Gruppentheorie und Symmetrie in der Chemie

Größe: px
Ab Seite anzeigen:

Download "Gruppentheorie und Symmetrie in der Chemie"

Transkript

1 Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-7569 Stuttgart Stuttgart, 8. Mai M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

2 Charaktertafel: Herleitung für die Gruppe D 6 D 6 = {E, C 6, C6, C6, 3 C6, 4 C6, 5 C ), C), C, C ), C ), C } Ordnung ) D 6 enthält 6 Klassen untereinander konjugierte Elemente): E = {E} C 6 = {C 6, C6} 5 C6 = {C6, C6} 4 C6 3 = {C6} 3 3C = {C ), C), C } 3C = {C ), C ), C } Aus C 6 und C lassen sich alle Elemente von D 6 erzeugen: C = C C 6, C 6 = C 6 C 6, C 3 6 = C 6C 6 C 6 und C sind Erzeuger Generators) von D 6 ). M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

3 Charaktertafel: Herleitung für die Gruppe D 6 Für die Standardbasis [e = x, e = y, e 3 = z] oder auch für die Kugelflächenfunktionen [p x, p y, p z ]) erhalten wir DC 6 ) = DC ) = cos π 6 sin π 6 sin π 6 cos π 6 cos π sin π sin π cos π = = Die Matrixdarstellungen der restlichen Gruppenelemente erhält man durch entprechende Matrixmultiplikationen aus den Matrizen der Erzeuger, z.b.: C = C C 6 DC ) = DC 6 )DC ) DC ) = = M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

4 Charaktertafel: Herleitung für die Gruppe D 6 Man erhält für die Matrixdarstellung DD 6 ) in [e = x, e = y, e 3 = z]: DE) = DC 6 ) = DC 6) = DC6) 3 = DC ) = DC ) = [e = x, e = y] und e 3 = z transformieren getrennt. DD 6 ) wird zerlegt in D A D 6 ) -D) und D E D 6 ) -D). Charaktertafel inkl. totalsymm. Darstellung A, die jede Gruppe enthält): D 6 E C 6 C6 C6 3 3C 3C A A - - E - - D E D 6 ) ist Irrep: + + ) + ) = M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

5 Charaktertafel: Herleitung für die Gruppe D 6 3 von 6 Irreps von D 6 sind somit gefunden. Die restlichen 3 Irreps müssen die Dimesionen, und haben = ) Für die beiden zu findenden -D Irreps D α D 6 ) gilt: D 6 E C 6 C6 C6 3 3C 3C A A - - D α D 6 ) = χ α D 6 ) a a a 3 b ab Anwedung des GOTs N k k n k χ α G k ) χ β G k ) = gδ αβ auf A /A und χ α D 6 ): + a + a + a 3 + 3b + 3ab =, + a + a + a 3 3b 3ab =. a =, b = ± -D Irreps B, B M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

6 Charaktertafel: Herleitung für die Gruppe D 6 Um die restliche -D Irrep von D 6 zu finden, untersuchen wir das Transformationsverhalten des Funktionenpaars {x y d x y, xy d xy} [x y xy] bildet eine Standardbasis für die -D Irrep von D 3 D 6 ). ) ) D E C 6 ) =, D E C 6 ) = DE C 6 ) = Ĉ 6 X Y ) = Ĉ6X) Ĉ6Y ) = X [x, y]d E C6 )) Y [x, y]d E C6 )) = x ) y ) x + y = x y ) + xy) Ĉ 6 XY ) = Ĉ6X)Ĉ6Y ) = X[x, y]d E C6 ))Y [x, y]de C6 )) = x ) y ) x + y = x y ) xy) Ĉ 6 [X Y XY ] = [x y xy] D E C 6 ) = ). ),, M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

7 Charaktertafel: Herleitung für die Gruppe D 6 und für den zweiten Erzeuger C : D E C ) = ) = D E C ) Ĉ X Y ) = ĈX) ĈY ) = X [x, y]d E C )) Y [x, y]d E C )) = x + y) x + )y) = x y ) Ĉ XY ) = ĈX)ĈY ) = X[x, y]d E C ))Y [x, y]de C )) = x + y)x + )y)= xy) Ĉ [X Y XY ] = [x y xy] ) D E C ) =. Aus den Erzeugern D E C 6 ) und D E C ) werden wieder die Matrixdarstellungden der restlichen Elemente von D 6 über Matrixmultiplikation erhalten. ), M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

8 Charaktertafel: Herleitung für die Gruppe D 6 Matrixtafel der Irreps der Gruppe D 6 : D 6 E C 6 C6 C6 3 3C 3C A s,d z A p z - - B B E ) p x, p y ) - E ) E ) E ) - - E ) d x y, d xy),d xz, d yz ) E ) E ) E ) - Üblicherweise werden Kugelflächenfunktionen zentriert am Koordinatenursprung), die für die entsprechende Irrep eine Standardbasis bilden, in Gruppentafeln mitaufgelistet M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

9 Charaktertafel der Gruppe D 6 D 6 E C 6 C6 C6 3 3C 3C A s,d z A p z - - B B E p x, p y ),d xz, d yz ) - - E d x y, d xy) - - Basisfunktionen für Irreps: Wie wir gesehen haben, können Matrix- und Charaktertafeln von Punktgruppen durch untersuchen des Transformationsverhalten von Funktionen typischerweise Kugelflächenfunktionen) hergeleitet werden. Umgekehrt können Charaktertafeln Basisfunktionen für Irreps unmittelbar entnommen werden. Für Gruppen höherer Ordnung sind für einige Irreps u.u. Kugelflächenfunktionen höherer Ordnung notwendig, um eine Standardbasis für diese Irreps zu bilden.. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

10 Notation für Irreps Konvention von Mulliken). A und B bezeichen nicht entartete, E -fach entartete, T 3-fach entartete Irreps.. A und B sind symmetrisch bzw. antisymmetrisch bezüglich Drehung um Hauptachse. 3. Striche bezeichen das Verhalten bezüglich einer Spiegelebene: Strich: symmetrisch, Doppelstrich: antisymmetrisch 4. Symmetrie bezüglich inversion wird mit Subscript g gerade) und u ungerade) angezeigt. 5. Subscript-Zahlen zählen Irreps, die gemäss Regeln 4 übereinstimmen. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

11 Separierbare Entartung in zyklischen Gruppen), Bsp.: C 6 Aus der Matrixtafel für D 6 kann leicht die Matrixtafel für die Abel sche Untergruppe C 6 erzeugt werden. Beachte: Jedes Element von C 6 bildet eine eigene Klasse, da C 6 Abel sch. C 6 E C 6 C6 C6 3 C6 4 C6 5 A s, p z, d z B E ) p x, p y ),d xz, d yz ) - E ) E ) E ) - E ) d x y, d xy) E ) E ) E ) Die entarteten Irreps E und E müssen reduzierbar sein, da ansonsten, N α N k, und αn α = = 6 = g. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

12 Separierbare Entartung in zyklischen Gruppen), Bsp.: C 6 Durch Ähnlichkeitstransformation X D E i C 6 )X mit der unitären, aber komplexen Transformationsmatrix ) X = i i können D E C 6 ) und D E C 6 ) auf -D Irreps reduziert werden. z.b.: X D E C 5 6)X = = i i + i 3 i 3 ) ) = 3 3 ) i i ) exp πi 6 ) exp πi 6 ) ) = ) ɛ ɛ Alle Matrixdarstellungen D E G), D E G), G C 6 lassen sich durch Ähnlichkeitstransformation mit X auf diese Art reduzieren. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

13 Separierbare Entartung in zyklischen Gruppen), Bsp.: C 6 Für die Gruppe C 6 ergibt sich so die folgende Matrix- oder Charaktertafel: C 6 ɛ = exp πi) E C 6 6 C6 C6 3 C6 4 C6 5 A s, p z, d z B E p x, p y ),d xz, d yz ) { ɛ ɛ - ɛ ɛ ɛ ɛ - ɛ ɛ } E d x y, d xy) { ɛ ɛ ɛ ɛ ɛ ɛ ɛ ɛ } Komplexe Irreps und komplexe Basisfunktionen Zu E, E gehörige Energieeigenwerte sind entartet falls kein äusseres Magnetfeld angelegt wird). Oft werden die -D, reellen, reduziblen Darstellungen und reelle Basisfunktionen verwendet. Eine allgemeine Methode zur Berechnung der Matrixdarstellungen von C n Gruppen findet sich z.b. in Cotton... M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

14 Isomorphismen Die Anzahl verschiedener Gruppenstrukturen mit unterschiedlicher Multiplikationstabelle) einer gegebenen Ordnung ist begrenzt wie wir gesehen haben), es existieren z.b. nur zwei verschiedene Gruppenstrukturen der Ordnung 6:. Die zyklische Gruppe. Die symmetrische Gruppe S 3 Viele Punktgruppen sind isomorph, z.b.: D nd D n nur für gerades n) S n C n C nv D n T d O Für isomorphe Gruppen können dieselben Matrix- oder Charaktertafeln verwendet werden. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

15 Direkte Produktgruppen Falls die Gruppe G zwei Untergruppen H, H enthält, für die gilt:. H H = {E} H und H haben nur die Identität gemeinsam). [H, H ] =, H H, H H alle Elemente in H,H kommutieren) 3. G = H H, G G, H H, H H alle G G sind als Produkt H H ausdrückbar, mit H H, H H ) G ist die direkte Produktgruppe von H und H : G = H H. C nh = C n C i nur für gerades n) C nh = C n C s nur für ungerades n) D nh = D n C i nur für gerades n) D nh = C n C s nur für ungerades n) D nd = D n C i nur für ungerades n) O h = O C i M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

16 Direkte Produktgruppen, Matrixdarstellungen Für die Matrixdarstellung der direkten Produktgruppe gilt: D κ G ) = D α H ) D β H ), α, β, wobei D α H )D β H ) D α H ) D α mh )D β H ) D α H ) D β D α H ) = H )D β H ) D α H ) D α mh )D β H ) D α mh )D β H ) D α mh ) D α mmh )D β H ) Daraus ist sofort ersichtlich, dass für die Charakter der direkten Produktgruppe gilt: χ κ G) = χ α H )χ β H ), G = H H ) Matrix- und Charaktertafeln von direkten Produktgruppen sind somit leicht zu erstellen. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

17 Projektionsoperatoren für direkte Produktgruppen Für einen Projektionsoperator der direkten Produktgruppe G = H H gilt hier gezeigt für Projektionsoperatoren mit Charaktern): P κ G ) = n κ χ κ G) G = n αn β χ α H )χ β H )H H g h h G H H = n α χ α H )H n β χ β H )H = P α H )P β H ). h h H H P α H ) u. P β H ) kommutieren, da [H, H ] =, H H, H H. Eine Funktion transformiert irreduzibel in G, falls sie simultan irreduzibel in H und H transformiert. Funktionen können somit separat in H und H symmetrisiert werden, z.b. zuerst in H und danach in H. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

18 Reduktion und Subduktion einer Darstellung Die Reduktion einer Darstellung DG ) ist die Zerlegung von DG ) in eine direkte Summe von Irreps D α G ) der Gruppe G. DG ) = c α D α G ), wobei c α = N k n k χ α G k ) χg k ) g k Die Subduktion einer Darstellung DG ) ist die Zerlegung von DG ) in eine direkte Summe von Irreps D α H ) der Untergruppe H G. Im allgemeinen ist eine irreduzible Darstellung D α G ) eine reduzible Darstellung in der Untergruppe H G. D α G ) = c α D α H ), wobei c α = h N k k n kχ α H k ) χ α H k ) Obige Beziehung wird als branching rule für die Symmetrieerniedrigung G H bezeichnet. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

19 Subduktion einer Darstellung Gegeben sei ein Hamiltonoperator Ĥ, invariant unter G G. Es wirkt nun eine Störung λ ˆV auf das System ein, wobei ˆV nur invariant ist bezüglich der Untergruppe H H G. Die Eigenzustände des gestörten Systems Ĥ + λ ˆV müssen dann unter der Untergruppe H klassifiziert werden. Ψ ) k, E) k seien Eigenzustand und zugehöriger Energieeigenwert im ungestörten System. Ψ ) k sei eine Standardbasis der entarteten) Irrep D α G ), aber reduzibel unter H. Die Störung λ ˆV hebt die Entartung von Ψ ) k ganz oder teilweise auf, E ) k spaltet in mehrere Energieeigenwerte E k,i auf. Die branching rules ermöglichen Voraussagen, wie die Eigenzustände und Energieeigenwerte bei Einschalten der Störung λ = λ = ) aufspalten. M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

20 Subduktion einer Darstellung, Beispiel O D 4 Tetragonale Störung wirkt auf oktaedrischen Komplex: O E 8C 3 3C 6C 6C 4 A A - - E - T T Charaktertafeln: D 4 E C 4 C4 C C A A - - B - - B - - E - Irreps von O als Darstellungen von D 4 D 4 E C 4 C4 C C A A - - E T T Ausreduzieren mit c α = h N k k n k χα H k ) χ α H k ) A A, A B, E A B, T A E, T B E M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

21 Subduktion einer Darstellung, Beispiel O D 4 Aufspalten der d-orbital Energieniveaus eines oktaedrischen Komplexes unter Einwirken einer tetragonalen Störung: T B E E A B Auch qualitative Aussagen über die energetische Reihenfolge der Energieniveaus sind möglich, wenn man die Symmetrieadaptierten MOs Standardbasisfunktionen der Irreps) kennt Projektionsoperatoren). M. Schütz, Vorlesung Gruppentheorie und Symmetrie in der Chemie / 8. Mai

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Gruppenaxiome. Gegeben sei eine Menge von Elementen IM = {A, B, C,...} Es gibt eine eindeutige Operation : A B = P. IM bildet eine Gruppe, wenn gilt:

Gruppenaxiome. Gegeben sei eine Menge von Elementen IM = {A, B, C,...} Es gibt eine eindeutige Operation : A B = P. IM bildet eine Gruppe, wenn gilt: Gruppenaxiome Gegeben sei eine Menge von Elementen IM = {A, B, C,...} (A B C...) Es gibt eine eindeutige Operation : A B = P IM bildet eine Gruppe, wenn gilt: 1. Abgeschlossenheit: A, B IM (A B) IM 2.

Mehr

2. Exkurs: Spaziergang durch die Gruppentheorie!"#$

2. Exkurs: Spaziergang durch die Gruppentheorie!#$ 2. Exkurs: Spaziergang durch die Gruppentheorie $ Gruppentheorie ein durchaus kompliziertes Teilgebiet der Mathematik!" Gegenstand: systematische Behandlung von Symmetrie!" Bei Verzicht auf mathematische

Mehr

Das Schwingungsspektrum von H 2 O

Das Schwingungsspektrum von H 2 O zum Vortrag Das Schwingungsspektrum von 2 O im ahmen des Seminars zum OC-F-Praktikums Allein aus der Kenntnis der Symmetrie eines Moleküls können ückschlüsse auf und Voraussagen über das Verhalten des

Mehr

Gruppentheorie mit Anwendungen in Chemie und Molekülphysik

Gruppentheorie mit Anwendungen in Chemie und Molekülphysik Gruppentheorie mit Anwendungen in Chemie und Molekülphysik Philipp Gütlich Institut für Anorganische Chemie und Analytische Chemie Universität Mainz Allgemeine Bemerkungen Gruppentheorie in Chemie und

Mehr

LCAO-Ansatz und Punktsymmetrie

LCAO-Ansatz und Punktsymmetrie LCAO-Ansatz und Punktsymmetrie Quantenchemische Rechenmethoden: Grundlagen und Anwendungen M+K-Kurs, 3.2015 Nutzen von Symmetrie bei quantenchemischen Rechnungen (LCAO-Ansatz) Wiederholung Punktgruppen

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

EINFÜHRUNG IN DIE GRUPPENTHEORIE FÜR PHYSIKER

EINFÜHRUNG IN DIE GRUPPENTHEORIE FÜR PHYSIKER EINFÜHRUNG IN DIE GRUPPENTHEORIE FÜR PHYSIKER Thomas Nattermann gesetzt in TEX von Mariela Boevska Somersemester 2001...There is a more general moral here. A symmetry principle should not be an end in

Mehr

Das Schwingungsspektrum von Wasser

Das Schwingungsspektrum von Wasser Das Schwingungsspektrum von Wasser Vortrag im Rahmen des Seminars zum anorganisch-chemischen Fortgeschrittenenpraktikum Institut für Anorganische Chemie Universität Karlsruhe Matthias Ernst Freitag, 29.6.2006

Mehr

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Physikalische Chemie Prof. Dr. Walter Langel Gruppentheorie Molekülschwingungen

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Symmetrie und Anwendungen

Symmetrie und Anwendungen PC II Kinetik und Struktur Kapitel 6 Symmetrie und Anwendungen Symmetrie von Schwingungen und Orbitalen, Klassifizierung von Molekülschwingungen Auswahlregeln: erlaubte verbotene Übergänge IR-, Raman-,

Mehr

Einführung in die Gruppentheorie. Bálint Aradi

Einführung in die Gruppentheorie. Bálint Aradi Einführung in die Gruppentheorie Bálint Aradi Inhaltsverzeichnis 1 Einleitung 3 2 Symmetrien 4 3 Gruppen 7 3.1 Grundlegende Begriffe............................. 7 3.2 Untergruppen..................................

Mehr

Einführung in die Gruppentheorie. Bálint Aradi

Einführung in die Gruppentheorie. Bálint Aradi Einführung in die Gruppentheorie Bálint Aradi Inhaltsverzeichnis 1 Einleitung 3 2 Symmetrien 5 3 Gruppen 8 3.1 Grundlegende Begriffe............................. 8 3.2 Untergruppen..................................

Mehr

Vorlesung Berechnung elektrischer Energienetze (BEE)

Vorlesung Berechnung elektrischer Energienetze (BEE) Vorlesung Berechnung elektrischer Energienetze (BEE) 1. Das Drehstromsystem 2. Berechnung von Energieübertragungsnetzen und -systemen 3. Der 3-polige Kurzschluss 4. Unsymmetrische Fehler in Netzen 5. Hochspannungstechnik

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms

Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms Matthias Jacobi und Hendrik Spahr 13.12.2006 1 Inhaltsverzeichnis 1 Das Noethertheorem in der Quantenmechanik 3 1.1

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen

Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen Anna Engels Seminar Riemannsche Geometrie und Spektraltheorie SS 003 Zusammenfassung Ich will erklären, wie man

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und 7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Seminar zum Praktikum Anorganische Chemie III III

Seminar zum Praktikum Anorganische Chemie III III Seminar zum Praktikum Anorganische Chemie III III Metallorganische Chemie Dr. J. Wachter IR-Teil3 www.chemie.uni-regensburg.de/anorganische_chemie/scheer/lehre.html www.chemie.uniregensburg.de/anorganische_chemie/wachter/lehre.html

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Algebra I, WS 04/05. i 0)

Algebra I, WS 04/05. i 0) G. Nebe, M. Künzer Algebra I, WS 04/05 Lösung 5 Aufgabe 20. 1 Wir haben einen Normalteiler C 3 = 1, 2, 3. Es ist mit C 2 := 1, 2 der Schnitt C 3 C 2 = 1, und folglich aus Ordnungsgründen S 3 = C 3 C 2.

Mehr

4 Vollkommene Zahlen

4 Vollkommene Zahlen Sei a > 0 4 Vollkommene Zahlen T (a) bezeichnet die Anzahl der positiven Teiler von a. S(a) bezeichnet die Summe der positiven Teiler von a. Es ist also T (1) = S(1) = 1. Jede Zahl a > 1 hat eine eindeutige

Mehr

Programm des Hauptseminars Symmetrie

Programm des Hauptseminars Symmetrie Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Einführung Gruppen, Beispiele, Konjugationsklassen

Einführung Gruppen, Beispiele, Konjugationsklassen Einführung Gruppen, eispiele, Konjugationsklassen Fabian Rühle 21.10.2015 Inhaltsverzeichnis 1 Definition von Gruppen und einfache eispiele 1 2 Die zyklische Gruppe n 2 3 Die Diedergruppe D n 3 4 Die Permutationsgruppe

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

Algebra I. Also sind die vier angebenen Gruppen paarweise nicht isomorph.

Algebra I. Also sind die vier angebenen Gruppen paarweise nicht isomorph. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 2. Übungsblatt Aufgabe 1: (3 P) Die folgenden vier Gruppen haben alle 12 Elemente: G 1 := Z/Z 12, G 2 := Z/Z 6 Z/Z 2, G 3 := D 6 (siehe 1. Übungsblatt,

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Darstellungstheorie der Lorentz-Gruppe

Darstellungstheorie der Lorentz-Gruppe Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3

Mehr

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

Auswahlregeln UV/VIS-Spektroskopie

Auswahlregeln UV/VIS-Spektroskopie Auswahlregeln UV/VIS-Spektroskopie H H H H Ethen: π-π*übergang erlaubt? π LUMO π HOMO hν zunächst Punktgruppe bestimmen Symmetrieoperationen σ xz σ yz C 2 (x) C 2 (z) σ xy i C 2 (y) 3 Spiegelebenen i,

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses 1 Drehimpuls Wir werden im folgenden dreidimensionale Probleme der Quantenmechanik behandeln. Ein wichtiger Begriff dabei ist der Drehimpuls. Wir werden zuerst die Definition des quantenmechanischen Drehimpulses

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Prof. Dr. Rudolf Scharlau, Stefan Höppner

Prof. Dr. Rudolf Scharlau, Stefan Höppner Aufgabe 13. Bestimme alle Untergruppen der S 4. Welche davon sind isomorph? Hinweis: Unterscheide zwischen zyklischen und nicht zyklischen Untergruppen. Lösung. Die Gruppe S 4 besitzt die folgenden Elemente:

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration

4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration g 4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration a () ϕ ( 2) ϕ ( 2) ϕ ( 1) ψ = ϕ + 1 b a b Heitler-London ( ) ϕ ( 2) + ϕ ( 2) ϕ ( 1) + [ ϕ ( 1) ϕ (

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v. Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe 24.06.09 Abgabe 01.07.09 Besprechung n.v. Aufgabe 1 (Auswahlregeln) Die Wechselwirkung (engl. interaction)

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen!

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen! Studiengang: PT/LOT/PVHT Semester: WS 9/ lgebra Serie: 2 Thema: Matrizen, Determinanten. ufgabe Gegeben sind die Matrizen = µ 2 3 2 µ 3 2 4, B = 2 Berechnen Sie: a) 2 + 3B b) B 2 c) B T d) B T e) T B f)

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL LARS KINDLER Dies sind Notizen für ein Seminar an der Universität Duisburg-Essen im Sommersemster 2011. Als Quelle diente das Buch A Course in the Theory of Groups

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Darstellungstheorie endlicher Gruppen, speziell der S n

Darstellungstheorie endlicher Gruppen, speziell der S n Darstellungstheorie endlicher Gruppen, speziell der S n Inhaltsverzeichnis Gruppen 4. Def. Gruppe.............................. 4.. Bemerkungen......................... 4.. Beispiele und Gegenbeispiele................

Mehr

Physikalische Chemie

Physikalische Chemie Physikalische Chemie - - Ramanstreuung Version: 04.09.2013, Wolfgang Schärtl Titelbild: Versuchsaufbau Ramanstreuung (Quelle: webpage der Firma polytec -> Spectrometer i-raman) Zusammenfassung In diesem

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

13. Der diskrete Logarithmus

13. Der diskrete Logarithmus 13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren.

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - deutsche Wikipedia - Spacetime and

Mehr

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie WS 205/206 A Rincón, A Schmitt 5 Dezember 205 Aufgabe (0+0 Punkte a Bestimmen Sie die Primfaktorzerlegungen der Zahlen 505 und 2600 und geben Sie

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Tensoranalysis Mai 2010

Tensoranalysis Mai 2010 Tensoranalysis Mai 2010 Einführung Der Tensor ist ein mathematisches Objekt aus der Algebra und Differentialgeometrie. Der Begriff wurde ursprünglich in der Physik eingeführt und später mathematisch präzisiert.

Mehr

3 Vektorbündel und das Tangentialbündel

3 Vektorbündel und das Tangentialbündel $Id: vektor.tex,v 1.6 2014/06/30 10:20:57 hk Ex $ $Id: fluss.tex,v 1.2 2014/06/30 12:36:06 hk Ex hk $ 3 Vektorbündel und das Tangentialbündel 3.4 Ableitungen von C q -Funktionen In der letzten Sitzung

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

7 Orthogonale und unitäre Matrizen

7 Orthogonale und unitäre Matrizen $Id: orthogonal.tex,v.6 2/7/ 4::3 hk Exp $ $Id: mdiffb.tex,v.3 2/7/ 4::5 hk Exp hk $ 7 Orthogonale und unitäre Matrizen 7.2 Drehungen Wir wollen uns jetzt mit Drehungen im dreidimensionalen Raum beschäftigen.

Mehr

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE Datenanalyse in der Physik Übung 1 Übungen zu C und MAPLE Prof. J. Mnich joachim.mnich@desy.de DESY und Universität Hamburg Datenanalyse in der Physik Übung 1 p. 1 Bemerkungen zu den Übungen Schulungsaccounts

Mehr

1.5 Duales Gitter und Diskriminantengruppe

1.5 Duales Gitter und Diskriminantengruppe Gitter und Codes c Rudolf Scharlau 24. April 2009 27 1.5 Duales Gitter und Diskriminantengruppe Dieser Abschnitt ist im wesentlichen algebraischer Natur: Es spielt keine Rolle, dass unsere Gitter in einem

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

Einige Ergebnisse der Gruppentheorie

Einige Ergebnisse der Gruppentheorie 2 number ISSN 4-287 H Dolhaine: Einige Ergebnisse der Gruppentheorie 974, zweite, überarbeitete Fassung 99 Dritte Überarbeitung im Juni 2 Published by: A Kerber, Dep of Mathematics, Univ of Bayreuth, D-9544

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S Begriffe Faser: Es sei f : M N eine Abbildung von Mengen. Es sei n N. Die Menge f 1 ({n}) M nennt man die Faser in n. (Skript Seite 119). Parallel: Zwei Vektoren v und w heißen parallel, wenn für einen

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr