8.2.5 Linsen. V8_2_5Linsen.DOC 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "8.2.5 Linsen. V8_2_5Linsen.DOC 1"

Transkript

1 V8 5Linsen.DOC 8..5 Linsen Viele optische Instrumente, rille, Lupe, Mikroskop und Fernrohr, dienen der Verbesserung der Abbildung durch das Auge. Das Auge ist selbst ein optisches System, das eine Linse enthält. Der Strahlengang in Linsen olgt dem rechungsgesetz: Parallel zur optischen Achse einallende Strahlen werden in einem Punkt, dem Fokus, zusammengeührt. Konvexlinse Konkavlinse ( n ) r D + r rennweite N rechkrat, ihre Einheit ist Dioptrie m r, r Krümmungsradien der die Linse begrenzenden Kugellächen rechungsindex des Linsenmaterials Abbildung Konvex- und Konkavlinse. Versuch Radar-Linse: Eine okussierende Linse ür Radarstrahlen entsteht aus Scheiben unterschiedlichen Durchmessers mit einer homogenen Metall eschichtung (Reißnägel, die in etwa gleicher Dichte augebracht sind). Abbildung Schema der Linse ür Radarstrahlen ( λ 3, cm) : Homogen mit Reißnägeln versehene Styroporplatten, ca. Reißnagel/cm.

2 V8 5Linsen.DOC Zur eindeutigen Konstruktion von Strahlengängen wählt man mindestens zwei Strahlen, die den olgenden edingungen genügen: rennebene Umgekehrt: Parallel einallende Strahlen verlauen nach dem Durchqueren der Linse durch einen Punkt, der in der rennebene liegt. Strahlen, die von einem Punkt in der rennebene ausgehen, verlauen nach dem Durchqueren der Linse parallel. Strahlen durch die Mitte der Linse verlauen ungebrochen. Abbildung 3 Regeln zur Konstruktion von Strahlengängen 8..6 Abbildung durch optische Instrumente Ein egenstand wird durch eine Linse optisch abgebildet. Im ild der Strahlenoptik kann die Vergrößerung mit Hile des Strahlensatzes leicht bestimmt werden, wenn man die Abbildung mit zwei Strahlen charakterisiert. egenstand, röße g b ild, röße Folgt aus: + Abbildungsgleichung b g b g β Abbildungsmaßstab g Strahlensatz ür den Strahl durch den Fokus links b g Strahlensatz ür den Strahl durch die Mitte Tabelle Abbildungsgleichung und Abbildungsmaßstab. Der dritte (z.. der unterste) Strahl ist zur Vollständigkeit eingezeichnet, er wird zur Konstruktion nicht benötigt.

3 V8 5Linsen.DOC 3 Man wählt, entsprechend den o. g. Regeln, einen parallel zur Linsenachse einallenden Strahl, der durch den rennpunkt der Linse gebrochen wird, und einen Strahl durch die Linsenmitte, der die Linse ungebrochen durchquert. ei der olgenden Formulierung denke man sich das ild des egenstands au einen Schirm projiziert ( reelles ild ). Wenn man das ild nicht au dem Schirm abbildet, sondern den egenstand durch das optische erät hindurch mit dem Auge beobachtet, dann enthält das optische System auch noch die Linse des Auges. Die Vergrößerung eines optischen eräts ist dann als Verhältnis der Tangens Werte der Sehwinkel deiniert. Das sind zwei Winkel, unter denen man einen Punkt mit und ohne Instrument erblickt. In astronomischen Fernrohren ist der Punkt das Objekt selbst, z.. der leuchtende Stern. In Lupen und Mikroskopen beinde sich der Punkt am beobachteten egenstand, der zur eobachtung ohne Instrument in die ezugssehweite l 5cm vor das Auge gestellt wird. Die ezugssehweite steht ür die kleinste Enternung, aus der bei normaler Akkomodation noch schar gesehen wird. l 5cm V Vergrößerung Sehwinkel eines Punktes mit Instrument. : Sehwinkel eines Punktes ohne Instrument. ei Lupen und Mikroskopen beinde sich der Punkt an einem egenstand, der in ezugssehweite augestellt ist. l 5cm ernung eines egenstandes von einem au Deinition der ezugssehweite: Standard Ent- Nähe akkommodierten Auge. Tabelle Deinition der Vergrößerung und des Sehwinkels Die Lupe Mit einer Lupe erscheinen kleine egenstände unter einem größeren Sehwinkel, also vergrößert. ringt man den egenstand in die rennebene der Linse, dann gilt:

4 V8 5Linsen.DOC 4 l Sehwinkel ohne Lupe, egenstand im Abstand l 5cm, die Länge des Peils sei. > Sehwinkel mit Lupe l l V Lupe Vergrößerung einer Lupe Tabelle 3 Strahlengang und Vergrößerung einer Lupe Das Keplersche und alileische astronomische Fernrohr Die eobachtung des Himmels mit astronomischen Fernrohren dient der estimmung von Sternorten. Das heißt, es interessiert nicht das Aussehen der Oberläche eines Sterns, sondern man möchte die Koordinaten seines Punktes am Himmel bestimmen oder man möchte wissen, ob ein mit bloßem Auge als Punkt am Himmel erscheinender Stern vielleicht eine Ansammlung von zwei oder mehreren Sternen ist. Um Sterne getrennt wahrzunehmen, muß sich ihr Sehwinkel um einen kleinsten, letztlich durch die Aulösung der Netzhaut im Auge gegebenen Winkel unterscheiden, der beim Menschen / beträgt. Tabelle 4 Links: Schema der Netzhaut mit dem ild der beiden rechts beobachteten Sterne. Das Karo steht ür das Raster der Netzhaut. Liegt das ild beider Sterne in einem Rasterpunkt, dann sieht man die Sterne nicht mehr als getrennte Objekte. Im egensatz zur zuvor besprochenen Lupe nimmt man in diesen Instrumenten an, daß die von einem weit enternten egenstand ausgehenden Strahlen parallel zueinander in das Ob-

5 V8 5Linsen.DOC 5 jektiv einallen. Nach den Eigenschaten der Linse beobachtet man deshalb einen Stern als leuchtenden Punkt in der Fokal Ebene. Dieser Punkt zeigt aber nur die eugungsigur eines im Weg des parallelen Strahlenbündels beindlichen egenstands, das ist die Önung des Fernrohrs. Man kann deshalb keine Details von der Oberläche der Quelle, also des Sterns, erkennen. Die Eigenschaten der eugung werden später im Wellenbild detailliert dargelegt, hier sei aber schon verraten, daß ein ündel parallel einallender Strahlen keine Inormation über die Struktur der Quelle enthält, es steht ür eine einzige eugungsordnung von der Quelle. Für die Abbildung benötigt man aber mindestens zwei, besser mehrere Ordnungen. Die eobachtung eines einzigen ündels paralleler Strahlen ist aber ausreichend, wenn man sich damit begnügt, die Richtung des einallenden Lichtes zu registrieren. Im Rahmen der Strahlenoptik ist deshalb nur die Änderung des Sehwinkel bei Nutzung des Instruments von Interesse. Die Vergrößerung des Instruments wird aus den Sehwinkeln ür den weit enternten egenstand mit und ohne Fernrohr deiniert. Das Keplersche Fernrohr enthält als Objektiv und Okular zwei konvexe Linsen unterschiedlicher rennweiten, das Objekt wird dadurch au dem Kop stehend gesehen. Im alileischen Fernrohr wird durch eine konkave Linse als Okular erreicht, daß das Objekt aurecht erscheint. V Fernrohr Vergrößerung des Fernrohrs Winkel am Okular Winkel am Objektiv Tabelle 5 Strahlengang und Vergrößerung im Keplerschen Fernrohr. Der gleiche Ausdruck olgt ür das alileische Fernrohr Das Mikroskop Wie bei der Lupe ällt ein divergentes Strahlenbündel vom Objekt in das Objektiv, dieses bildet das Objekt in der ildebene des Objektivs als reelles ild ab. Man könnte das vergrößerte Objekt dort au einem Schirm abbilden und dieses Abbild dann z.. mit einer Lupe nochmals vergrößert betrachten. Das macht man im Mikroskop tatsächlich, nur verzichtet man au den Schirm, der nicht nötig ist.

6 V8 5Linsen.DOC 6 l Sehwinkel ohne Mikroskop, egenstand im ezugsabstand l 5cm, der Peil zeige den egenstand. b g t Okular als Lupe Abbildung durch das Objektiv Tabelle 6 Oben: Sehwinkel ür einen egenstand ohne Instrument in ezugssehweite, unten: Sehwinkel und Strahlengang im Mikroskop Zur erechnung der Vergrößerung wird der Sehwinkel, unter dem der egenstand bei eobachtung durch das Instrument erscheint, mit dem Sehwinkel verglichen, unter dem der in ezugssehweite l 5cm beindliche egenstand mit bloßem Auge erscheint. Die Vergrößerung steigt mit abnehmender rennweite der Linsen. Man kann bis zu etwa -ach vergrößern, bei höheren Vergrößerungen treten eugungseekte in den Vordergrund: Die Aulösungsgrenze ist erreicht, wenn noch mindestens zwei unterschiedlich gerichtete Parallelstrahlbündel in das Auge allen. Ist nur noch eines übrig, dann wird ähnlich zur eobachtung eines Sterns im Fernrohr- nur noch der zentrale Strahl des eugungsbildes beobachtet: Es wird zwar hell, aber es ist keine Struktur erkennbar. Die eugungseekte werden im ild der Wellenoptik verständlich.

7 V8 5Linsen.DOC 7 V Mikroskop V Okular t l β b t β Objektiv g Folgt nach Einsetzen von: l l Objektiv V Okular Vergrößerung im Mikroskop Vergrößerung des Okulars (Lupe) Vergrößerung des Objektivs (einzelne Linse) Sehwinkel des egenstands in der ezugssehweite Sehwinkel durch das Okular b g Strahlensatz ür das Objektiv + Abbildungsgleichung ür das b g Objektiv, deshalb gilt b g b t wegen b t + V Mikroskop l b l g Tabelle 7 Vergrößerung im Mikroskop t l Linsenehler Sphärische Aberration ei sphärischen Linsen haben Randstrahlen eine geringere rennweite als achsennahe Strahlen. Die Abbildung wird verbessert, wenn man das Strahlenbündel durch lenden einschränkt. Abbildung 4 Sphärische Aberration und ihre Korrektur durch Abblenden

8 V8 5Linsen.DOC Chromatische Aberration Unterschiedliche Farben werden von las unterschiedlich stark gebrochen. Die Abhängigkeit der rechzahl eines Stoes von der Wellenlänge des Lichtes bezeichnet man als Dispersion. Die rennweite ür blaues Licht ist kürzer als die von rotem. blau rot Man gleicht diesen Fehler durch Achromat Linsen aus, dieses sind Kombinationen von Linsen aus läsern unterschiedlicher rechkrat und Dispersion, z.. aus bleihaltigem Flintglas (n,63) und bleireiem Kronglas (n,5). Versuch Farbehler der Linse. Licht hinter einem Filter, der ür rot und blau durchlässig ist, wird au blau (rot) okussiert. a) Man erkennt den roten (blauen) Ho um den Fokus. b) Mit einer Achromat Linse ist das ild schar und ohne Farbrand. Versuch 3 Dispersion des Prismas und Achromat Prisma. Ein Prisma aus Flintglas wird von der Hälte eines weißen Strahles durchquert, die andere Hälte streicht geradeaus über das Prisma hinweg. a) Der das Prisma durchquerende Strahl wird abgelenkt und spektral zerlegt, der andere bleibt weiß. b) Mit einer Linse wird der regenbogenarbige Strahl zu einem weißen vereint, die Summe aller Farben ist weiß. c) Jetzt wird in voller Strahlhöhe ein Kronglasprisma addiert: Der zuvor weiße Strahl wird bunt, der bunte zu weiß korrigiert Astigmatismus Eine Zylinderlinse okussiert nur in einer Richtung. Aus einem parallel einallenden Strahlenbündel wird deshalb kein Punkt, sondern eine Linie parallel zur Zylinderachse. Mit einer zweiten dazu senkrecht stehenden Zylinderlinse kann dieser Fehler korrigiert werden. Auch bei sphärischen Linsen gibt es astigmatische Verzeichnungen, wenn die Strahlen sehr schräg zur optischen Achse geneigt in die Linse allen. Man bezeichnet diesen Eekt als Astigmatismus schieer ündel. Versuch 4 Astigmatismus. a) Ein Netz wird mit einer Zylinderlinse abgebildet und stark verzeichnet. b) Mit einer zweiten, dazu senkrecht stehenden Linse wird der Fehler (zumindest in Nähe der Strahlachse) korrigiert.

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung

Entstehung des Regenbogens durch Brechung-Reflexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS 0/03 Entstehung des Regenbogens durch Brechung-Relexion-Brechung Vorlesung Physik III WS

Mehr

12. Geometrische Optik

12. Geometrische Optik .3.23 2. eometrische Optik Vernachlässigung d. eugung, geradlinige Ausbreitung d. Lichtstrahlen: Strahlenoptik ür Stahlenbündelquerschnitt b Abstand der Nebenmaxima Einzelspalt / b 2. Durch rechung erzeugte

Mehr

7.1.3 Abbildung durch Linsen

7.1.3 Abbildung durch Linsen 7. eometrische Optik Umkehrung des Strahlenganges (gegenstandsseitiger rennpunkt): f = n n n 2 R (7.22) n g + n 2 b = n 2 n R (7.23) 7..3 Abbildung durch Linsen Wir betrachten dünne Linsen, d.h., Linsendicke

Mehr

Anhang A3. Optische Instrumente. A3.1 Auge. A3.2 Lupe

Anhang A3. Optische Instrumente. A3.1 Auge. A3.2 Lupe Anhang A3 Optische Instrumente A3.1 Machen Sie sich bei der Vorbereitung zu Versuch 362 mit dem Aubau und der Funktionsweise des menschlichen s vertraut. Dazu einige Angaben: rechzahl der Linse: n L =

Mehr

Optik. Optik. Optik. Optik ist eine Spezialgebiet der Physik, das Eigenschaften elektromagnetischer Strahlung im sichtbaren Bereich behandelt.

Optik. Optik. Optik. Optik ist eine Spezialgebiet der Physik, das Eigenschaften elektromagnetischer Strahlung im sichtbaren Bereich behandelt. Optik Optik Optik ist eine Spezialgebiet der Physik, das Eigenschaten elektromagnetischer Strahlung im sichtbaren ereich behandelt. Ausschlieslich ür den Unterrichtsgebrauch 1 2 Optik 1. eometrische Optik

Mehr

GEOMETRISCHE OPTIK VORBEREITUNG

GEOMETRISCHE OPTIK VORBEREITUNG Mtknr.: 5380 GEOMETRISCHE OPTIK VORBEREITUNG 0. Vorbemerkungen. S.. Brennweitenbestimmung.. Brennweite mit Lineal.. S.3/4. Besselverahren. S.4/5.3 Abbéverahren.. S.5/6. Aubau optischer Instrumente.. Keplersches

Mehr

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1.

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1. 21.4 Linsen Eine Linse ist ein optisches erät, dessen unktion au dem Brechungsgesetz beruht. Dadurch erährt der Lichtstrahl eine Richtungsänderung beim Ein- und Austritt. Die Oberlächen von Linsen sind

Mehr

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik - Lösung

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik - Lösung Ferienkurs Experimentalphysik 3 - Übungsaugaben Geometrische Optik - Matthias Brasse, Max v. Vopelius 4.0.009 Augabe : Zeigen Sie mit Hile des Fermatschen Prinzips, dass aus der Minimierung des optischen

Mehr

36. Linsen und optische Instrumente

36. Linsen und optische Instrumente 36. Linsen und optische Instrumente 36.. Brechung an Kugellächen Linsen besitzen aus ertigungstechnischen Gründen meist Kugellächen (Ausnahmen sind Spitzenobjektive, z. B. ür Projektionslithographie).

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der

Mehr

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017 4 Linsen 4.1 Linsenformen Optische Linsen sind durchsichtige Körper, welche (im einfachsten Fall) auf beiden Seiten von Kugelflächen oder auf der einen Seite von einer Kugelfläche, auf der anderen Seite

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Aufg. 2: Skizziere die Abbildung einer Person im Auge. (Wähle einen beliebigen Punkt und zeichne die wichtigsten Strahlen.)

Aufg. 2: Skizziere die Abbildung einer Person im Auge. (Wähle einen beliebigen Punkt und zeichne die wichtigsten Strahlen.) Aufgaben zu Linsen : Aufg. 1: Zeichne den Verlauf des gesamten Lichtbündels, vor und nach der Linse, das von der Spitze des Pfeils ausgehend, den gesamten Querschnitt der Linse füllt: Aufg. 1a: Zeichne

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

Optische Abbildung mit Linsen

Optische Abbildung mit Linsen O14 Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 5+6+7: Roter Faden: Heute: Wellenoptik, geometrische Optik (Strahlenoptik) http://www-linux.gsi.de/~wolle/telekolleg/schwingung/index.html Versuche: Applets: http://www.walter-fendt.de/ph4d huygens,

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Pro. Dr. L. Oberauer Wintersemester 200/20 6. Übungsblatt - 29.November 200 Musterlösung Franziska Konitzer (ranziska.konitzer@tum.de) Augabe ( ) (6 Punkte) Um die Brennweite

Mehr

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Pro. Dr. H.-Ch. Mertins, MSc. M. Gilbert O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 30.8.009). Name Matr. Nr. Gruppe Team.

Mehr

4. Optische Abbildung durch Linsen

4. Optische Abbildung durch Linsen DL 4. Optische Aildung durch Linsen 4.1 Einleitung Optische Linsen und Linsensysteme ilden die Grundlage zahlreicher ildgeender Apparate, die in Wissenschat und Technik wie auch im täglichen Leen Anwendung

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Sammellinse Zerstreuungslinse Abb. 6 - Linsen

Sammellinse Zerstreuungslinse Abb. 6 - Linsen PS - PTIK P. Rendulić 2007 LINSEN 3 LINSEN 3. Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus las oder transparentem Kunststo herestellt ist. Die Linse ist von zwei Kuellächen

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

Übungen zur Optik (E3-E3p-EPIII) Blatt 8

Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Wintersemester 2016/2017 Vorlesung: Thomas Udem ausgegeben am 06.12.2016 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen ab 12.12.2016 Die Aufgaben ohne Stern sind

Mehr

G<B G=B G>B Gegenstandweite g g < 2f g=f g > 2f Bildweite b >g =g <g

G<B G=B G>B Gegenstandweite g g < 2f g=f g > 2f Bildweite b >g =g <g Protokoll D01 2.2. Aufgaben 1. eweisen Sie die Abbildungsgleichung mit den Strahlensätzen. G b g b f 1 f b 1 g 1 f 2. ei welcher Gegenstandsweite einer Konvexlinse gilt: G ? Wie groß ist jeweils

Mehr

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073) Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Vorbereitung: Bestimmung von e/m des Elektrons

Vorbereitung: Bestimmung von e/m des Elektrons Vorbereitung: Bestimmung von e/m des Elektrons Carsten Röttele 21. November 2011 Inhaltsverzeichnis 1 Allgemeine Linsen 2 2 Bestimmung der Brennweite 3 2.1 Kontrolle einer Brennweite...........................

Mehr

GEOMETRISCHE OPTIK. Kapitel 16

GEOMETRISCHE OPTIK. Kapitel 16 Kapitel 16 GEMETRISHE PTIK 3 K = J A F J E - A J H = A J E I? D A 9 A A F J E A F J E A J H E I? D A Die geometrische ptik ist die erste Näherung zur Wahrheit Lichtrahlen werden definiert als dünne ündel

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

PW6 Geometrische Optik

PW6 Geometrische Optik PW6 Geometrische Optik Andreas Allacher 0501793 Tobias Krieger 0447809 Betreuer: Dr. Erhard Schafler.Nov.006 Seite 1 Inhaltsverzeichnis 1. Brennweite von Linsen und Linsenfehler...3 1.1 Prinzip und Formeln...3

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Kapitel Optische Abbildung durch Brechung

Kapitel Optische Abbildung durch Brechung Kapitel 3.8.3 Optische Abbildung durch Brechung Dicke Linsen, Linsensysteme, Optische Abbildungssysteme Dicke Linse Lichtwege sind nicht vernachlässigbar; Hauptebenen werden eingeführt Dicke Linse Lichtwege

Mehr

6.1.7 Abbildung im Auge

6.1.7 Abbildung im Auge 6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anängerpraktikum Geometrische Optik, optische Abbildungen und Aberrationen Gruppe, Team 5 Sebastian Kor Frerich Max 5.5.6 Inhaltsverzeichnis. Einleitung -3-. Versuchsdurchührung -4-. Brennweitenbestimmung

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild

Mehr

Physikalische Grundlagen des Sehens.

Physikalische Grundlagen des Sehens. Physikalische Grundlagen des Sehens. Medizinische Physik und Statistik I WS 2016/2017 Tamás Marek 30. November 2016 Einleitung - Lichtmodelle - Brechung, - Bildentstehung Gliederung Das Sehen - Strahlengang

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

Inhalt Phototechnik 24.4.07

Inhalt Phototechnik 24.4.07 Inhalt Phototechnik 24.4.07 4.2.1.5 Abbildungsfehler Klassifikation der Abbildungsfehler Ursachen Fehlerbilder Versuch Projektion Ursachen für Abbildungsfehler Korrekturmaßnahmen 1 Paraxialgebiet Bisher:

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Optische Instrumente

Optische Instrumente Optiche Intrumente Für die verchiedenten Anwendunen werden Kombinationen au n und anderen optichen Elementen eineetzt. In dieem Abchnitt werden einie dieer optichen Intrumente voretellt. In vielen Fällen

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Mehrfachabbildungen entstehen, wenn mehrere Spiegel gegeneinander geneigt sind.

Mehrfachabbildungen entstehen, wenn mehrere Spiegel gegeneinander geneigt sind. Optische Abbildungen Nachdem wir die Eigenschaften des Lichts jetzt im wesentlichen kennen gelernt haben, werden wir im folgenden uns mit der sog geometrischen Optik beschäftigen, die mit geradlinigen

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet?

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1 Musterprüfung Module: Linsen Optische Geräte 1. Teil: Linsen 1.1. Was besagt das Reflexionsgesetz? 1.2. Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1.3. Eine Fläche bei einer

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum ür Oberstuenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 7 Geometrische Optik (GO) 7.1 7.1 Einleitung........................................

Mehr

Optische Instrumente: Das Auge

Optische Instrumente: Das Auge Optische Instrumente: Das Auge Das menschliche Auge ist ein höchst komplexes Gebilde, welches wohl auf elementaren optischen Prin- S P H N zipien beruht, aber durch die Ausführung besticht. S: M Sklera

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 8 Mikroskop Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Das menschliche Auge: Durch ein Linsensystem wird im menschlichen

Mehr

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11. Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle

Mehr

2. Linsen und Linsensysteme

2. Linsen und Linsensysteme 2. Linsen und Linsensysteme 2.1. Sphärische Einzellinsen 2.1.1. Konvexlinsen Konvexlinsen sind Sammellinsen mit einer positiven Brennweite. Ein paralleles Lichtbündel konvergiert nach dem Durchgang durch

Mehr

Linsen und Linsenfehler

Linsen und Linsenfehler Linsen und Linsenfehler Abb. 1: Abbildung des Glühfadens einer Halogenlampe durch ein Pinhole Geräteliste: Pinhole (

Mehr

Licht breitet sich in Form von Strahlen aus. Lichtstrahlen werden von einer Lichtquelle emittiert und können mit einem Detektor nachgewiesen werden.

Licht breitet sich in Form von Strahlen aus. Lichtstrahlen werden von einer Lichtquelle emittiert und können mit einem Detektor nachgewiesen werden. Die Geometrische Optik ist das historisch älteste Teilgebiet der Optik. Sie ergibt sich als Grenzfall der Wellenoptik für verschwindend kleine Licht-Wellenlängen. Viele alltägliche optische Phänomene,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl

Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl Modelle in der Physik Optik Strahlenoptik vereinfachte Darstellungen der Wirklichkeit dienen der besseren Veranschaulichung Wesentliches wird hervorgehoben Unwesentliches wird vernachlässigt Was ist ein

Mehr

Wir beobachten, dass wir mit Hilfe von Blenden scheinbar scharf begrenzte Lichtstrahlen erzeugen

Wir beobachten, dass wir mit Hilfe von Blenden scheinbar scharf begrenzte Lichtstrahlen erzeugen Physik für Studierende der iologie und der Wirtschaftschemie Universität Zürich, SS 2007, U Straumann Versio4 Juni 2007 Inhaltsverzeichnis 7 Optik 7 72 eometrische Optik 7 72 Lichtstrahlen 7 722 Ebene

Mehr

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2)

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Staatsinstitut für Schulqualität und ildungsforschung Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Lehrplanbezug Ein Teil der Schüler hat möglicherweise bereits in der 3. Jahrgangsstufe der Grundschule

Mehr

Dr. Thomas Kirn Vorlesung 12

Dr. Thomas Kirn Vorlesung 12 Physik für Maschinenbau Dr. Thomas Kirn Vorlesung 12 1 Wiederholung V11 2 Lichterzeugung: Wärmestrahlung Schwarzer Körper: Hohlraumstrahlung Wien sches Verschiebungsgesetz: λ max T = b = 2,9 10-3 m K Stefan

Mehr

Klausurtermin: Anmeldung: 2. Chance: voraussichtlich Klausur am

Klausurtermin: Anmeldung:  2. Chance: voraussichtlich Klausur am Klausurtermin: 13.02.2003 Anmeldung: www.physik.unigiessen.de/dueren/ 2. Chance: voraussichtlich Klausur am 7.4.2003 Optik: Physik des Lichtes 1. Geometrische Optik: geradlinige Ausbreitung, Reflexion,

Mehr

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente Physik für Pharmazeuten OPTIK Geometrische Optik Wellen Beugung, Interferenz optische Instrumente geometrische Optik Wellengleichungen (Maxwellgleichungen) beschreiben "alles" Evolution exakt berechenbar

Mehr

PW6. Geometrische Optik Version vom 19. August 2016

PW6. Geometrische Optik Version vom 19. August 2016 Geometrische Optik Version vom 19. August 2016 Inhaltsverzeichnis 1 Brennweite von Linsen 1 1.1 Grundlagen................................... 1 1.1.1 Begriffe................................. 1 1.1.2 Geometrische

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004 Pro. Dr. F. Koch Dr. H. E. Porteanu koch@ph.tum.de porteanu@ph.tum.de WS 004-005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 1-19.11.004 OPTIK geometriche und phyikaliche Optik C. Polariation Al tranverale

Mehr

Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (6. DEZEMBER 2017) MOTIVATION UND VERSUCHSZIELE

Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (6. DEZEMBER 2017) MOTIVATION UND VERSUCHSZIELE Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München rundpraktika (6. DEZEMER 27) MOTIVATION UND VERSUCHSZIELE Die geometrische Optik beschreibt die Ausbreitung des Lichts unter

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Ergänzungs-Set geometrische Optik

Ergänzungs-Set geometrische Optik Ergänzungs-Set geometrische Optik Geometrische Optik mit Diodenlaser und Metalltafel 1007520 Ergänzungs-Set geometrische Optik plus 1075205 Die Spalte Benötigte Geräte listet den für den jeweiligen Versuch

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Geometrische Optik Qi Li, Bernhard Loitsch, Hannes Schmeiduch Dienstag, 06.03.2012 Inhaltsverzeichnis 1 Einleitung 2 2 Das Huygensche Prinzip 2 3 Optische Abbildungen 3

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) (7 Punkte) Gegeben sei

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anängerpraktikum, Fakultät ür Physik und Geowissenschaten, Universität Leipig O 15 Mikroskop und Fernrohr Augaben 1 Ermitteln Sie ür ein Mikroskop bei verschiedenen mechanischen Tubuslängen

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Optische Abbildungen. Versuch im Physikalischen Praktikum im Maschinenwesen-Fakultätsgebäude. Schüler-Skript und Versuchsanleitung

Optische Abbildungen. Versuch im Physikalischen Praktikum im Maschinenwesen-Fakultätsgebäude. Schüler-Skript und Versuchsanleitung Versuch im Physikalischen Praktikum im Maschinenwesen-Fakultätsgebäude Bearbeitet von Kathrin Nagel und Dr. Werner Lorbeer Stand: 06. November 2013 Inhaltsverzeichnis 1 Phänomene... 3 1.1 Beobachtungen

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

Medium Luft zueinander, wenn diese Linse ein reelles, gleich großes und umgekehrtes Bild eines Medium Luft zueinander, wenn diese Linse ein reelles, verkleinertes und umgekehrtes Bild eines Medium Luft

Mehr

Examensaufgaben - STRAHLENOPTIK

Examensaufgaben - STRAHLENOPTIK Examensaufgaben - STRAHLENOPTIK Aufgabe 1 Ein Prisma mit einem brechenden Winkel von 60 hat eine Brechzahl n=1,5. Berechne den kleinsten Einfallswinkel, für welchen noch ein Strahl auf der anderen Seite

Mehr

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das

Mehr

Vorlesung 7: Geometrische Optik

Vorlesung 7: Geometrische Optik Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed 1 Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)

Mehr

Geometrische Optik. Versuch: P Auswertung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P Auswertung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Jens Küchenmeister (25380) Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Auswertung - Versuchsdurchführung: Montag, 3.0.2005

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr

Laserstrahlung und vergrößernde optische Instrumente

Laserstrahlung und vergrößernde optische Instrumente Laserstrahlung und vergrößernde optische Instrumente Vor der Gefährlichkeit von Laserstrahlung bei Betrachtung durch vergrößernde optische Instrumenten wird vielfach gewarnt. Aber ist die Exposition bei

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Demonstrations-Laseroptik-Satz U17300 und Ergänzungssatz U17301 Bedienungsanleitung 1/05 ALF Inhaltsverzeichnung Seite Exp - Nr. Experiment Gerätesatz 1 Einleitung 2 Leiferumfang

Mehr

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Testat Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Mo Di Mi Do Fr Datum: Versuch: 12 Abgabe: Fachrichtung Sem. : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops In diesem Versuch

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit Mikroskopie durchgeführt am 03.05.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Einleitung Ein klassisches optisches ild ist eine Projektion eines Gegenstandes

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht. 4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen

Mehr

IO1. Modul Optik. Geometrische Optik und Abbildungsgesetze

IO1. Modul Optik. Geometrische Optik und Abbildungsgesetze IO1 Modul Optik Geometrische Optik und Abbildungsgesetze In diesem Experiment wird die Brennweite von Linsen bestimmt, so wie die Abbildungsgesetze der geometrischen Optik untersucht. Versuch IO1 - Geometrische

Mehr

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physik-Labor Fachbereich Elektrotechnik und Inormatik Fachbereich Mechatronik und Maschinenbau O Physikalisches Praktikum Brennweite von Linsen Versuchsziel Es sollen die Grundlaen der eometrischen Optik

Mehr

Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (13. OKTOBER 2014) MOTIVATION UND VERSUCHSZIELE

Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (13. OKTOBER 2014) MOTIVATION UND VERSUCHSZIELE Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München rundpraktika (13. OKTOER 2014) MOTIVATION UND VERSUCHSZIELE Die geometrische Optik beschreibt die Ausbreitung des Lichts unter

Mehr

5.8 Optische Geräte Lehrmaterial zur Vorlesung Ingenieurphysik WS 06/07 Version 1.0

5.8 Optische Geräte Lehrmaterial zur Vorlesung Ingenieurphysik WS 06/07 Version 1.0 5.8 Optische Geräte Lehrmaterial zur Vorlesung Ingenieurphysik WS 06/07 Version 1.0 Dr. rer. nat. Bettina Pieper Dipl.-Physikerin, Lehrbeauftragte FH München Optische Geräte Das Auge Die Lupe Das Fernrohr

Mehr