I. Einführung in die PDGL

Größe: px
Ab Seite anzeigen:

Download "I. Einführung in die PDGL"

Transkript

1 I. Einführung in die PDGL I.1 Modellierungsbeispiele I.2 Wohlgestelltheit I.3 Klassifizierung I.4 Lösungskonzepte Kapitel I (0) 1

2 Grundlegende Definitionen Partielle Differentialgleichung: (PDGL, engl. PDE) Eine partielle Differentialgleichung ist eine Gleichung, welche eine oder mehrere partielle Ableitungen einer Funktion u beinhaltet. Die Funktion u kann dabei je nach Anwendungsfall von der Zeit t und/oder mehreren Ortsvariablen x R d abhängen. Mit d bezeichnen wir die Raumdimension des Problems. Ordnung einer PDGL: Als Ordnung einer PDGL bezeichnet man die Ordnung der höchsten partiellen Ableitung, welche in der PDGL auftritt. u : R 2 R, partielle Ableitung dritter Ordnung: 3 u x y 2 Als System von PDGL bezeichnet man eine Zusammenfassung mehrerer einzelner PDGL, welche untereinander gekoppelt sein können. Kapitel I (1) 2

3 Beispiele 1) Transportgleichung, u : R [0, ) R u t +a u x zeitabhängig, d = 1, Ordnung 1. = 0, a > 0, a R. 2) Laplace-Gleichung, u : R 2 R zeitunabhängig, d = 2, Ordnung 2. 2 u x u y 2 = 0. 3) Wellengleichung, u : R [0, ) R zeitabhängig, d = 1, Ordnung 2. 2 u u t 2 c2 2 = 0, c R. x2 Kapitel I (2) 3

4 Homogene/Inhomogene PDGL Eine PDGL heißt homogen, falls jeder Term entweder von u oder einer partiellen Ableitung von u abhängt. Ansonsten heißt sie inhomogen. Beispiele für homogene PDGL (siehe vorherige Folie): Transportgleichung, Laplace-Gleichung, Wellengleichung Beispiel für eine inhomogene PDGL: Poisson-Gleichung, u : R 2 R 2 u x u y 2 = f(x,y), zeitunabhängig, d = 2, Ordnung 2, f : R 2 R ist ein geeignet vorgegebener Quellterm. Kapitel I (3) 4

5 Lineare/nichtlineare PDGL Eine PDGL heißt linear, falls die gesuchte Funktion u nur bis zur ersten Potenz in ihr auftritt. Ansonsten heißt sie nichtlinear. Alle bisherigen Beispiele sind lineare PDGL. Beispiel für eine nichtlineare PDGL: Burgersgleichung, u : R [0, ) R u t +u u x = 0, zeitabhängig, d = 1, Ordnung 1, homogen. Wegen ist diese PDGL nichtlinear. u u x = x ( ) u 2 2 Kapitel I (4) 5

6 Beispiele von PDE in der mathematischen Modellierung Lamé Gleichung Berechnung der Verformung von Körpern unter Krafteinwirkung. Schrödinger Gleichung Berechnung von Wellenfunktionen quantenmechanischer Systeme. Navier-Stokes Gleichungen Berechnung der Strömung von Flüssigkeiten und Gasen. Maxwell-Gleichungen Berechnung von Phänomenen im Elektromagnetismus. Kapitel I (9) 6

7 Lineare Elastizität Historisches Augustin Cauchy ( ) Quelle: Wikimedia Commons Diese Bild- oder Mediendatei ist gemeinfrei, weil ihre urheberrechtliche Schutzfrist abgelaufen ist Cauchy leistete mehrere Beiträge zur Elastizitätstheorie. Zum einen entwickelte er den Cauchy Spannungstensor eines Würfels, mit welchem die Spannung in einem Punkt eines elastischen Körpers vollständig beschrieben werden kann. Mit Hilfe der Cauchy Zahl kann man Aussagen über die Ähnlichkeit im Elastizitätsverhalten zweier Körper machen. Die Cauchy Zahl ist das Verhältnis der Trägheitskräfte zu den elastischen Kräften bei Schwingungen des Schalls in einem Körper. Kapitel I (einleitung39) 7

8 Lineare Elastizität Gesucht ist das Verschiebungsfeld u R d, das den Lamé Gleichungen divσ(u(x)) = f(x), für x Ω R d und zusätzlichen Randbedingungen auf Γ := Ω genügt. f(x) R d : Volumenkraftdichte σ(u) R d d : Spannungstensor σ(u) := λtr(ε(u))id+2µε(u) ε(u) R d d : Verzerrungstensor ε(u) := 1 2 ( u+( u) ) λ, µ R Lamé-Parameter, werden berechnet aus dem Elastizitätsmodul E und der Querkontraktionszahl (Poissonzahl) ν des Materials Kapitel I (einleitung31) 8

9 Lamé Parameter Plane Strain / Plane Stress In 3 Dimensionen (d=3): λ = Eν (1+ν)(1 2ν), µ = E 2(1+ν) In 2 Dimensionen (d=2): Eν Ebener Verzerrungszustand (Plane Strain): λ = (1+ν)(1 2ν), µ = E 2(1+ν) Ebener Spannungszustand (Plane Stress): λ = Eν (1 ν 2 ), µ = E 2(1+ν) Der ebene Spannungszustand liegt bei Bauteilen vor, deren Dicke in einer Koordinatenrichtung konstant ist und die wesentlich kleiner als die übrigen Abmessungen ist. Dagegen liegt der ebene Verzerrungszustand bei Bauteilen vor, deren Dicke in einer Koordinatenrichtung konstant ist und die wesentlich größer ist als die übrigen Abmessungen. Kapitel I (einleitung32) 9

10 Beispiel: Lineare Elastizität Ebener Verzerrungszustand (Plane Strain) Profilträger Kraft F auf Oberseite (Neumann-Daten) verankert am Boden (Dirichlet-Daten) gesucht: Deformation F Kapitel I (einleitung33) 10

11 Schrödinger Gleichung Historisches Schrödinger gilt als einer der Begründer der Erwin Schrödinger Quantenmechanik und erhielt mit Paul Dirac 1933 den ( ) Nobelpreis für Physik. Quelle: Wikimedia Commons Diese Bild- oder Mediendatei ist gemeinfrei, weil ihre urheberrechtliche Schutzfrist abgelaufen ist Österreichischer Physiker und Wissenschaftstheoretiker. Kapitel I (MSEEinf10) 11

12 Schrödinger Gleichung Sie ist die grundlegende Gleichung der nichtrelativistischen Quantenmechanik und beschreibt die Dynamik der quantenmechanischen Zustände eines Systems. Sie ist eine zeitabhängige, homogene, lineare PDGL zweiter Ordnung. i t ψ(x,t) = 2 2m ψ(x,t)+v(x,t)ψ(x,t) mit der gesuchten Größe ψ, der Planckschen Konstante, der Masse m und dem Potential V. ψ 2 gibt dabei die Aufenthaltswahrscheinlichkeit eines Teilchens an. Mögliche Potentiale sind u.a.: harmonische Potential Potentialtopf Kapitel I (MSEEinf11) 12

13 Schrödinger Gleichung Figure 1: Orbitale (Aufenthaltswahrscheinlichkeit ψ 2 eines einzelnen Elektrons in einem stationären Zustand) des H-Atoms, für verschiedene Energielevel Quelle: Wikimedia Commons/CK-12 Foundation/cc-by-sa-3.0 Kapitel I (1) 13

14 Navier Stokes Gleichungen Historisches Claude Navier ( ) Quelle: Wikimedia Commons Diese Bild- oder Mediendatei ist gemeinfrei, weil ihre urheberrechtliche Schutzfrist abgelaufen ist Der Impulssatz für newtonische Fluide, z.b. für Wasser, wurde von Navier und Stokes unabhängig im 19. Jahrhundert formuliert. Obwohl die Gleichungen bereits zwei Jahre vor Stokes von Saint Venant hergeleitet wurden, setzte sich der Name Navier Stokes Gleichungen durch. George Stokes ( ) Quelle: Wikimedia Commons Bis heute gibt es keine allgemeinen Resultate über die theoretische Wohlgestelltheit der Navier Stokes Gleichungen. Diese Bild- oder Mediendatei ist gemeinfrei, weil ihre urheberrechtliche Schutzfrist abgelaufen ist Kapitel I (einleitung38) 14

15 Navier Stokes Gleichungen Die Navier Stokes Gleichungen sind ein System partieller Differentialgleichungen zweiter Ordnung bestehend aus dem Impulssatz und der Kontinuitätsgleichung. Hauptsächlich werden sie in der Strömungsmechanik verwendet um die Strömungen von Flüssigkeiten und Gasen zu beschreiben. Gesucht ist das Geschwindigkeitsfeld u R d, d {2,3}, der Druck p R und die Dichte ρ R, die in Ω R d dem System ρ t u div(ν u)+ρ(u )u+ p = f t ρ+div (ρu) = 0 und zusätzlichen Randbedingungen auf Γ := Ω genügen. f(x) R d,x Ω: Volumenkraft ν > 0: kinematische Viskosität Die Gleichungen ohne den rotmarkierten Anteil sind die Stokes-Gleichungen Kapitel I (MSEEinf09) 15

16 Navier Stokes Gleichungen Beispiel Simulation einer turbulenten Strömung mit Hilfe der Navier Stokes Gleichungen zum Zeitpunkt t = 0 und zum Endzeitpunkt. Kapitel I (einleitung37) 16

17 Navier Stokes Gleichungen Beispiel Simulation einer turbulenten Strömung gekoppelt mit einer porösen Medien Strömung. Zu sehen ist die freie Strömung und die Reaktionen auf unterschiedliche Kopplungsbedingungen am unteren Rand. (glatt, rau, porös) Kapitel I (einleitung37) 17

18 Maxwell Gleichungen Historisches James Clerk Maxwell ( ) Quelle: Wikimedia Commons Diese Bild- oder Mediendatei ist gemeinfrei, weil ihre urheberrechtliche Schutzfrist abgelaufen ist Maxwell war ein schottischer Physiker. Er entwickelte die nach ihm benannten Gleichungen, welche die Grundlagen der Elektrizitätslehre und des Magnetismus bilden. Kapitel I (MSEEinf12) 18

19 Maxwell Gleichungen Die Maxwell Gleichungen beschreiben die Phänomene des Elektromagnetismus. Zusammen mit der Lorentzkraft erklären sie alle Phänomene der klassischen Elektrodynamik. Die Gleichungen sind ein zeitabhängiges System von partiellen Differentialgleichungen 1. Ordnung. E = ρ ǫ H = 0 E = µ t H H = j +ǫ t E mit der magnetischen Feldstärke H, elektrischen Feldstärke E, Ladungsdichte ρ und Stromdichte j. µ und ǫ stellen physikalische Konstanten dar. Kapitel I (MSEEinf13) 19

20 Maxwell Gleichungen - Skin Effekt Stromdichte Eisen (links) und Kupfer (rechts) Stromdichten für verschiedene Materialien mit daraus resultierendem Skin-Effekt. Dies ist ein Effekt, durch den bei Wechselspannung die Stromdichte im Inneren eines Leiters niedriger ist als an der Oberfläche. Kapitel I (einleitung37) 20

21 Randbedingungen Die PDGL: 2 u x u y 2 = 0 besitzt auf einem geeigneten Gebiet Ω R 2 völlig unterschiedliche Lösungen u : Ω R z.b.: u(x,y) = x 2 y 2, u(x,y) = exp(x)cosy, u(x,y) = sinxcoshy, u(x,y) = ln ( x 2 +y 2). Wie kann man aus einer Menge von Lösungen eine bestimmte Lösung auswählen? Antwort: Auf dem Rand von Ω ( Ω) müssen geeignete Randbedingungen gesetzt werden. Für zeitabhängige PDGL müssen zudem noch geeignete Anfangsbedingungen definiert werden (vgl. Vorlesung zu den gewöhnlichen Differentialgleichungen). Kapitel I (2) 21

22 Wohlgestelltheit nach Hadamard 1. Existenz einer Lösung 2. Eindeutigkeit der Lösung J. Hadamard ( ), Quelle: Wikimedia Commons Diese Bild- oder Mediendatei ist gemeinfrei, weil ihre 3. stetige Abhängigkeit der Lösung von den Problemdaten urheberrechtliche Schutzfrist abgelaufen ist Ob ein Problem wohlgestellt ist, hängt sehr stark von dem Typ der PDGL und den jeweiligen Randbedingungen ab. Kapitel I (1) 22

23 Beispiel für Nicht-Existenz (Punkt 1 Hadamard) Seien g C( Ω),f C(Ω) und u C 2 (Ω) C 1 (Ω) eine Lösung zum Neumann Randwertproblem u = f in Ω, n u = g auf Ω. Direktes Einsetzen zeigt, dass v = u+const ebenfalls eine Lösung ist. Mit dem Gaußschen Integralsatz erkennen wir, dass die Daten die Kompatibilitätsbedingung gds = fdx erfüllen. Ω Eine Lösung zum Neumannschen Randwertproblem kann nicht existieren, wenn die Kompatibilitätsbedingung nicht erfüllt ist. Selbst dann gilt keine Eindeutigkeit! Ω Kapitel I (NeummannBoundary) 23

24 Beispiel für Eindeutigkeit (Punkt 2 Hadamard) Sei Ω R d beschränkt, u C 2 (Ω) C(Ω), sodass so folgt u 0 in Ω, max Ω u = max Ω u. Figure 2: Eine elastische Membran unter dem Einfluss der Schwerkraft erfüllt u 0 Analoges gilt für das Minimum im Fall u 0. Ein Beispiel für die weitreichenden Konsequenzen ist die Eindeutigkeit des Dirichlet Randwertproblems: Seien u 1,u 2 C 2 (Ω) C(Ω), sodass u 1 = u 2 in Ω und u 1 = u 2 auf Ω. Dann folgt u 1 = u 2. Hinweis: Betrachte v := u 1 u 2 und das Maximumsprinzip. Kapitel I (Maximumsprinzip) 24

25 Beispiel für nicht stetige Abhängigkeit (Punkt 3 Hadamard) aus Deuflhard, Weiser: Numerische Mathematik 3, 2013, Seite 10ff, nach Hadamard Üblich für elliptische Probleme sind Randwertvorgaben. Dennoch hat folgendes Anfangswertproblem im R 2 eine eindeutige Lösung u = xu+ 2 tu 2 = 0, u(x,0) = Φ(x), t u(x,0) = Ψ(x) Allerdings können kleine Störungen der Anfangswerte δφ = ε n 2 cos(nx),δψ = ε n cos(nx) große Störungen der Lösung verursachen: δu(x,t) ε n exp(nt). Das Anfangswertproblem hängt unstetig von den Daten ab. Es ist also nicht wohlgestellt nach der Definition von Hadamard. Dennoch ist das Problem im gewissen Sinn sinnvoll, wie wir in den Übungen sehen werden. Kapitel I (ElliptischesAnfangswertproblem) 25

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Studiengang Neurobiologie/Neurowissenschaften Otto-von-Guericke Universität Magdeburg Sommersemester 2008 Reinhard König

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Magnetische Monopole

Magnetische Monopole Magnetische Monopole Einführung: Aber in der Schule haben wir doch gelernt... Dirac s Idee symmetrischer Maxwell-Gleichungen Konsequenzen aus der Existenz magnetischer Monopole Quantisierung der elektrischen

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 11 WS 2007/2008 2/25 Rekapitulation Simulation des Wärmetransportes

Mehr

Testvorbereitung: Integrierender Faktor

Testvorbereitung: Integrierender Faktor Testvorbereitung: Integrierender Faktor Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien,.02.2007 Voraussetzung: Kenntnis der exakten Differentialgleichungen! Theoretische Grundlagen Eine nicht exakte

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Abgabe: Gruppen 4-6: 07.12.09, Gruppen 1-3: 14.12.09 Lösungen zu den Aufgaben 1. [1P] Kind und Luftballons Ein Kind (m = 30 kg) will so viele

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

Informationen zur Grundlagenausbildung Elektrotechnik

Informationen zur Grundlagenausbildung Elektrotechnik Informationen zur Grundlagenausbildung Elektrotechnik Kontakt: Fakultät für ET und IT Professur für Hochfrequenztechnik und Theoretische ET Vorlesungen und Übungen: Dr.-Ing. Weber, mario.weber@etit.tu-chemnitz.de

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

Fazit: Wellen haben Teilchencharakter

Fazit: Wellen haben Teilchencharakter Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

7 Maxwell - Gleichungen

7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz Eds= t Bd A beschreibt, dass die zeitliche Veränderung des magnetischen Flusses durch eine Fläche wirbelförmige

Mehr

Vorlesung: Festkörperelektronik

Vorlesung: Festkörperelektronik Vorlesung: Festkörperelektronik 0. Allgemeine Informationen: Prof. Uli Lemmer Lichttechnisches Institut, Geb. 30.34, Raum 223 Tel: 0721-608-2530 E-Mail: uli.lemmer@lti.uni-karlsruhe.de, URL: www.lti.uni-karlsruhe.de

Mehr

Discontinuous-Galerkin-Verfahren

Discontinuous-Galerkin-Verfahren Discontinuous-Galerkin-Verfahren Dr. Gregor Gassner Institut für Aerodynamik und Gasdynamik der Universität Stuttgart. Stuttgart, 2013 Variationsformulierung 1 Ziel dieser Vorlesung ist es, das DG Verfahren

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektromagnetische Schwingungen und Wellen Gegen Ende des 19.Jahrhunterts gelang dem berühmten deutschen Physiker Heinrich Rudolph Hertz (1857-1894) zum ersten Mal in der Geschichte der Menschheit der

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Kontrollfragen. Hydrodynamik. Stephan Mertens. 6. Juli 2013 G N D O O

Kontrollfragen. Hydrodynamik. Stephan Mertens. 6. Juli 2013 G N D O O Kontrollfragen Hydrodynamik Stephan Mertens 6. Juli 2013 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Erläutern Sie die Lagrange sche und die Euler sche Darstellung

Mehr

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Christian Meyer basierend auf der Vorlesung Theorie partieller Differentialgleichungen von Prof. F. Tröltzsch, TU Berlin Material

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Technische Mechanik I

Technische Mechanik I Vorlesung Technische Mechanik I Prof. Dr.-Ing. habil. Jörn Ihlemann Professur Festkörpermechanik Raum 270, Sekretariat: Frau Ines Voigt Tel.:531-38522 Technische Mechanik I, WS 2010/11 Mechanik: Ältestes

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften Rätsel in der Welt der Quanten Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften 1. Februar 2012 Die Klassische Physik Bewegung von Objekten Lichtwellen Bewegung von Objekten Newtonsche

Mehr

Physik 2 Elektrodynamik und Optik

Physik 2 Elektrodynamik und Optik Physik 2 Elektrodynamik und Optik Notizen zur Vorlesung im Sommersemester 2013 Peter Schleper 6. Juni 2013 Institut für Experimentalphysik, Universität Hamburg peter.schleper@physik.uni-hamburg.de http://www.desy.de/~schleper/lehre/physik2/ss_2013

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Einführung in die Biophysik - Übungsblatt 8

Einführung in die Biophysik - Übungsblatt 8 Einführung in die Biophysik - Übungsblatt 8 July 2, 2015 Allgemeine Informationen: Die Übung ndet immer montags in Raum H030, Schellingstr. 4, direkt im Anschluss an die Vorlesung statt. Falls Sie Fragen

Mehr

Physik Kursstufe (4-stündig)

Physik Kursstufe (4-stündig) Kern- und PHYSIK Physik Kursstufe (4-stündig) VORBEMERKUNG Der 4-stündige Physikkurs ist auf eine systematische Beschäftigung mit den wesentlichen n und Grundprinzipien gerichtet und macht damit die Breite,

Mehr

Elliptische Differentialgleichungen zweiter Ordnung

Elliptische Differentialgleichungen zweiter Ordnung Springer-Lehrbuch Masterclass Elliptische Differentialgleichungen zweiter Ordnung Eine Einführung mit historischen Bemerkungen Bearbeitet von Ernst Wienholtz, Hubert Kalf, Thomas Kriecherbauer 1. Auflage

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

V1 - Dichtebestimmung

V1 - Dichtebestimmung Aufgabenstellung: Überprüfen Sie die Proportionalität zwischen Belastung und Verlängerung einer Feder. Bestimmen Sie die Federkonstante. Bestimmen Sie die Federkonstante mit Hilfe der dynamischen Methode.

Mehr

Magnetisierung der Materie

Magnetisierung der Materie Magnetisierung der Materie Das magnetische Verhalten unterschiedlicher Materialien kann auf mikroskopische Eigenschaften zurückgeführt werden. Magnetisches Dipolmoment hängt von Symmetrie der Atome und

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Magnetisches Feld / Magnetismus

Magnetisches Feld / Magnetismus / Magnetismus Magnetismus ist die Eigenschaft eines Materials, magnetisch leitende Stoffe anzuziehen. Man bezeichnet diese Stoffe als Ferromagnetische Stoffe. Darunter fallen alle Arten von Metallen. Das

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 07.01.2008 Übersicht 1 Warm-Up zum Jahresbeginn 2 Anfangswertprobleme 3 Polygonzüge 4 Das Eulersche Polygonzugverfahren Warm-Up zum Jahresbeginn 1 Warm-Up zum Jahresbeginn 2 Anfangswertprobleme

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 6 Differentialgleichungen erster Ordnung 0.7.0 Beispiel 6.: Durch Verzinsung wächst ein Kapital Kx im Laufe der Zeit x. Der Zuwachs K zum Zeitpunkt x im kleinen Zeitraum x ist proportional zum

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und

Mehr