4. Der Berechnungsprozess

Größe: px
Ab Seite anzeigen:

Download "4. Der Berechnungsprozess"

Transkript

1 Idealisierung Bauteil / Entwurf Preprocessor Mathematisches Modell Diskretisierung Finite-Elemente- Modell Solver Rechnung Ergebnisse Postprocessor Bewertung Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-1

2 Idealisierung: 4. Der Berechnungsprozess Ausgehend von einer technischen Zeichnung oder einem Entwurf wird ein Berechnungsmodell erstellt. Dabei müssen vereinfachende Annahmen getroffen werden bezüglich der Geometrie, des Materials, der Belastung und der Einspannungen. Welche Vereinfachungen zulässig sind, hängt stark davon ab, welche Aussagen mit dem Berechnungsmodell getroffen werden sollen. Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-2

3 Beispiel: z 4. Der Berechnungsprozess V A W A C 1000 C B P X Y B Z x Maße in mm Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-3

4 Berechnungsmodell 1: Fachwerk y A 1 A A 2 A 2 A 2 A 2 A 2 A 1 A 1 A P x Maße in mm Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-4

5 Annahme: Das Bauteil besteht aus Stäben, die an den Knoten gelenkig miteinander verbunden sind. Mit diesem Berechnungsmodell lassen sich die Kräfte in den Stäben ermitteln. Berechnungsmodell 2: Balkenmodell Annahme: Das Bauteil besteht aus 3-dimensionalen Balken, die an den Knoten fest miteinander verbunden sind. Mit diesem Berechnungsmodell lassen sich Normalkraft, Querkraft und Biegemoment in den Balken ermitteln. Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-5

6 Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-6

7 Berechnungsmodell 3: Schalenmodell Annahme: Die Gurte lassen sich mit der Theorie ebener Platten beschreiben. Mit diesem Berechnungsmodell lassen sich Spannungen in den Gurten ermitteln. Bei sorgfältiger Abbildung der Nietlöcher können auch Aussagen über die dort auftretenden Spannungsspitzen gemacht werden. Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-7

8 Diskretisierung: 4. Der Berechnungsprozess Die Idealisierung als Fachwerk oder als Balkensystem führt auf ein mathematisches Modell, für das sich eine analytische Lösung angeben lässt. Werden die Gurte als Platten idealisiert, so besteht das mathematische Modell aus den partiellen Differenzialgleichungen der Plattentheorie, die in der Regel nicht analytisch gelöst werden können. Numerische Näherungslösungen können mit der Methode der finiten Elemente ermittelt werden. Dazu werden die Platten in so genannte finite Elemente unterteilt. Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-8

9 Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-9

10 Die Unterteilung in finite Elemente wird als Vernetzung oder Diskretisierung bezeichnet. Die Genauigkeit der Näherungslösung hängt von der Feinheit der Vernetzung und den gewählten Elementen ab. Rechnung: Die Diskretisierung führt auf ein Gleichungssystem für die Verschiebungen der Knoten des Finite-Elemente-Netzes. Bei linearen statischen Analysen ist das Gleichungssystem ein lineares Gleichungssystem, das im Rahmen der Rechengenauigkeit exakt gelöst werden kann. Prof. Dr. Wandinger 1. Fachwerke FEM

11 Bewertung: Ist die Diskretisierung angemessen? Hängen die Elemente korrekt zusammen? Treten Spannungskonzentrationen auf, die sich nicht erklären lassen? Kann der Spannungsverlauf durch die Diskretisierung hinreichend genau wiedergegeben werden? Ist die Idealisierung angemessen? Welche Ergebnisse sind auf die bei der Idealisierung getroffenen Vereinfachungen zurückzuführen? Genügt das Bauteil den Anforderungen? Prof. Dr. Wandinger 1. Fachwerke FEM

12 Fehler: Die bei der Idealisierung getroffenen Annahmen haben den größten Einfluss auf die Ergebnisse. Diskretisierungsfehler und Rundungsfehler bei der Lösung des Gleichungssystems lassen sich mathematisch abschätzen. Der Fehler bei der Lösung des Gleichungssystems ist in der Regel deutlich kleiner als der Diskretisierungsfehler. Prof. Dr. Wandinger 1. Fachwerke FEM

13 Pre- und Postprocessing: Die Modellerstellung, bestehend aus Idealisierung und Diskretisierung, wird auch als Preprocessing bezeichnet. Die Auswertung der Ergebnisse wird als Postprocessing bezeichnet. Pre- und Postprocessing werden mit Hilfe von graphischen Programmen durchgeführt, die als Pre- und Postprocessoren bezeichnet werden. Das Programm, das die eigentliche Berechnung durchführt, wird als Solver bezeichnet. Prof. Dr. Wandinger 1. Fachwerke FEM

14 Beispiel: 4. Der Berechnungsprozess Pre- und Postprocesser Femap Modellerstellung Auswertung Eingabedatei.dat.op2 Ergebnisdatei Solver NX Nastran Berechnung Prof. Dr. Wandinger 1. Fachwerke FEM

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung

Mehr

Finite Elemente mit Siemens PLM: NX Nastran, Simcenter 3D und Femap

Finite Elemente mit Siemens PLM: NX Nastran, Simcenter 3D und Femap Finite Elemente mit Siemens PLM: NX Nastran, Simcenter 3D und Femap 1 Übersicht NX Nastran: ist einer der klassischen Finite-Elemente-Solver. Im Bundle mit den Berechnungsumgebungen Simcenter 3D und Femap

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix

Mehr

Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit

Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit Die Finite-Elemente-Methode Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM

Mehr

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode Prof. Dr.-Ing. Christopher Bode Finite-Elemente-Methode Kapitel 1: Einleitung BEUTH Hochschule für Technik Berlin Prof. Dr.-Ing. C. Bode 2 Was ist FEM? Die FEM ist ein mathematisches Verfahren zur Lösung

Mehr

CAE. Inhalt der Vorlesung CAE. Kap. 2.1 Das Prinzip der FEM

CAE. Inhalt der Vorlesung CAE. Kap. 2.1 Das Prinzip der FEM 1 Einleitung und Übersicht 1.1 Begrüßung 1.2 Aktuelle Marktstudie PLM-, CAD-, -Systeme 1.3 Übersicht (Computerunterstützte Produktentwicklung) 1 2 Die Finite Elemente Methode 2.1 2.2 Linear elastisches

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

8. Qualitätsbetrachtung

8. Qualitätsbetrachtung sbetrachtung Jedes Berechnungsmodell ist nur so gut wie seine Eingabedaten! 1 8.1 Eindimensionale Elemente 1-dimensionale Elemente (Länge) o Stabelement Zug-/Druckstab o Balkenelement allgemeiner 3-D elastischer

Mehr

3 FEM-Anwendungspraxis 3.1 Modellierungstechniken

3 FEM-Anwendungspraxis 3.1 Modellierungstechniken 3 FEM-Anwendungspraxis 3.1 Modellierungstechniken 1 Arten der Modellgenerierung Direkte (manuelle) Generierung (Direct modeling): Der Anwender selbst erzeugt die Knoten und Elemente ohne zuvor die Geometrie

Mehr

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2 Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Für jeden Stab besteht eine lineare Beziehung zwischen den Verschiebungen seiner Knoten und den Kräften

Mehr

Dresden, 15. Juni 2007

Dresden, 15. Juni 2007 Mehrschraubenverbindungen mit PC Bolt Dresden, 15. Juni 2007 Prof. Dr.-Ing. Berthold Schlecht Dr.-Ing. Willi Gründer Dipl.-Ing. Tobias Schulze Einteilung Schraubenverbindungen Einschraubenverbindung Berechnung

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

2. Die Steifigkeitsmatrix

2. Die Steifigkeitsmatrix . Die Steifigkeitsmatrix Freiheitsgrade der Gesamtstruktur: Bei einem ebenen Fachwerk hat jeder Knoten zwei Freiheitsgrade, nämlich die Verschiebungen u x und u y, zu denen die Kräfte F x und F y gehören.

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Statische und dynamische Analyse eines Schildersystems. Esslingen

Statische und dynamische Analyse eines Schildersystems. Esslingen Statische und dynamische Analyse eines Schildersystems für Gebrüder Hohl GmbH Esslingen Dipl.-Ing. Torsten Wehner Lerchenstraße 23 72649 Wolfschlugen wehner@zinsmath.de 3. Dezember 2002 Inhaltsverzeichnis

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Technische Mechanik für Wirtschaftsingenieure Bearbeitet von Ulrich Gabbert, Ingo Raecke 3., aktualisierte und erweiterte Auflage 2006. Buch. 324 S. Hardcover ISBN 978 3 446 40960 6 Format (B x L): 16,2

Mehr

Einführung FEM, 1D - Beispiel

Einführung FEM, 1D - Beispiel Einführung FEM, D - Beispiel home/eichel/lehre/mhs/fem_intro/deckblatt.tex. p./6 Inhaltsverzeichnis D Beispiel - Finite Elemente Methode. D Aufbau Geometrie 2. Bilanzgleichungen 3. Herleitung der Finiten

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Finite Element Analyse (FEA) (Solver & Post-Processing)

Finite Element Analyse (FEA) (Solver & Post-Processing) Finite Element Analyse (FEA) (Solver & Post-Processing) Vortrag im Rahmen des 3D Druck ProSeminars 2016 Lars Lamberti Gliederung Solver Zuverlässigkeit und Genauigkeit Genauigkeitssteigerung Post-Processing

Mehr

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!)

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!) Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 04.0.00 Name: Vorname: (bitte deutlich schreiben) Matr.-Nr.: (9-stellig) Aufgabe 4 5 6 7 8 9 Summe mögliche Punkte 7 5 4 6 6 4 4 0 erreichte Punkte

Mehr

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag Klaus Knothe Heribert Wessels Finite Elemente Eine Einführung für Ingenieure Mit 283 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Inhaltsverzeichnis

Mehr

Aufgabe 2: Verifikation & Validierung

Aufgabe 2: Verifikation & Validierung Aufgabe 2: Verifikation & Validierung Ziel der Übung - Untersuchung des Einflusses der räumlichen Diskretisierung (Netzfeinheit, Elementtyp) auf das Ergebnis der Simulation - Vergleich der theoretischen

Mehr

Operatoren für das Fach Mathematik

Operatoren für das Fach Mathematik Operatoren für das Fach Mathematik Anforderungsbereich I Angeben, Nennen Sachverhalte, Begriffe, Daten ohne nähere Erläuterungen und Begründungen, ohne Lösungsweg aufzählen Geben Sie die Koordinaten des

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: ALLGEMEINES ZU FEM: AUFBAU EINER FEM STRUKTUR. Finite Element Methode Zusammenfassung

FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: ALLGEMEINES ZU FEM: AUFBAU EINER FEM STRUKTUR. Finite Element Methode Zusammenfassung 1 von 5 FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: Mathematisch: Ein numerisches Verfahren zur Lösung von partiellen Differentialgleichungen, welche in ein algebraisches Gleichungssystem

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth BAUMECHANIK I Umfang V/Ü/P (ECTS) 2/2/0 (5) 2/2/0 2/2/0 2/2/0-2*/2*/0 - Diplom 5. 6. 7. 8. 9. 10. Definitionen und Klassifizierungen Kräfte und Kraftarten, Vektor, Vektorsysteme Darstellung vektorieller

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 06.0.206 Zusammenfassung 8. Vorlesung. Schiefwinklige Scheibenelemente Numerischer

Mehr

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1) Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)

Mehr

FEM-Modellbildung und -Berechnung von Kehlnähten

FEM-Modellbildung und -Berechnung von Kehlnähten FEM-Modellbildung und -Berechnung von Kehlnähten 1. Problemstellung und Lösungskonzept Die wesentliche Schwierigkeit bei der Berechnung einer Kehlnaht ist die Diskrepanz zwischen der tatsächlichen Geometrie

Mehr

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh Numerische Akustik Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh 1 Einleitung Akustischen Messungen und Berechnungen sind mittlerweile in vielen Fällen nicht ohne Einsatz eines Computers

Mehr

Verarbeitung von Messdaten

Verarbeitung von Messdaten HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,

Mehr

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016 Strukturanalyse einer mittels Rapid-Prototyping gefertigten Pelton-Turbinenschaufel - grundlegende Festigkeitsanalysen sowie Überlegungen zu Materialkennwerten Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame

Mehr

2 Beispiele zu den Grundbeanspruchungsarten

2 Beispiele zu den Grundbeanspruchungsarten 28 2 Beispiele zu den Grundbeanspruchungsarten achdem wir die Grundlagen der FEM-Analyse und die grundsätzliche Arbeit mit SolidWorks Simulation kennen gelernt haben, kommen wir zur Anwendung und Vertiefung

Mehr

FEM Lösung 3. 1 Oberer Gurt

FEM Lösung 3. 1 Oberer Gurt Lösung 3 1 Oberer Gurt 1.1 Geometrie: Zuerst wird die Geometrie des oberen Gurtes erstellt. Begonnen wird mit dem in der xz-ebene liegenden Flansch. Einrichten der Ansicht: View Rotate Front Einrichten

Mehr

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge A. Schweitzer Wintersemester 2005/06 Links, Literatur und weitere Informationen Die Numerical Recepies sind

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Validierung des Kontaktmoduls der Freeware Z88Aurora anhand analytischer Beispiele und kommerzieller FE-Systeme

Validierung des Kontaktmoduls der Freeware Z88Aurora anhand analytischer Beispiele und kommerzieller FE-Systeme Validierung des Kontaktmoduls der Freeware Z88Aurora anhand analytischer Beispiele und kommerzieller FE-Systeme SAXSIM 2017 28.03.2017 Chemnitz Daniel Goller, Daniel Billenstein, Florian Nützel, Christian

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

Singularitäten in der FEM und deren Bewertung

Singularitäten in der FEM und deren Bewertung Singularitäten in der FEM und deren Bewertung Jeder FEM-Anwender wird früher oder später mit Spannungssingularitäten konfrontiert werden, sich dessen aber nicht unbedingt im Klaren sein. Dafür gibt es

Mehr

Systeme mit einem Freiheitsgrad - Einmassenschwinger...5. Lernziel...5

Systeme mit einem Freiheitsgrad - Einmassenschwinger...5. Lernziel...5 Inhaltsverzeichnis Einleitung...1 1 Was ist Strukturdynamik...1 2 Für wen ist das Buch geschrieben?...1 3 Wie hängt dieses Buch mit den anderen Büchern der Reihe FEM für Praktiker zusammen?...2 4 Wie sollte

Mehr

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Inhaltsverzeichnis Einleitung Mathematische Grundlagen Inhaltsverzeichnis 1 Einleitung 1.1 Vorgehensweise bei der FEM... 3 1.2 Verschiedene Elementtypen... 5 1.3 Beispiele zur Finite-Elemente-Methode... 10 1.3.1 Beispiel zu nichtlinearen Problemen... 10 1.3.2

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

Inhaltsverzeichnis. 1 Einführung in die Statik der Tragwerke 1

Inhaltsverzeichnis. 1 Einführung in die Statik der Tragwerke 1 1 Einführung in die Statik der Tragwerke 1 1.1 Vorbemerkungen 1 1.1.1 Definition und Aufgabe der Baustatik l 1.1.2 Tragwerksformen irnd deren Idealisierung 2 1.1.2.1 Dreidimensionale Tragelemcnte: Räume

Mehr

Nachbeulverhalten von Flugzeugrumpfschalen

Nachbeulverhalten von Flugzeugrumpfschalen Nachbeulverhalten von Flugzeugrumpfschalen A. Kling, R. Degenhardt DLR Braunschweig Institut für Strukturmechanik alexander.kling@dlr.de richard.degenhardt@dlr.de Das Verhalten von dünnwandigen versteiften

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Simulationsprojekt: Kragarm

Simulationsprojekt: Kragarm www.dps-software.de Simulationsprojekt: Kragarm Konstrukteur: Studienname: Studie 2 Analyseart: Statische Analyse Beschreibung Keine Daten Inhaltsverzeichnis Beschreibung... 1 Annahmen... 2 Modellinformationen...

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Balkentragwerke mit dem FEM-System MEANS V10 berechnen. Homepage: Telefon:

Balkentragwerke mit dem FEM-System MEANS V10 berechnen. Homepage:    Telefon: Balkentragwerke mit dem FEM-System MEANS V10 berechnen Homepage: www.femcad.de Email: info@femcad.de Telefon: 07844 98 641 Kapitel 14: Balkentragwerke mit MEANS V10 berechnen 1 Kapitel 14: Balkentragwerke

Mehr

Über die Dialogleiste wird nun der Mittelpunkt 5 4 der Stütze eingegeben. Danach können wir die Breite der Stütze in x und y Richtung eingeben.

Über die Dialogleiste wird nun der Mittelpunkt 5 4 der Stütze eingegeben. Danach können wir die Breite der Stütze in x und y Richtung eingeben. Übung 3.1: Plattensystem, Modellierung einer Stütze STATISCHES SYSTEM 10m 8m Stb. Decke: C20/25 Pfeiler/Wände: MW 8/MG IIa Einspannungsfreie Lagerung am Rand. Plattendicke h = 0,2 m, = 0,2 Flächenlast

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

2 BAUELEMENTE SPANENDER WERKZEUGMASCHINEN 2.1 Verhalten und Analyse von Werkzeugmaschinen

2 BAUELEMENTE SPANENDER WERKZEUGMASCHINEN 2.1 Verhalten und Analyse von Werkzeugmaschinen 2 BAUELEMENTE SPANENDER WERKZEUGMASCHINEN 2.1 Verhalten und Analyse von Werkzeugmaschinen 2.1.1 Statisches Verhalten 2.1.2 Dynamisches Verhalten 2.1.3 Modalanalyse 2.1.4 Thermisches Verhalten 2.1.5 Beschreibung

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 Einführung Schlanke Stützen sind stabilitätsgefährdete Bauteile. Den Zusammenhang zwischen Belastung Verformung für verschiedene Werkstoffe zeigt das nächste Bild. Die Grundtypen stabilitätsgefährdeter

Mehr

Simulation mit NX Nastran / NX Motion

Simulation mit NX Nastran / NX Motion Simulation mit NX Nastran / NX Motion Hochschultage der PLM Benutzergruppe am 09.+10.September 2013 in Ulm Dr.-Ing. Peter Binde peter.binde@drbinde.de Dr. Binde Ingenieure, Design & Engineering GmbH Seite

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Creo Simulation Überblick

Creo Simulation Überblick Creo Simulation Überblick Christoph Bruns INNEO Solutions GmbH Simulation mit Creo Simulation / Simulate FEM mal anders: einfach und extrem genau Christoph Bruns cbruns@inneo.com ; 07961-890-203 Bereichsleiter

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

IDEA CONNECTION. Absolute Freiheit in der Geometrie. Vollständige Normnachweise in FEM

IDEA CONNECTION. Absolute Freiheit in der Geometrie. Vollständige Normnachweise in FEM Absolute Freiheit in der Geometrie Vollständige Normnachweise in FEM IDEA CONNECTION Die derzeit einzige Software zum Nachweis von beliebigen Verbindungen mit komponentenbasiertem Finite Elemente Modell

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Grundlagen zur Berechung der Durchbiegung

Grundlagen zur Berechung der Durchbiegung Tel +41 41 494 94 94 decorative Holzwerkstoffe Fax +41 41 494 94 49 Willisauerstrasse 37 www.kronospan.com info@kronospan.ch Grundlagen zur Berechung der Durchbiegung Inhaltsverzeichnis 1. Vorbemessung

Mehr

Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage. Oldenbourg Verlag München

Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage. Oldenbourg Verlag München Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Verwendete Bezeichnungen IX XI 1 Einführung

Mehr

Fragen aus dem Repetitorium II

Fragen aus dem Repetitorium II Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich

Mehr

Gerätetechnisches Praktikum: Leichtbau

Gerätetechnisches Praktikum: Leichtbau Gerätetechnisches Praktikum: Leichtbau LEICHTBAUPROFILE Universität der Bundeswehr München Fakultät für Luft- und Raumfahrttechnik Institut für Leichtbau Prof.Dr.-Ing. H. Rapp Stand: 14. Januar 2011 Gerätetechnisches

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

Klaus Palme Tel. +49 (0) Fax Nr. +49 (0)

Klaus Palme Tel. +49 (0) Fax Nr. +49 (0) Datum 06.12.2011 Bericht Auftraggeber 2011/016-B-5 / Kurzbericht Palme Solar GmbH Klaus Palme Tel. +49 (0) 73 24-98 96-433 Fax Nr. +49 (0) 73 24-98 96-435 info@palme-solar.de Bestellungsnummer 7 Auftragnehmer

Mehr

Einführung in die Finite Elemente Methode für Bauingenieure

Einführung in die Finite Elemente Methode für Bauingenieure Diethard Thieme Einführung in die Finite Elemente Methode für Bauingenieure 3., überarbeitete Auflage mit 145 Abbildungen, 71 Tafeln und 53 Berechnungsbeispielen Shaker Verlag Aachen 2008 Bibliografische

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode Finite-Elemente-Methode Rechnergestützte Einführung von Peter Steinke 1. Auflage Finite-Elemente-Methode Steinke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Springer 2012 Verlag

Mehr

Finite Elemente Programmsystem MEANS V10 für Windows

Finite Elemente Programmsystem MEANS V10 für Windows Finite Elemente Programmsystem MEANS V10 für Windows Statik Dynamik Formoptimierung Beulen und Temperatur Geometrisch nichtlineare und plastische Verformungen Kontaktbedingungen mit Aufprall Umfangreiche

Mehr

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Frühjahr Klausur am

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Frühjahr Klausur am Bachelorprüfung Frühjahr 2013 Modul 13 (BI) / Modul IV 3b (UTRM) Baustatik I und II Klausur am 25.02.2013 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 Summe mögliche

Mehr

Grundfachklausur Teil 2 / Statik II

Grundfachklausur Teil 2 / Statik II Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

FEM-Anwendungen in der maritimen Branche

FEM-Anwendungen in der maritimen Branche Familie STRAK, 2009-10-15 FEM-Anwendungen in der maritimen Branche Ronald Horn - FEM GmbH Vita Dr. Ronald Horn seit 10/08 S.M.I.L.E.-FEM GmbH, Heikendorf Geschäftsführer 04/08-09/08 Lindenau GmbH, Schiffswerft

Mehr

Simulationen mit NX. Reiner Anderl Peter Binde. Kinematik, FEM, CFD, EM und Datenmanagement. Mit zahlreichen Beispielen für NX 9

Simulationen mit NX. Reiner Anderl Peter Binde. Kinematik, FEM, CFD, EM und Datenmanagement. Mit zahlreichen Beispielen für NX 9 Reiner Anderl Peter Binde CAD- und Berechnungsdaten sämtlicher Übungsbeispiele auf DVD Simulationen mit NX Kinematik, FEM, CFD, EM und Datenmanagement. Mit zahlreichen Beispielen für NX 9 3., aktualisierte

Mehr