter Normalverteilungsannahme ist (ˆµ1 t n1 1,1 α/2ˆσ µ1, ˆµ 1 + t n1 1,1 α/2ˆσ µ1 ) ein 90% Konfidenzinterval für µ 1. Für das spezielle Datenbeispiel ergibt sich [n 1 = 14, α = 10%, t 13,0.95 = 1.77 (aus Tabelle)] (13.70, 15.58) als 90% Konfidenzintervall für µ 1 50 / 95

51 SPSS-Output für die Daten aus Beispiel 1.10 Schätzer für die Parameter in den einzelnen Gruppen Gemerkte Zahlen Studienfach Mittelwert Varianz Mathematik 14,64 3,940 Psychologie 13,75 4,786 Insgesamt 14,32 4,227 Beachte: SPSS liefert hier die Schätzer für Erwartungswert und Varianz der einzelnen Gruppen SPSS liefert außerdem Schätzer für Erwartungswert und Varianz der gesamten 51 / 95

52 Tests zum Vergleich der Erwartungswerte Nullhypothese: Zahlengedächtnis der Psychologiestudenten ist nicht schlechter als das der Mathematikstudenten H 0 : µ 1 µ 2 Alternative: Zahlengedächtnis der Mathematikstudenten ist besser als das der der Psychologiestudenten H 1 : µ 1 > µ 2 Rezept: Verwerfe die Nullhypothese H 0 zu Gunsten der Alternative H 1, falls die Differenz y 1 y 2 der Schätzer für die Erwartungswerte groß ist 52 / 95

53 Rezept im Fall von Varianzhomogenität, d.h. (σ 2 1 = σ2 2 ) Verwerfe H 0 zu Gunsten von H 1, falls y 1 y 2 groß ist Normiere diese Größe mit einem Schätzer für die Standard - fehler der Mittelwertdifferenz: ˆσµ1 µ 2 = ( 1 n n 2 )ˆσ 2 ˆσ 2 1 = n 1 +n 2 2 {(n1 1)ˆσ2 1 + (n 2 1)ˆσ 2}: 2 Schätzer für Varianz (die in beiden Gruppen dieselbe ist) Entscheide für die Alternative H 1 : µ 1 > µ 2, falls T n1,n 2 = y 1 y 2 ˆσ µ1 µ 2 > t n1+n 2 2,1 α gilt. Dabei ist t n1+n 2 2,1 α das (1 α)-quantil der t-verteilung mit n 1 + n 2 2 Freiheitsgraden Im Beispiel ergibt sich für einen Test zum Niveau α = 5% ˆσ 2 = 4.24, t 20,0.95 = = T 14,8 = d.h. die Hypothese H 0 kann nicht verworfen werden. 53 / 95

54 Testverfahren für die Erwartungswerte von zwei n unter Normalverteilungsannahme 1.11(a) Einseitiger t-test für zwei unabhängige n (rechtsseitige Hypothese) Daten y 11,..., y 1n1 (Gruppe 1; Erwartungswert µ 1 ; Varianz σ 2 1 ) y 21,..., y 2n2 (Gruppe 2; Erwartungswert µ 2 ; Varianz σ 2 2 ) Rechtfertigung der Voraussetzungen Unabhängigkeit in und zwischen den Gruppen Normalverteilungsannahme (in beiden Gruppen) Varianzhomogenität, d.h. σ 2 1 = σ2 2 Die Hypothese H 0 : µ 1 µ 2 wird zu Gunsten der Alternative H 1 : µ 1 > µ 2 verworfen, falls T n1,n 2 = y 1 y 2 > t n1+n ˆσ 2 2,1 α µ1 µ 2 gilt, bzw. der p-wert < α ist. ˆσ µ1 µ 2 = ( 1 n n 2 )ˆσ 2 ist der Schätzer für den Standardfehler der Mittelwertdifferenz 54 / 95

55 1.11(b) Einseitiger t-test für zwei unabhängige n (linksseitige Hypothese) Daten y 11,..., y 1n1 (Gruppe 1; Erwartungswert µ 1 ; Varianz σ 2 1 ) y 21,..., y 2n2 (Gruppe 2; Erwartungswert µ 2 ; Varianz σ 2 2 ) Rechtfertigung der Voraussetzungen Unabhängigkeit in und zwischen den Gruppen Normalverteilungsannahme (in beiden Gruppen) Varianzhomogenität, d.h. σ 2 1 = σ2 2 Die Hypothese H 0 : µ 1 µ 2 wird zu Gunsten der Alternative H 1 : µ 1 < µ 2 verworfen, falls T n1,n 2 = y 1 y 2 < t n1+n ˆσ 2 2,1 α = t n1+n 2 2,α µ1 µ 2 gilt, bzw. der p-wert < α ist. ˆσ µ1 µ 2 = ( 1 n n 2 )ˆσ 2 ist der Schätzer für den Standardfehler der Mittelwertdifferenz. 55 / 95

56 1.11(c) t-test für zwei unabhängige n (zweiseitige Hypothesen) Daten y 11,..., y 1n1 (Gruppe 1; Erwartungswert µ 1 ; Varianz σ 2 1 ) y 21,..., y 2n2 (Gruppe 2; Erwartungswert µ 2 ; Varianz σ 2 2 ) Rechtfertigung der Voraussetzungen Unabhängigkeit in und zwischen den Gruppen Normalverteilungsannahme (in beiden Gruppen) Varianzhomogenität, d.h. σ 2 1 = σ2 2 Die Nullhypothese H 0 : µ 1 = µ 2 (kein Unterschied der Erwartungswerte in beiden Gruppen) wird zu Gunsten der Alternative H 1 : µ 1 µ 2 verworfen, falls T n1,n 2 = y 1 y 2 > t n1+n ˆσ 2 2,1 α/2 µ1 µ 2 gilt, bzw. der p-wert < α ist. ˆσ µ1 µ 2 = ( 1 n n 2 )ˆσ 2 ist der Schätzer für den Standardfehler der Mittelwertdifferenz. 56 / 95

57 Bemerkung zur Varianzhomogenität Ist die Annahme der Varianzhomogenität nicht erfüllt, so σ 2 1 = σ 2 2 wird die vorgegebene Wahrscheinlichkeit für einen α-fehler nicht eingehalten (der Test hält sein Niveau nicht) ist die Wahrscheinlichkeit für einen β-fehler größer von Interesse ist daher auch ein Test für die Hypothesen H 0 : σ 2 1 = σ 2 2 H 1 : σ 2 1 σ 2 2 und ein Verfahren, das ohne die Annahme der Varianzhomogenität auskommt 57 / 95

58 Rezept (für Test auf Varianzhomogenität) Die Nullhypothese H 0 : σ1 2 = σ2 2 gilt genau dann, wenn F = σ2 1 σ 2 2 = 1 Schätze den Quotienten der beiden Varianzen, durch F n1 1,n 2 1 = ˆσ2 1 ˆσ 2 2 = 1 n1 n n 2 1 j=1 (y 1j y 1 ) 2 n2 j=1 (y 2j y 2 ) 2 Die Nullhypothese H 0 wird zu Gunsten der Alternative H 1 : σ1 2 σ2 2 verworfen, falls gilt F n1 1,n 2 1 > c 2 oder F n1 1,n 2 1 < c 1 Die kritischen Werte c 1 und c 2 werden so festgelegt, dass die Wahrscheinlichkeit für einen Fehler erster Art maximal α ist! 58 / 95

59 1.12 F -Max-Test für den Vergleich von zwei nvarianzen Teststatistik Die Nullhypothese F n1 1,n 2 1 = ˆσ2 1 ˆσ 2 H 0 : σ 2 1 = σ 2 2 (die Varianzen sind gleich) wird zu Gunsten der Alternative H 1 : σ 2 1 σ 2 2 verworfen, falls mindestens eine der Ungleichungen F n1 1,n 2 1 < F n1 1,n 2 1,α/2 erfüllt ist F n1 1,n 2 1 > F n1 1,n 2 1,1 α/2 F n1 1,n 2 1,β bezeichnet das β-quantil der F -Verteilung mit (n 1 1, n 2 1) Freiheitsgraden 59 / 95

60 Verschiedene F -Verteilungen Dichten der F Verteilung mit verschiedenen Freiheitsgraden F 2, 10 F 4, 4 F 10, 1 F 20, f m,n (x) = m+n Γ( 2 ) ( m ) m/2 x m/2 1 Γ( m 2 )Γ( n 2 ) 2 (1 + m (x 0) n x)(m+n)/2 60 / 95

61 Das Quantil der F -Verteilung mit (n 1, n 2 ) Freiheitsgraden Dichte der F4, 4 -Verteilung 0.9 F 4, 4; 0.9 = P(F 4,4, F 4,4,0.9 ) = F4,4,0.9 f m,n (x)dx = / 95

62 Der F -Test auf Varianzhomogenität für die Daten aus Beispiel 1.10 (n 1 = 14, n 2 = 8) ˆσ 2 1 = 3.94 ˆσ2 2 = 4.79 F 13,7 = Für das Niveau α = 10% erhält man F 13,7,0.05 = F 13,7,0.95 = und damit kann die Nullhypothese zum Niveau 10% nicht verworfen werden Beachte: oft wird der Test 1.12 verwendet, um die Voraussetzungen für den t-test zu überprüfen In diesem Fall wählt man oft ein größeres Niveau ( kleinere Wahrscheinlichkeit für β-fehler) Der Gesamttest (erst F -Test, falls H0 nicht verworfen wird, dann t-test) hat nicht das Niveau α Was macht man, falls F -Test H 0 verwirft? 62 / 95

63 1.13(i) t-test für zwei unabhängige n mit nicht notwendig gleichen Varianzen (Welch-Test) Daten y 11,..., y 1n1 (Gruppe 1; Erwartungswert µ 1 ; Varianz σ 2 1 ) y 21,..., y 2n2 (Gruppe 2; Erwartungswert µ 2 ; Varianz σ 2 2 ) Rechtfertigung der Voraussetzungen Unabhängigkeit in und zwischen den Gruppen Normalverteilungsannahme (in beiden Gruppen) Varianzen in den Gruppen sind nicht notwendig gleich Teststatistik T W n 1,n 2 = y 1 y 2 ˆτ Dabei ˆτ = ˆτ 2 = ˆσ 2 1 n 1 + ˆσ2 2 n 2 ist die Schätzung für die Varianz von y 1 y 2 63 / 95

64 1.13(ii) t-test für zwei unabhängige n mit nicht notwendig gleichen Varianzen (Welch-Test); Die Nullhypothese H 0 : µ 1 µ 2 (Erwartungswert der ersten Population nicht größer als der der Zweiten) wird zu Gunsten der Alternative H 1 : µ 1 > µ 2 falls Tn W 1,n 2 > tˆf,1 α gilt, bzw. der p-wert < α ist. Dabei bezeichnet ˆf = (ˆσ2 µ 1 + ˆσ 2 µ 2 ) 2 ˆσ 4 µ 1 n ˆσ4 µ 2 n 2 1 die geschätzten Freiheitsgrade der t-verteilung. 64 / 95

65 1.13(iii) t-test für zwei unabhängige n mit nicht notwendig gleichen Varianzen (Welch-Test) Die Nullhypothese H 0 : µ 1 µ 2 (Erwartungswert der ersten Population nicht kleiner als der der Zweiten) wird zu Gunsten der Alternative H 1 : µ 1 < µ 2 verworfen, falls T W n 1,n 2 < tˆf,α = tˆf,1 α gilt, bzw. der p-wert < α ist. Dabei bezeichnet ˆf = (ˆσ2 µ 1 + ˆσ 2 µ 2 ) 2 ˆσ 4 µ 1 n ˆσ4 µ 2 n 2 1 die geschätzten Freiheitsgrade der t-verteilung. 65 / 95

66 1.13(iv) t-test für zwei unabhängige n mit nicht notwendig gleichen Varianzen (Welch-Test) Die Nullhypothese H 0 : µ 1 = µ 2 (kein Unterschied der Erwartungswerte in beiden Gruppen) wird zu Gunsten der Alternative H 1 : µ 1 µ 2 (es besteht ein Unterschied) verworfen, falls T W n 1,n 2 > tˆf,1 α/2 gilt, bzw. der p-wert < α ist. Dabei bezeichnet ˆf = (ˆσ2 µ 1 + ˆσ 2 µ 2 ) 2 ˆσ 4 µ 1 n ˆσ4 µ 2 n 2 1 die geschätzten Freiheitsgrade der t-verteilung. 66 / 95

67 Bemerkung: t-test oder Welch-Test? Sind die Voraussetzungen für den t-test erfüllt (Normalverteilung, Unabhängigkeit, Varianzhomogenität), so ist dieses Verfahren optimal, d.h. dieser Test minimiert unter allen Tests zum Niveau α die Wahrscheinlichkeit für einen β-fehler Ist die Voraussetzungen der Varianzhomogenität beim t-test nicht erfüllt, so wird die vorgegebene Wahrscheinlichkeit für einen α-fehler nicht eingehalten Der Welch-Test ist eine Näherungslösung, d.h. die Wahrscheinlichkeit für einen α-fehler ist nur näherungsweise α Der Welch-Test hat im Fall der Varianzhomogenität eine größere Wahrscheinlichkeit für einen β-fehler als der t-test 67 / 95

68 SPSS-Output für die Daten aus Beispiel 1.10 Gemerkte Zahlen Gemerkte Zahlen Varianzen sind gleich Varianzen sind nicht gleich Varianzen sind gleich Varianzen sind nicht gleich Test bei unabhängigen n Levene-Test der Varianzgleichheit F,103 Signifikanz,752 T-Test für die Mittelwertgleichheit T,979,952 Test bei unabhängigen n Mittlere Differenz,893,893 Standardfehler der Differenz df 20 13,523 Sig. (2-seitig),339,358 T-Test für die Mittelwertgleichheit 95% Konfidenzintervall der Differenz,912,938 Untere -1,010-1,125 Obere 2,796 2,911 Beachte: SPSS liefert nicht den in 1.12 dargestellten F -Max Test auf Varianzhomogenität sondern ein robustes Verfahren (Levene-Test) SPSS liefert nur einen p-wert für den zweiseitigen t-test aus Beispiel 1.11(c) bzw. zweiseitigen Welch-Test aus Beispiel 1.13(iv) SPSS liefert ein Konfidenzintervall für die Differenz µ 1 µ 2 = 95% Konfidentintervall für die Differenz der Erwartungswerte (unter der Annahme gleicher Varianzen) ( 1.01, 2.796) 68 / 95

69 69 / 95

70 Beispiel 1.14 (Fortsetzung von Beispiel 1.10) An dem Zahlengedächtnistest (vgl. Beispiel 1.10) nehmen auch noch 7 Studierende der Geisteswissenschaften (G) teil. M P G M P G Frage: Existieren Unterschiede hinsichtlich des Zahlengedächtnisses zwischen dem Studierenden der Psychologie, Mathematik und Geisteswissenschaften? 70 / 95

71 Mathematisches Modell (n 1 = 14, n 2 = 8, n 3 = 7) Y ij := µ i + ε ij j = 1,..., n i ; i = 1, 2, 3 Y ij : Ergebnis der j-ten Versuchsperson in Gruppe i (Mathematik: i = 1, Psychologie: i = 2, Geisteswisenschaften: i = 3) µ i : unbekannter Erwartungswert in der Population i (Mathematik: i = 1, Psychologie: i = 2,Geisteswisenschaften: i = 3) ε ij : Störgrößen (Erwartungswert 0 und Varianz σ 2 ) Normalverteilungs und Unabhängigkeitsannahme - in jeder Gruppe (i = 1, 2, 3) liegt eine Normalverteilung mit Erwartungswert µ i vor - in jeder Gruppe sind die Beobachtungen unabhängig - unabhängige n Nullhypothese H 0 : µ 1 = µ 2 = µ 3 71 / 95

72 Schätzer und Konfidenzbereiche Schätzer für Erwartungswert und Varianz werden in den einzelnen Gruppen durchgeführt Beispiel: y i ˆσ i 2 ˆσ µi n i Mathematik (i = 1) Psychologie (i = 2) Geisteswissenschaften (i = 3) ˆµ 1 = ist Schätzer für den Erwartungswert der Mathematiker Beachte: t 6,0.95 = 1.943, ˆµ 3 + ˆσ µ3 t 6,0.95 = ˆµ 3 ˆσ µ3 t 6,0.95 = 11.25, also ist das Intervall [11.25, 13.03] ein 90% Konfidenzintervall für den Erwartungswert der Geisteswissenschaftler 72 / 95

73 SPSS Output Gemerkte Zahlen Studienfach Mittelwert Varianz Standardfehler des Mittelwertes N Mathematik 14,64 3,940, Psychologie 13,75 4,786,773 8 Geisteswissenschaften 12,14 1,476,459 7 Insgesamt 13,79 4,384, / 95

74 Prinzip der Ziel: Test für die Hypothese es bestehen keine Unterschiede zwischen den Gruppen H 0 : µ 1 = µ 2 = µ 3 Idee: Bestimme die Streuung der Daten: Mittelwert: Varianz (n = n1 + n 2 + n 3) y = 1 n n 3 i i=1 j=1 y ij 1 n 1 n 3 i (y ij y ) 2 i=1 und versuche Unterschiede in der Merkfähigkeit aufgrund der Gruppenzugehörigkeit durch eine Zerlegung der Streuung bzgl. der Gruppen zu erklären! j=1 74 / 95

75 Prinzip der Zerlegung der Summe der Quadrate Häufig verwendete Abkürzungen: SS Sum of squares; SAQ Summe der Abweichungsquadrate Summe der Quadrate innerhalb der Gruppen (within groups) SS R = 3 n i (y ij y i ) 2 i=1 j=1 Summe der Quadrate zwischen den Gruppen (between groups) 3 SS M = n i (y i y ) 2 i=1 wobei n = n 1 + n 2 + n 3 = 29 die Gesamtzahl der Beobachtungen bezeichnet und y = 1 3 n i y ij n i=1 j=1 den Mittelwert aus allen Beobachtungen. 75 / 95

76 Prinzip der Zerlege die Summe der Quadrate in eine durch das Modell erklärte Summe (Varianz zwischen den Gruppen) und eine Summe von Quadraten der nicht erklärten Varianz (Varianz innerhalb der Gruppen) SS T = = 3 n i (y ij y ) 2 i=1 j=1 } {{ } Gesamtvarianz (Total) 3 n i i=1 j=1 (y ij y i ) 2 } {{ } Gesamtvarianz innerhalb der Gruppen + k n i (y i y ) 2 i=1 } {{ } Varianz zwischen den Gruppen 76 / 95

77 F -Test für die Hypothese H 0 : µ 1 = µ 2 = µ 3 (gleiche Erwartungswerte in den drei Gruppen) Vergleiche die Varianz zwischen den Gruppen mit der Varianz innerhalb der Gruppen F = n i (y i y ) 2 i=1 3 n i (y ij y i ) 2 i=1 j=1 Falls F groß ist, wird die Nullhypothese H 0 abgelehnt. Mathematische Statistik Test zum Niveau α verwirft die Nullhypothese H 0, falls F > F 2,26,1 α gilt (Vergleich mit dem (1 α)-quantil der F -Verteilung mit (2,26) Freiheitsgraden), bzw. falls der zugehörige p-wert des Tests kleiner als α ist. 77 / 95

78 Beispiel 1.15 (Fortsetzung von Beispiel 1.12) Frage: besteht ein Unterschied zwischen den Studierenden der Fächer Psychologie, Mathematik und Geisteswissenschaften bzgl. des Zahlengedächtnisses Genauer: Besteht ein Unterschied zwischen den Erwartungswerten der drei Gruppen: H 0 : µ 1 = µ 2 = µ 3 n 1 = 14, n 2 = 8, n 3 = 7; α = 5% F 2,26,0.95 = 3.37 ˆF = SS M/2 SS R /26 = 14.6 = 4.06 > D.h. die Hypothese: H 0 : µ 1 = µ 2 = µ 3 wird zum Niveau 5% abgelehnt. In anderen Worten: zwischen den Studierenden der verschiedenen Fächer besteht ein Unterschied Beachte: In vielen Fällen ist man an der Frage interessiert, zwischen welchen Gruppen ein Unterschied besteht. Diese Frage beantwortet der F -test nicht! 78 / 95

79 F -Verteilung Dichte Dichte der F 2,26 Verteilung F 2,26,0.95 = 3.37 F^ = x 79 / 95

80 F -Verteilung Dichte der F 2,26 Verteilung (Zoom) Dichte α = 5% F 2,26,0.95 = 3.37 F^ = 4.06 p Wert x Blaue Fläche: Niveau des Tests Rote Fläche: p-wert (Wahrscheinlichkeit, daß ein Wert größer als ˆF = 4.06 beobachtet wird) 80 / 95

81 tabelle (k bezeichnet die Anzahl der Gruppen) Variabilität Sum of Squares df SS/df F zwischen SS M k 1 SS M /(k 1) innerhalb SS R n k SS R /(n k) gesamt SS T n 1 SS T /(n 1) SS M k 1 / SS R n k Beispiel (Zahlengedächtnis) Variabilität Sum of Squares df SS/df F zwischen innerhalb gesamt / 95

82 SPSS Output Gemerkte Zahlen Quadratsumme df Zwischen den Gruppen Innerhalb der Gruppen Gesamt 29,187 93, , Mittel der Quadrate 14,594 3,599 F 4,055 Signifikanz, / 95

83 Beispiel 1.16 (Fortsetzung von Beispiel 1.15) Bei signifikantem Ergebnis der (d.h. die Hypothese gleicher Erwartungswerte wird abgelehnt) stellt sich die Frage: Welche Gruppe ist maßgeblich für die Signifikanz verantwortlich? Lösungsvorschlag: paarweise Vergleiche! Gruppe 1 - Gruppe 2; H 12 : µ 1 = µ 2 Gruppe 1 - Gruppe 3; H 13 : µ 1 = µ 3 Gruppe 2 - Gruppe 3; H 23 : µ 2 = µ 3 Jeder Vergleich wird mit dem Zwei-n-t-Test (vgl. 1.11(b)) durchgeführt. Dabei ist zu beachten, dass das Gesamtverfahren: Verwerfe die Hypothese H 0 : µ 1 = µ 2 = µ 3, falls mindestens ein Paarvergleich signifikant ist das Niveau α einhält. Die t-tests für die paarweisen Vergleiche sind mit Niveau α/3 durchzuführen. Man dividiert durch 3, da 3 paarweise Vergleiche durchgeführt werden (Bonferroni-Methode) 83 / 95

84 Paarweise Vergleiche mit Zwei-n t-tests (α = 5%): Test-Statistik für den Vergleich von Gruppe i mit Gruppe j: T ni,n j = Y i Y j ˆσ 2 ij = ˆσ ij ( )( 1 ) n i n j n i + n j 2 {(n i 1)ˆσ i 2 + (n j 1)ˆσ j 2 } i j T ni,n j n i n j t ni +n j 2, 1 α /2 p-wert signifikant nein ja nein Beachte: die paarweisen Vergleiche werden zum Niveau α = α/3 = 5%/3 = durchgeführt (da man 3 Vergleiche macht). Mit dieser Methode kann man zum Niveau 5% einen signifikanten Unterschied zwischen den Gruppen feststellen. Bonferroni-Methode ist konservativ (d.h. das wirkliche Niveau des Verfahrens wird unterschätzt Ist die Anzahl der Paarvergleiche groß, so ist dieses Verfahren nicht zu empfehlen. 84 / 95

85 Post-Hoc-Test Bonferroni in SPSS Verwendet andere Schätzung für den Standardfehler der Differenz der Mittelwerte aus Gruppe i und j: ( 1 σ ij 2 = + 1 ) ( ) 1 3 (n k 1)ˆσ k 2 n i n j n 3 An Stelle der Quantile der t-verteilung mit n i + n j 2 Freiheitsgraden müssen dann die Quantile der t-verteilung mit n 3 Freiheitsgraden verwendet werden (n = n 1 + n 2 + n 3 ) k=1 Das Niveau für die Paarvergleiche muss dann wieder durch die Anzahl der Vergleich dividiert werden (im Beispiel α = α/3) Adjustierung der p-werte erfolgt durch Multiplikation der p-werte aus den Paarvergleichen mit der Anzahl der Vergleiche. Z.B. 0, 894 = 3 P( T 12 > 0, 893/0, 841) Dabei berechnet sich die Wahrscheinlichkeit mit einer t-verteilung mit 26 = 29 3 Freiheitsgraden. 85 / 95

86 SPSS Output paarweise Vergleiche mit der Bonferroni-Methode Mehrfachvergleiche Gemerkte Zahlen Bonferroni 95%-Konfidenzintervall (I) Studienfach (J) Studienfach Mittlere Differenz (I-J) Standardfehler Signifikanz Untergrenze Obergrenze Mathematik Psychologie,893,841,894-1,26 3,04 Geisteswissenschaften 2,500 *,878,026,25 4,75 Psychologie Mathematik -,893,841,894-3,04 1,26 Geisteswissenschaften 1,607,982,341 -,91 4,12 Geisteswissenschaften Mathematik -2,500 *,878,026-4,75 -,25 Psychologie -1,607,982,341-4,12,91 *. Die Differenz der Mittelwerte ist auf dem Niveau 0.05 signifikant. 86 / 95

87 Scheffé-Methode (α = 5%) Für den Vergleich der Gruppe i mit j betrachte: 3 1 d s (i, j) = 29 3 SS R F 2,26,0.95 ( ) n i n j 2 = ( ) = n i n j n i n j und vergleiche diese Größe mit Mittelwertdifferenz y i y j Ergebnis i j y i y j d s (i, j) Ergebnis kein sign. Unterschied y 1 sign. größer als y kein sign. Unterschied 87 / 95

88 Einige Bemerkungen zur Scheffé-Methode: Die Scheffé-Methode garantiert, dass die Wahrscheinlichkeit eines α-fehlers für jeden beliebigen a-posteriori durchgeführten Einzelvergleichstests nicht größer ist als der α-fehler des F -Tests Kurz: Die Signifikanzaussagen gelten simultan für ALLE Paarvergleiche mit dem Gesamtniveau α Die Scheffé-Methode ist ein konservatives Verfahren Die Wahrscheinlichkeit eines α-fehlers ist eher kleiner als das vorgegebene Niveau man entscheidet tendenziell eher zu oft für H0 88 / 95

89 SPSS Output paarweise Vergleiche mit der Scheffé-Methode Mehrfachvergleiche Gemerkte Zahlen Scheffé-Prozedur 95%-Konfidenzintervall (I) Studienfach (J) Studienfach Mittlere Differenz (I-J) Standardfehler Signifikanz Untergrenze Obergrenze Mathematik Psychologie,893,841,576-1,29 3,08 Geisteswissenschaften 2,500 *,878,029,22 4,78 Psychologie Mathematik -,893,841,576-3,08 1,29 Geisteswissenschaften 1,607,982,279 -,94 4,16 Geisteswissenschaften Mathematik -2,500 *,878,029-4,78 -,22 Psychologie -1,607,982,279-4,16,94 *. Die Differenz der Mittelwerte ist auf dem Niveau 0.05 signifikant. 89 / 95

90 1.17 Einfaktorielle (zum Vergleich von k unabhängigen n) Modellannahmen und Hypothese Daten (n = k i=1 n i) y 11,..., y 1n1 (Gruppe 1, Erwartungswert µ 1 ; Varianz σ 2 1 )... y k1,..., y knk (Gruppe k, Erwartungswert µ k ; Varianz σk 2) Nullhypothese: es besteht kein Unterschied zwischen den Erwartungswerten der einzelnen Gruppen: H 0 : µ 1 = µ 2 =... = µ k Rechtfertigung der Voraussetzungen Unabhängigkeit zwischen den Gruppen Unabhängigkeit innerhalb der Gruppen Normalverteilungsannahme Varianzhomogenität: σ 2 1 = σ 2 2 = = σ 2 k 90 / 95

91 F-Test für die einfaktorielle (zum Vergleich von k unabhängigen n) Die Hypothese H 0 : µ 1 = µ 2 =... = µ k gleicher Erwartungswerte in allen Gruppen wird verworfen, falls Dabei ist: F = 1 k 1 SS M 1 n k SS R SS M = > F k 1,n k,1 α k n i (y i y ) 2 i=1 (sum of squares between groups) SS R = k n i (y ij y i ) 2 i=1 j=1 (sum of squares within groups) und F k 1,n k,1 α das (1 α)-quantil der F -Verteilung mit (k 1, n k) Freiheitsgraden 91 / 95

92 1.18 Paarweise Vergleich mit der Scheffé-Methode (Notation wie in 1.15) wird die Nullhypothese H 0 : µ 1 = µ 2 = = µ k abgelehnt, so kann mit der Scheffé-Methode festgestellt werden, welche Gruppen für die Signifikanz verantwortlich sind! dazu bestimmt man die Größen (n = k i=1 n i) k 1 d s (i, j) = n k SS R F k 1,n k,1 α ( ) n i n j Ist y i y j größer (bzw. kleiner) als d s (i, j) (bzw. als d s (i, j)) so ist y i signifikant größer (bzw. kleiner) als y j Beachte: insgesamt k(k 1) 2 Vergleiche die Scheffé-Methode hält simultan das Niveau α es ist möglich, das F -Test H 0 ablehnt, aber keiner der paarweisen Vergleiche signifikant ist! Andere Verfahren (z.b. in SPSS implementiert): Tukey- Methode, Duncan Test 92 / 95

93 1.19 Levene-Test auf Varianzhomogenität von k unabhängigen n Modellannahmen und Hypothese Daten (n = k i=1 n i) y 11,..., y 1n1 (Gruppe 1, Erwartungswert µ 1 ; Varianz σ 2 1 )... y k1,..., y knk (Gruppe k, Erwartungswert µ k ; Varianz σk 2) Nullhypothese: es liegt Varianzhomogenität vor, d.h. H 0 : σ1 2 = σ2 2 =... = σk 2 Rechtfertigung der Voraussetzungen Unabhängigkeit zwischen den Gruppen Unabhängigkeit innerhalb der Gruppen Normalverteilungsannahme 93 / 95

94 Levene-Test auf Varianzhomogenität von k unabhängigen n Die Hypothese der Varianzhomogenität wird verworfen, falls F = 1 k 1 1 k n k i=1 H 0 : σ 2 1 = σ 2 2 =... = σ 2 k k i=1 n i(x i x ) 2 ni j=1 (x ij x i ) 2 > F k 1,n k,1 α Dabei ist: n = n n k der Gesamtstichprobenunfang x i = 1 ni n i j=1 x ij, x = 1 k ni n i=1 j=1 x ij xij = y ij y i Fk 1,n k,1 α das (1 α)-quantil der F -Verteilung mit (k 1, n k) Freiheitsgraden. Beachte: Der Test ist robust bzgl. der Normalverteilungsannahme Der Test hält nur näherungsweise das Niveau α Alternativer Test: Bartlett Test 94 / 95

95 SPSS Output Gemerkte Zahlen Levene- Statistik 1,214 df1 2 df2 26 Test der Homogenität der Varianzen Signifikanz,313 ONEWAY ANOVA Gemerkte Zahlen Quadratsumme df Zwischen den Gruppen Innerhalb der Gruppen Gesamt 29,187 93, , Mittel der Quadrate 14,594 3,599 F 4,055 Signifikanz, / 95

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 30. März 2011 1 / 46 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00

Mehr

22. Oktober Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

22. Oktober Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 22. Oktober 2011 1 / 374 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30

Mehr

Methodenlehre II, SoSe 2015

Methodenlehre II, SoSe 2015 Ruhr-Universität Bochum 2. April 2015 1 / 96 Methodenlehre II Prof. Dr. NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: http://www.ruhr-uni-bochum.de/mathematik3/ http://www.ruhr-uni-bochum.de/mathematik3/dette.html

Mehr

23. Mai Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

23. Mai Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 23. Mai 2011 1 / 178 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00

Mehr

Methodenlehre II, SoSe 2015

Methodenlehre II, SoSe 2015 Ruhr-Universität Bochum 4. Juni 2015 1 / 282 Methodenlehre II Prof. Dr. NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: http://www.ruhr-uni-bochum.de/mathematik3/ http://www.ruhr-uni-bochum.de/mathematik3/dette.html

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate 31 und 31 und (), Methode der 33 Das allgemeine (), Methode der kleinsten Quadrate 37 Modelle mit Messwiederholungen 1 / 113 Eine grundsätzliche Bemerkung zu Beginn Es bestehen viele Ähnlichkeiten zwischen

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Psychologische Methodenlehre und Statistik II

Psychologische Methodenlehre und Statistik II Psychologische Methodenlehre und Statistik II Pantelis Christodoulides & Karin Waldherr 9. Juni 2010 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik II 1/47 Allgemeines

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Die Optimalität von Randomisationstests

Die Optimalität von Randomisationstests Die Optimalität von Randomisationstests Diplomarbeit Elena Regourd Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Düsseldorf im Dezember 2001 Betreuung: Prof. Dr. A. Janssen Inhaltsverzeichnis

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Parametrische Statistik

Parametrische Statistik Statistik und ihre Anwendungen Parametrische Statistik Verteilungen, maximum likelihood und GLM in R Bearbeitet von Carsten F. Dormann 1. Auflage 2013. Taschenbuch. xxii, 350 S. Paperback ISBN 978 3 642

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab.

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests A parametrisch -- ANOVA Beispieldatei: Seegräser_ANOVA H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. µ

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr