2. Die Friedmann-Gleichungen in Newtonscher Näherung.

Größe: px
Ab Seite anzeigen:

Download "2. Die Friedmann-Gleichungen in Newtonscher Näherung."

Transkript

1 . Die Friedmnn-Gleichungen in Newonscher Näherung..1. Skleninvrinz und Hubble-Konsne Die homogene Expnsion oder Konrkion is eine Sklenrnsformion des Rumes, so dss wir schreiben können r r ( ) ( ) = (.1) Wenn die sei Beginn der kosmischen Enwicklung vergngene Zei is, dnn können wir ( ) = 1 und r( ) r sezen, womi der gegenwärig gemessene Absnd gemein is. Es wird dnn r r = ( ) (.) Der Absnd von zwei Glxien zur Zei wird dnn r = r ( ). Wir sezen vorus, dss ihre Eigenbewegung vernchlässig werden knn. Dnn is die Geschwindigkei, mi welcher sie sich durch den Hubble-Fluss voneinnder enfernen d & r = & r ( ) = r (.) d ( ) Wenn wir mi dem Hubble-Gesez vergleichen & υ = r( ) = cz (.4) läss sich H wie folg usdrücken H & = (.5) Allerdings is H vermöge Gl.. zeibhängig. Für die Gegenwr ( = ) is es eine Konsne, eben die Hubble-Konsne H( ) H (.6) Unsere nächse Aufgbe is es, us einer Bewegungsgleichung für () die explizie Zeibhängigkei des Sklenprmeers zu finden. 1

2 .. Sphärisches Modell Um ein Modell des Kosmos zu erhlen, können wir uns die Merie durch ein klssisches Gs relisier denken. Ein Gs üb llerdings uch einen Druck us, den wir in der llgemein relivisischen Behndlung späer berücksichigen müssen. Den Druck wollen wir vernchlässigen, weshlb unser Modell nur subförmige Merie enhlen soll. In einem solchen mi Sub homogen und isorop erfüllen Kosmos denken wir uns eine Kugel vom Rdius r um einen beliebigen Punk O geleg. Die Kugel sei durch eine Kugelschle der Msse m bgeschlossen. Die Merie im Innern der Kugel hbe die Msse M und übe Grviion uf die Kugelschle us. Die kosmische Expnsion veränder den Rdius r. Die Energie der Kugelschle der Msse m wird dnn Fig..1. Vernschulichung der Grviion, welche eine homogen mi Sub der Msse M gefüllen Kugel uf eine konzenrische Kugelschle der Msse m usüb. m υ GM m r = E ges (.7) Hier is G die Grviionskonsne. Der Beirg der Mssen im Außenrum verschwinde, ws sich für kosmologische Modelle, bei welchen der Rum beliebig usgedehn sein knn, llerdings nur mi Hilfe der Allgemeinen Reliviäsheorie zeigen läss (s. Birkhoff-Theorem im Anhng A). 1

3 Wir können M durch Diche ρ 4π M = r ρ (.8) ersezen. In Gl..7 eingesez ergib ds υ 8πGρ r = C (.9) C bedeue die Gesmenergie pro Msseneinhei. Im Vorgriff Kp. sezen wir κ c C= (.1) wobei κ =±1, und c die Lichgeschwindigkei is. Nch Einsezen von r= r und υ = & r und Division durch r können wir Gl..9 wie folg schreiben & 8πG κ c ρ= r (.11) Ds is die gesuche Bewegungsgleichung für (), uch 1. Friedmnn- Gleichung gennn. Wir werden späer sehen, dss in der Inerpreion der llgemeinen Reliviäsheorie r im Nenner der rechen Seie die Krümmung des Rumes beschreib. Die Ableiung von Gl..9 wäre ohne Rückgriff uf die llgemeine Reliviäsheorie nich einwndfrei. Für die Wechselwirkung von m und M muss die Inegrion nürlich uch über den Außenrum der Kugel (Fig..1) usgeführ werden. Wir sind us der Poenilheorie gewöhn, dss der Außenrum nichs beiräg, wenn die Msse endlich is. Aber im vorliegenden Fll hben wir es bei einem unendlich usgedehnen Kosmos uch mi einer unendlich großen Msse zu un, M ( r ). Deshlb is es keineswegs klr, wie dmi im Rhmen der Newonschen Grviion umzugehen is. In der llgemeinen Reliviäsheorie finden diese Frgen eine Lösung durch Birkhoffs Theorem (s. dzu Anhng ). Im Vorgriff uf die llgemeine Reliviäsheorie wollen wir noch die Bedeuung der Inegrionskonsnen Gl..1 erläuern. Die Friedmnn- Gleichung h zwei Lösungsmengen. Jede enhäl unendlich viele Lösungen. Die Lösungen κ =+ 1 sind mi einer posiiven Rumkrümmung verbunden, die 14

4 Fig... Vernschulichung der Krümmung durch -dimensionle Flächen: Ebene Fläche ( κ = ), Kugelfläche ( κ = 1) und hyperbolisch gekrümme Fläche ( κ = 1). Der Kreisumfng C is uf der Kugelfläche kleiner ls in der Ebene, m Hyperbelpunk (negiver Krümmung) größer ls in der Ebene. Lösungen miκ = 1 mi einer negiven Rumkrümmung. Die Lösung κ = beschreib einen Grenzfll mi verschwindender Rumkrümmung, d.h. mi euklidischer Geomerie (zur Vernschulichung s. Fig..). Für den Fll κ = wollen wir jez die Friedmnn-Gleichung, Gl..8, lösen, indem wir = sezen H 8πG = ρc, (.1) Die Diche im Flleκ= heiß kriische Diche, ws durch den Index c usgedrück is. Mi dem Wer von H (Gl. 1.) finde mn 6 ρ c, = 1,88 1 h kg/m 6 =,95 1 kg/m (.1) ( h =, 71). Mi dem Fkor h läss sich ρ c, nch dem gegenwärigen Wer der Hubble-Konsnen, der z. Z. kum besser ls uf 1% beknn is, korrigieren. Es is weierhin üblich, die gemessene heuige Diche ρ in Vielfchen der (heuigen) kriischen Diche ρc, nzugeben ρ Ω = (.14) ρ c, Wir werden späer sehen, dss die Beobchungen die Lösung κ= fvorisieren. Die us sronomischen Beobchungen bgeleiee Meriediche mch 15

5 llerdings höchsens ew,4 ρc, us. Ds Räsel der nderen 96% Mssenund Energiediche wird uns späer noch beschäfigen.. Lösungen der Friedmnn-Gleichung Wir wollen jez die kosmische Dynmik für den Fll κ = berechnen. Dzu bruchen wir noch einen Ausdruck fürρ. Wenn die Msse erhlen bleiben soll, muss für die Mssendiche gelen oder nch Gl..1 und. ρ r = ρ r ρ =ρ (.15) Dnn wird us Gl..11 mi κ = 8πGρ c, & = = H (.16) wobei wieder die kriische Diche ρ c, zur Zei ufri. Die Inegrion von Gl..16 erfolg nch Ziehen der Wurzel uf beiden Seien und ergib oder d = H d = H (.17) = H (.18) 1 Gl..18 läss sich, usgedrück durch die Hubble Zei H =, uch schreiben oder = (.19) H 1 = z 1 + H Gl..18 bis. beschreiben den Fll κ =, d.h. Ω 1. = H (.) 16

6 Wir geben noch die Ergebnisse n für κ > d.h. Ω > 1.Wir erinnern uns, dss Ω die ole Meriediche in Einheien der kriischen Diche bedeue, die in der Gegenwr gemessen wird (s. Gl..14). mi und für κ < ( Ω 1) mi < 1 Ω = (.1) Ω 1 [ 1 cos x] 1 Ω / H = sin ( Ω 1) [ x ( x) ] 1 Ω = [ cosh x 1] (.) 1 Ω 1 Ω / H = sinh ( 1 Ω ) [ ( x) x] Die Hubblekonsne gib jeweils die Seigung bei = n (s. Fig..). Die Lösung für Ω = 1beginn bei = mi einer unendliche großen Seigung. Die Kurve flch sich im Lufe der Zei immer weier b. D für große Zeien ρ geh, verschwinde nch Gl..8 uch die Seigung. Aus Gl.. erhlen für z = die Zei =, die bis heue vergngen is, = / H und 9 = 9,19 1 Jhre. Diese Zei is kürzer ls ds Aler der älesen Serne. Enweder riff die Lösung nich zu oder sie is unvollsändig (mehr dzu in Kp. 5). Die Lösungen für Ω < 1 hben immer eine nich verschwindende Seigung. Die Expnsion sez sich bis in lle Ewigkei for. In diesem Fll is die Meriediche im. Glied von Gl..4 nich groß genug, um sich gegen den ersen Term (kineische Energie pro Msseneinhei) zu behupen. 17

7 Fig... Drei Lösungen der Friedmnn-Gleichung für Ω < 1 mi negiver Rumkrümmung, Ω = 1 mi euklidischem Rum und Ω > 1 verbunden mi posiiver Rumkrümmung.. Die Lösungen Ω > 1 beschreiben eine Expnsion bis zu einem Mximum bei / H =π, dem sich ein Kollps mi einer Nullselle des Sklenprmeers bei dem Argumen = π nschließ. Diese Verhlen sez sich periodisch for. / H.4. Roverschiebung, Aler und vergngene Zei. Wir können jez den Überlegungen, die zu Gl..9 und.1 geführ hben,eine nschuliche Inerpreion geben. Wenn die Wellenlänge der Spekrllinie einer fernen Glxie λ mi der ensprechenden Lborwellenlänge λ verglichen wird (z.b. für die Linien des Wssersoffs H oder Ly ), dnn läss sich ds Verhälnis durch den Sklenprmeer beknnlich wie folg usdrücken λ ( ) 1 = z+ 1= = (.) λ ( ) Offensichlich h die Wellenlänge des Lichs sei der Emission um den Fkor z + 1 zugenommen, weil der Rum um eben diesen Fkor expndiere (s. Fig..4). Der ensprechende Fkor z knn im Hubble Gesez 18 β H = r (.4) c z jez beliebig große Were nnehmen z >. α

8 Fig..4. Die Wellenlänge λ verhäl sich wie eine räumliche Srecke und vergrößer sich im Lufe der kosmischen Enwicklung. Der Zusmmenhng knn dzu benuz werden, um die Zei, die sei dem Urknll bis zur Aussrhlung des Lichs vergngen is, us der Roverschiebung zu besimmen. Für ds kosmologische Modell Ω 1erhäl mn us Gl.. ( z) ( 1 z) = 1 = (.5) H + Häufig ineressier die Zei, welche sei der Lichemission vergngen is, die look-bck-ime L. Für Ω = 1erhlen wir 1 L = ( z) = H 1 (.6) ( 1+ z) Die folgende Tbelle.1 gib für verschiedene Roverschiebungen eines Objeks ds Aler ( z) in Brucheilen der Hubble-Zei H. Z / H nch Gl..6 / H nch Gl nch Gl. 5.14,5,5,64 8,8 1 9 Jhre 1,,,41 5, Jhre,,16,1, Jhre,,8,151,7 1 9 Jhre 5,,45,89 1, 1 9 Jhre 7,,9,54, Jhre Tbelle.1. Es wurden / H nch Gl..6 berechne. In Kp. 5 wird eine relisischere Rechnung usgeführ (Gl. 5.14), deren Ergebnisse in den beiden lezen Splen ngegeben sind. Die Beobchungen ergeben näherungsweise H ns = H nch Gl. 9.6, ws zu einem zu kleinen Weller von 9,1 1 Jhren führen würde. Der 19

9 Grund dfür is ds Vorhndensein einer dunklen Energie, die hier nich berücksichig wurde und uf welche wir in Kp. 5 zurückkommen werden. Als Beispiel berchen wir jez ein Objek mi der Roverschiebung z = 5. Wir sehen ds Objek zu einer Zei, ls ers 9% der Hubble-Zei H vergngen wr. Ds Beispiel einer srk ro-verschobenen Glxie mi z =,9 zeigen die Fig. z =, 16.. und.4. Für (z) erhäl mn in diesem Fll ( ) H Fig..5. Glxie EIS 47 bei z =,9 nch einem Pressephoo der ESO vom Fig..6.Spekrum der Glxie EIS 47. Mn beche die Lyα - und Ly β-linien des Wssersoffs im sichbren Spekrlbereich In den lezen Jhren h sich die insrumenelle Ausrüsung die den Asronomen zur Verfügung seh, sändig verbesser. Ddurch konnen die

10 Grenzen der Sichbrkei wesenlich erweier werden. Diese Enwicklung wird gu sichbr, wenn mn wie in Fig..7. geschehen die mximl erreiche Roverschiebung gegen die Jhreszhl ufräg. Fig..7. Die beobchee mximle Roverschiebung gegen die Jhreszhl ufgergen zeig eindrucksvoll den Forschri in der insrumenellen Beobchungsechnik (nch Jenny Hogn us Nure Vol. 44/ 14.Sepember 6, p. 18)..5. Lierur Brdley W. Crroll Dle A. Oslie: An Inroducion o Modern Asrophysics Addison Wesley Comp US C19 (s. Ch. 7) A. Weiger / H.J. Wendker: Asronomie und Asrophysik Ein Grundkurs. Aufl. VCH US 1 W419() J.N. Islm: An inroducion o mhemicl cosmology Cmbridge Universiy Press US I8 M. Berry: Principles of cosmology nd grviion. Cmbridge Univ. Press

11 .6. Zusmmenfssung Es werden die Bewegungsgleichung des Sklenprmeers mi Hilfe der Newonschen Theorie bgeleie. Mn finde Lösungsmengen, je nchdem die milere Mssendiche kleiner oder größer ls eine kriische Diche is. Ein Grenzfll sell sich ein, wenn gerde die kriischer Mssendiche erreich wird. Zu dieser Lösung gehör eine sändige Expnsion, die nch sehr lnger Zei zum Erliegen komm. Nur dieser Fll is mi einem euklidischen Rum verbunden. Der Sklenprmeer is umgekehr proporionl zur Roverschiebung. Mi dieser einfchen Theorie, welche nur Meriediche berche, erhäl mn ein zu kleines Weller.

Traktrix DEMO. Text Nr Stand 11. Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Traktrix DEMO. Text Nr Stand 11. Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Trkri Te Nr. 540 Snd. Mi 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mhe-cd.de 540 Trkri Vorwor Die Trkri is eine Kurve für gehobenemhemische Ansprüche. Ineressn is schon ihre mechnische

Mehr

Die Exponentialfunktion

Die Exponentialfunktion Die Eponenilunkion Deiniion Es sei eine posiive reelle Zhl,,. Eine Funkion R + R R : heiß Eponenilunkion. Die posiive reelle Zhl heiß Bsis und die reele Zhl R Eponen der Funkion. Mnchml heiß uch Wchsumskor.

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

Homogene Gleichungssysteme, Gausscher Algorithmus

Homogene Gleichungssysteme, Gausscher Algorithmus HTW Mhemik MST Prof.Dr.B.Grbowski e-mil: grbowski@hw-srlnd.de Tel.: 7- Lösungen zu Übung Homogene Gleichungssyseme, Gusscher lgorihmus u ufgbe Besimmen Sie mi Hilfe des Gusschen lgorihmus die jeweilige

Mehr

Webinar: Elastostatik Thema: Zweiachsige Biegung. Aufgabe) Biegelinie bestimmen

Webinar: Elastostatik Thema: Zweiachsige Biegung. Aufgabe) Biegelinie bestimmen Webinr: Elsosik Them: Zweichsige Biegung Aufgbe Biegelinie besimmen F F l y z x z Gegeben sei der obige Krgräger, welcher durch eine Krf F in z-richung belse wird. Der Querschni des Krgrägers is rechs

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

10 Gewöhnliche Differentialgleichungen

10 Gewöhnliche Differentialgleichungen Mhemik für Physiker III, WS 212/213 Diensg 5.2 $Id: ode.ex,v 1.1 213/2/6 13:25:6 hk Exp $ $Id: picrd.ex,v 1.3 213/2/6 1:22:12 hk Exp $ 1 Gewöhnliche Differenilgleichungen 1.8 Inhomogene linere Differenilgleichungen

Mehr

Notizen zur Vorlesung über Kurven

Notizen zur Vorlesung über Kurven Noizen zur Vorlesung über Kurven Michel Krow, TU-Berlin krow@mh.tu-berlin.de November 6, 9 Definiion: Eine prmerisiere Kurve is eine seige Abbildung x : R I R n, wobei I ein (offenes, hlboffenes oder bgeschlossenes)

Mehr

Elementare Federberechnung

Elementare Federberechnung Dip.-Ing.(FH) Kuno Fuerknech D-87616 Wd/Osgäu Seie 1 von 8 Eemenre Federberechnung -Grundformen der Federeemene- 1. Krgräger Benennungen: F s ϕ wirksme Krf Absnd der Krf zur Einspnnung Verformung in Richung

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Anlysis I 4. Übungssunde Seven Biln sevenb@suden.ehz.ch biln.uk/eching June 6, 07 Erinnerung Sz. (Prielle Inegrion) f (x) g(x)dx = [ ] b f(x)g(x) f(x) g (x)dx. Sz 6..5 (Subsiuion) Sei f : [, b] R seig,

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

ρ(t) + Krümmung (Gl. 2)

ρ(t) + Krümmung (Gl. 2) 1 Expnsion des Universums, negtiver Druck des Vkuums und Energieerhltung Ich möchte versuchen, ein wenig zur Klärung obiger Begriffe beizutrgen, d im Forum immer wieder Frgen hierzu uftreten. Ausgngslge

Mehr

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2 Green-Funkion Wir berchen (z. B.) eine inhomogene linere DGL 2. Ordnung y +y = r() Die llgemeine Lösung mi y() = und y( π 2 ) = (Rndwerufgbe) sez sich us der llgemeinen Lösung der zugehörigen homogenen

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Mhe-Abiur b : Fundus für den Pflichbereich Lösungen) Die Auoren übernehmen keine Grnie für die Richigkei der Lösungen. Auch wurde sicher nich immer der kürzese und elegnese Lösungsweg eingeschlgen. Einfche

Mehr

Kosmologie. Wintersemester 2015/16 Vorlesung # 3,

Kosmologie. Wintersemester 2015/16 Vorlesung # 3, Meik Kosmologie Winesemese 15/16 Volesung #,.11.15 Guido Dexlin, Insiu fü Expeimenelle Kenphysik Expndieendes Univesum - Fiedmnn-Lemîe Gleichungen - Robeson-Wlke Meik - Kümmungspmee k - Zusndsgleichungen

Mehr

Lernen ist wie rudern gegen den Strom. Sobald man aufhört, treibt man zurück. (Benjamin Britten)

Lernen ist wie rudern gegen den Strom. Sobald man aufhört, treibt man zurück. (Benjamin Britten) Lernen is wie rudern gegen den Srom. Sobld mn uhör, reib mn zurüc. (Benjmin Brien) Die qudrische Funion Die qudrische Funion Funionen der llgemeinen Form x bx c, b, cir; 0 nenn mn qudrische Funionen. Den

Mehr

Zusammenfassung: Geraden und Ebenen

Zusammenfassung: Geraden und Ebenen LGÖ Ks M Schuljhr 06/07 Zusmmenfssung: Gerden und Ebenen Inhlsverzeichnis Gerden Gegenseiige Lge von Gerden 4 Ebenen 6 Gegenseiige Lge von Gerden und Ebenen Gegenseiige Lge von Ebenen 5 ür Experen 8 Gerden

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Lernen ist wie rudern gegen den Strom. Sobald man aufhört, treibt man zurück. (Benjamin Britten)

Lernen ist wie rudern gegen den Strom. Sobald man aufhört, treibt man zurück. (Benjamin Britten) Lernen is wie rudern gegen den Srom. Sobld mn uhör, reib mn zurüc. (Benjmin Brien) Die qudrische Funion Die qudrische Funion Funionen der llgemeinen Form x bx c, b, cir; 0 nenn mn qudrische Funionen. Den

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

3a Kinematik Bewegungen in einer Dimension

3a Kinematik Bewegungen in einer Dimension 3 Kineik Bewegungen in einer Diension Illusion einer Bewegung hp://www.risuei.c.jp/~kiok/inde-e.hl Illusionen Is Mond Horizon größer ls i Zeni? Alles lso nur eine große Täuschung! 3 Eindiensionle Bewegung

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

3 Kinematik Bewegungen in einer Dimension

3 Kinematik Bewegungen in einer Dimension Kineik Bewegungen in einer Diension Illusion einer Bewegung hp://www.risuei.c.jp/~kiok/inde-e.hl Eindiensionle Bewegung Eineilung der Mechnik A) Kineik: Eine Beschreibung, wie sich Körper bewegen B) Dynik:

Mehr

Serpentine DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Serpentine DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Serpenine Te Nr. 560 Snd 6.3.6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 560 Serpenine Vorwor Die Serpenine is eine lgebrische Kurve 3. Grdes, die mn uf einer geomerischen Eigenschf definieren

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Dieser Mangel kann überwunden werden, wenn die Typenlogik um den Lambda-Operator

Dieser Mangel kann überwunden werden, wenn die Typenlogik um den Lambda-Operator 3 Theorie der λ -Repräsenion 3 Theorie der λ-repräsenion [Dowy 98-111, Gmu 102-116, Pree 338-371, Chierchi 391-429] 3.1 Der λ-operor In der reinen Typenlogik wird jedem Ausdruck ein Typ zugewiesen. Ein

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs Miniserium für Bildung, Jugend und Spor Zenrle schrifliche Abiurprüfung 2006 Aufgbensellungen A1 und A2 (Whl für Prüflinge) Mhemik für Prüflinge Aufgbensellungen A3 (siehe Exrbl) (wird durch die Lehrkrf

Mehr

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze Rolnd Meissner Bodestrße 7, D-06122 Hlle, E-Mil: rolndmeissner@gmx.de Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der reltivistischen Krftgesetze Abstrct The reltivistic term of Force

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003 Lösung der Aufge : x x ( x ) ( x ) ) f(x) {} ( x ) ( x ) ( x ) ( x ) ( x x ) f (x) ( x ) x x ( x ) f (x) x x x ( x ) (vorgegeen) Nullsellen : x - x. urch Proieren finde mn die Nullselle x. Polynomdivision

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Physik A VL4 ( )

Physik A VL4 ( ) Physik A VL4 (16.1.1) Beschreibung on Bewegungen - Kinemik in einer Rumrichung II Die beschleunige Bewegung Der Freie Fll Der senkreche Wurf Berchung ungleichförmiger Beschleunigung miels Inegrlrechnung

Mehr

3.2. Flächenberechnungen

3.2. Flächenberechnungen Anlysis Inegrlrechnung.. Flächenerechnungen... Die Flächenfunkion ) Flächenfunkionen ufzeichnen Skizziere zur gegeenen Funkion diejenige Funkion, welche die Fläche unerhl der Funkionskurve miss. Die Flächenfunkion

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Universität Passau Lehrstuhl für Finanzierung

Universität Passau Lehrstuhl für Finanzierung Universiä Pssu Lehrsuhl für Finnzierung Nuzenfunkionen und Risikoversion Snd 26..2 Um ds Bernoulli-Prinzi (execed-uiliy-rincile) zu konkreisieren, is die Sezifikion einer (von Neumnn - Morgensern -) Nuzenfunkion

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Herleitung der Strasse für quadratische Räder

Herleitung der Strasse für quadratische Räder Herleitung der Strsse für qudrtische Räder P = P( P / y P ) sei der Berührungspunkt des Rdes mit der Strsse bzw mit der gesuchten Kurve P = P ( / y ) sei der Mittelpunkt der entsprechenden Qudrtseite des

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Lokale Modellierung nicht lokaler Abhängigkeiten Gereon Müller & Fabian Heck. Wintersemester 2011/ Kayne (1983) über parasitäre Lücken

Lokale Modellierung nicht lokaler Abhängigkeiten Gereon Müller & Fabian Heck. Wintersemester 2011/ Kayne (1983) über parasitäre Lücken Lokle Modellierung nich lokler Abhängigkeien Gereon Müller & Fbin Heck Modul 04-046-06 (Synx II) Universiä Leipzig Winersemeser 0/ 5..0. Hinergrund Kyne (983) über prsiäre Lücken Chomsky (98): (-b) is

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t:

( ) ( 1) ( ) ( ) ( ) S ( 1;1) a () 1 1. Analysis Ableitungen: x x. Berechnung der Koeffizienten: b = ( ) Gleichung der Tangenten t: Lösungen Abiur Leisungskurs Mhemik www.mhe-schule.de Seie von 9 P Anlysis = R, ² k.. p = + b+, b, R Ableiungen: k' ( ) = = p' = + b Berechnung der Koeffizienen: ; p =.. S : () p' () k' () + b + = b= =

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018 HM I Tutorium 14 Lucs Kunz 9. Februr 218 Inhltsverzeichnis 1 Theorie 2 1.1 Uneigentliche Integrle............................. 2 1.1.1 Typ 1.................................. 2 1.1.2 Typ 2..................................

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum

Aufgaben aus Zentralen Klassenarbeiten Mathematik (Baden-Württemberg) zu Logarithmen und Wachstum www.mhe-ufgben.com Aufgben us Zenrlen Klssenrbeien Mhemik 96-99 (Bden-Würemberg) zu Logrihmen und Wchsum ZK 96 ) Besimme mi Hilfe der Definiion des Logrihmus : ) 6 b) c) d) 0 000 ) Es is 0, 6. Berechne

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Benutzte Bezeichnungen. Benutzte Quellen. Grundbegriffe. Leistungselektronik ~ AC. Aufschrift der Thema, die zum ersten Mal erscheint

Benutzte Bezeichnungen. Benutzte Quellen. Grundbegriffe. Leistungselektronik ~ AC. Aufschrift der Thema, die zum ersten Mal erscheint Benuze Quellen Benuze Bezeichnungen 2 Vorlesungen von Dr.-Ing. Vogelmnn, Universiä Krlsruhe Vorlesungen von Dr.-Ing. Klos, Universiä Krlsruhe Vorlesungen von Dr.-Ing. Crokol, Universiä Krlsruhe Hlbleier

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

3.4.1 Beschreibung des E/A-Verhaltens durch lineare Differentialgleichungen mit konstanten Koeffizienten

3.4.1 Beschreibung des E/A-Verhaltens durch lineare Differentialgleichungen mit konstanten Koeffizienten 5 3.4. Beshreibung des E/A-Verhlens durh linere Differenilgleihungen mi konsnen Koeffizienen Die jez vorliegende Sndrdform einer solhen Differenilgleihung eines Sysems mi n unbhängigen Speihern wurde mi

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. r. H. Spohn r. M. Prähofer Zentrlübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik 14. Stetigkeit der Umkehrfunktion Mthemtik für Physiker 3 (Anlysis ) http://www-m5.m.tum.de/allgemeines/ma903

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11

Lösungsblatt zur Testklausur Festkörperphysik WS2010/11 Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils

Mehr