HM I Tutorium 14. Lucas Kunz. 9. Februar 2018

Größe: px
Ab Seite anzeigen:

Download "HM I Tutorium 14. Lucas Kunz. 9. Februar 2018"

Transkript

1 HM I Tutorium 14 Lucs Kunz 9. Februr 218 Inhltsverzeichnis 1 Theorie Uneigentliche Integrle Typ Typ Typ Konvergenzkriterien Absolute Konvergenz Cuchy-Kriterium Minornten und Mjornten Integrlkriterium Stmmfunktionen von Potenzreihen Theorie über ds Tutorium hinus Integrle über Funktionenfolgen Ableitungen von Funktionenfolgen Aufgben 5 1

2 1 Theorie 1.1 Uneigentliche Integrle Uneigentliche Integrle sind solche Integrle, deren grenzen sich im Bereich von eventuellen Divergenzen der Funktionen befinden. Ein Beispiel wäre 1 1 x dx, weil die Funktion 1 x in x = nicht definiert ist. Dennoch ist der Wert des Integrls existent und endlich, lässt sich jedoch nur ls Grenzwert berechnen. Ebenso sind Integrle, in deren Grenzen ± uftucht, uneigentlich, d uch derrtige Rechnungen nur ls Grenzwert durchführbr sind. Dher müssen diese Integrle uf spezielle Weise definiert werden. Hierzu seien im Folgenden jeweils, b R, R { } und β R { }, < < b < β Typ 1 Der erste Typ uneigentlicher Integrle ist jener mit einer problemtischen oberen Grenze. Es sei f : [, β) R eine Funktion, dnn heißt f(x) dx ein uneigentliches Integrl Typ 1. Es lässt sich berechnen ls f(x) dx := lim r β und wird ls konvergent bezeichnet, wenn sein Wert endlich ist. r f(x) dx (1.1) Typ 2 Wie zu erwrten bezeichnet mn Integrle mit problemtischer unterer Grenze ls uneigentliches Integrl Typ 2. Ein solches ist gegeben durch f(x) dx mit einer Funktion f : (, b] R und wird berechnet ls f(x) dx = lim r + r f(x) dx. (1.2) Konvergenz bedeutet uch in diesem Fll, dss der Wert des Integrls endlich ist Typ 3 Ds uneigentliche Integrl Typ 3 ist nun die Kombintion dieser beiden bisherigen Typen, mn nimmt lso eine Funktion f : (, β) R und integriert drüber ls f(x) dx. Um dies zu berechnen benötigt mn ein beliebiges c (, β), mit dem dnn folgendes gilt: c f(x) dx = f(x) dx + f(x) dx. (1.3) c }{{}}{{} Typ 2 Der Wert des linken Integrls ist dbei unbhängig von der Whl von c (wie schon bei gewöhnlichen Integrlen); mn bezeichnet es ls konvergent, wenn beide rechten Integrle wie für die Typen 1 und 2 definiert konvergieren. 1.2 Konvergenzkriterien Die folgenden Konvergenzkriterien werden der Kürze wegen hier nur für Integrle des Typs 1 formuliert, lssen sich ber (bis uf 1.2.4) uch uf die Typen 2 und 3 übertrgen. 2 Typ 1

3 1.2.1 Absolute Konvergenz D in den folgenden Kriterien dieser Begriff uftuchen wird, sei n dieser Stelle bsolute Konvergenz definiert. Ein Integrl f(x)dx heißt bsolut konvergent, wenn f(x) dx (1.4) konvergiert. Dmit ht der Begriff für Integrle die selbe Bedeutung wie für Reihen. Außerdem erfüllen Integrle eine sehr ähnliche Dreiecksungleichung. Aus dieser Ungleichung folgt uch, dss jedes bsolut konvergente Integrl uch norml konvergent ist, d ds Integrl über den Betrg ls Mjornte dient (siehe 1.2.3) Cuchy-Kriterium Ein uneigentliches Integrl f(x) dx ist genu dnn konvergent, wenn v ɛ > c = c(ɛ) (, β) : f(x) dx < ɛ u, v (c, β). (1.5) Ein uneigentliches Integrl ist lso genu dnn konvergent, wenn mn uch in der Nähe der problemtischen Stelle β über kleinere Intervlle [u, v] integrieren knn und diese Integrle einen beliebig kleinen Wert (kleiner ls jedes ɛ) nnehmen können. Um ds Kriterium uf Integrle des Typs 2 nzuwenden muss mn u und v jeweils us dem Intervll (, c) wählen, lso ebenflls in der Nähe der problemtischen Stelle Minornten und Mjornten Die Mjornten- und Minorntenkriterien für Integrle sind jenen für Reihen sehr ähnlich. Sie luten folgendermßen: u Ist f g uf [, β) und ist g(x) dx konvergent, so konvergiert f(x) dx bsolut. Entsprechendes gilt für Integrle des Typs 2, flls die zugrundeliegende Unglei- chung f g uf (, b] erfüllt wird. Gilt f g uf [, β) (bzw. (, b] für Typ 2) und ist divergiert uch f(x) dx. g(x) dx divergent, dnn Insbesondere die Mjornten können dbei nicht nur helfen, llgemeine Konvergenz festzustellen, sondern schränken uch den möglichen Grenzwert nch oben ein. Eine solche Einschränkung ist ntürlich bei Integrlen ebenso wie bei Summen durch Einschnürung/ds Sndwich-Theorem möglich (siehe bei Folgen-Konvergenz Tutorium 4) Integrlkriterium Dieses Kriterium existiert usschließlich für Integrle des Typs 1. Ist m N und f : [m, ) (, ) ist monoton fllend, dnn besteht folgende Äquivlenz: f(k) konvergiert k=m m f(x) dx konvergiert. (1.6) Dmit lässt sich lso die Konvergenz von Reihen und Integrlen ineinnder überführen. Eine exkte Berechnung des Grenzwerts ist mit dieser Methode ber leider nicht möglich. 3

4 1.3 Stmmfunktionen von Potenzreihen Wie schon bei Ableitungen von Potenzreihen sei f : I R definiert über eine Potenzreihe mit Konvergenzrdius R >, wobei I := (x R, x + R) bzw. I = R flls R =. Die Funktion ist lso definiert ls f(x) = n (x x ) n. (1.7) n= Die in ihrer Definition sehr ähnliche Potenzreihe n F (x) = n + 1 (x x ) n+1 (1.8) n= ht genu den selben Konvergenzrdius wie f und ist uf dem Intervll I eine Stmmfunktion zu f, lso F = f uf I, wie einfch nchzurechnen ist. 2 Theorie über ds Tutorium hinus 2.1 Integrle über Funktionenfolgen Mn definiere zur Vernschulichung der Idee dieses Kpitels eine Folge f n : [, 1] R wie folgt: n 2 x x [, 1 ) n f n (x) = 2n n 2 x x [ 1, 2 ) (2.1) n n x [ 2, 1] n Die Funktion steigt lso im Bereich [, 1 ) liner von uf n n und fällt im Intervll [ 1, 2 ) n n n wieder uf b, beschreibt lso nschulich ein Dreieck. Ds Dreieck ht eine Höhe von n und eine Breite von 2, lso ht es den vom Prmeter n unbhängigen Flächeninhlt n A = 1 n 2 = 1. Dieser Flächeninhlt entspricht dem Integrl über die Funktion f 2 n n, lso knn mn schreiben 1 f n (x) dx = 1 n N. (2.2) Im Grenzfll n strebt die Funktionenfolge punktweise gegen die Nullfunktion f(x), d ds dritte Intervll der Definition, [ 2, 1], dnn zunehmend den gesmten Rum in n [, 1] nnimmt. Die Konvergenz ist llerdings nicht gleichmäßig, d direkt neben der immer noch ein Dreieck der Höhe n existiert, die in diesem Grenzfll divergiert. Vergleicht mn lso die Integrle über f n und f, so fällt einem ein erheblicher Unterschied uf: ( 1 ) 1 1 ( ) lim f n (x) dx = 1 = f(x) = lim }{{} f n(x) dx. (2.3) Die Reihenfolge, in der Integrl und Grenzwert berechnet werden, ist bei dieser punktweise konvergenten Folge lso wichtig. Dies ist bei gleichmäßiger Konvergenz nicht der Fll. Ist f n R[, b] gleichmäßig konvergent gegen f : [, b] R, dnn ist uch diese Grenzfunktion uf dem Intervll [, b] integrierbr und es gilt ttsächlich die Gleichheit lim ( ) f n (x) dx = f(x) dx = 4 ( ) lim f(x) dx. (2.4)

5 2.2 Ableitungen von Funktionenfolgen Es sei f n eine Folge stetig differenzierbrer Funktionen, lso f n C 1 ([, b]), die uf [, b] punktweise gegen eine Funktion f konvergiere. Die Folge der Ableitungen f n konvergiere gleichmäßig gegen g. In diesem Fll ist f C 1 ([, b]) und f = g uf gnz [, b], lso ( ) g(x) = lim f n (x) = f (x) = g(x) = lim f n(x). (2.5) Wenn die Folge der Ableitungen lso gleichmäßig konvergent ist, dnn lssen sich Ableitung und Grenzwert vertuschen, selbst wenn die Folge selbst nur punktweise konvergiert. 3 Aufgben Die Musterlösungen der Tutoriumsufgben 85, 86 und 87 finden sich uf der Internetseite der Vorlesung unter 5

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

Hilfsblätter Folgen und Reihen

Hilfsblätter Folgen und Reihen Hilfsblätter Folgen und Reihen Sebstin Suchnek unter Mithilfe von Klus Flittner Steffen Hofmnn Mtthis Stb c 2002 by Sebstin Suchnek Printed with L A TEX Inhltsverzeichnis 1 Folgen 1 1.1 Definition.........................................

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ.

24 UNEIGENTLICHE INTEGRALE 146. F (x) F (x ) f(x, t) dt. 3(b a) (b a) + ɛ 3 + ɛ 3 = ɛ. 24 UNEIGENTLICHE INTEGRALE 146 für lle t [, b] und lle x D mit x x < δ. Für lle x D mit x x < δ gilt lso = F (x) F (x ) b f(x, t) dt b b f(x, t) dt + f(x, t) f(x, t) dt + ɛ 3(b ) (b ) + ɛ 3 + ɛ 3 = ɛ.

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 27 Mittwoch 7.5 $Id: uneigentlich.te,v.9 27/5/7 :9:4 hk Ep $ $Id: norm.te,v.39 27/5/7 :22:3 hk Ep $ 3 Uneigentliche Integrle In der letzten Sitzung hben wir begonnen uns mit

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y KAPITEL 18 UND 19 H. KOCH 1. VORLESUNG VOM 08.01.2018 Kpitel 18 Definition 1 (Zerlegungen, Treppenfunktionen, Regelfunktionen) Sei < b. 1. Eine Zerlegung τ von [, b] besteht us einer Zhl N N und (N + 1)

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den 19 REGELFUNKTIONEN 107 Kpitel 7: Integrtion Notwendigkeit des Integrlbegriffes und Hinweise zu seiner Präzisierung liegen uf der Hnd. Betrchten wir etw den physiklischen Begriff der Arbeit, die im einfchsten

Mehr

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $ $Id: integrl.te,v.3 24/5/5 5:3:49 hk Ep $ $Id: uneigentlich.te,v. 24/5/6 3:37:4 hk Ep $ 2 Integrlrechnung 2.5 Ergänzungen Wir sind jetzt m Ende des Kpitels über ds Riemn-Integrl im eigentlichen Sinne ngelngt,

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

Riemann-integrierbare Funktionen

Riemann-integrierbare Funktionen Kpitel VI Riemnn-integrierbre Funktionen 26 Ds Riemnn-Integrl ls Grenzwert von Zwischensummen 27 Der Huptstz der Differentil- und Integrlrechnung nebst Folgerungen 28 Äquivlente Definitionen des Riemnn-

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

HM I Tutorium 11. Lucas Kunz. 19. Januar 2017

HM I Tutorium 11. Lucas Kunz. 19. Januar 2017 HM Tutorium Lucs Kunz 9. Jnur 07 nhltsverzeichnis Theorie. Mehrfche Ableitungen.............................. Stz von Tylor................................... Spezilfll n = 0............................

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fchbereich Mthemtik der Universität Hmburg Dr. H. P. Kini Hörslübung 4, Anlysis II SoSe 28, 4./5. Mi Uneigentliche und prmeterbhängige Integrle Die ins Netz gestellten Kopien der Unterlgen sollen nur die

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Aufgabe Σ

Aufgabe Σ Fchbereich Mthemtik WS 01/13 Prof. J. Ltschev 7. Februr 013 Höhere Anlysis Modulbschlussprüfung Sie benötigen nur Schreibgeräte. Die Verwendung jeglicher nderer Hilfsmittel (wie z. B. Tschenrechner, Hndys,

Mehr

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt

(x t) n f (n+1) (t) dt. f(x) =f(a)+ f (t) dt 6 Der Stz von Tylor Gleichmäßige Konvergenz Potenzreihen Der Stz von Tylor Es sei D ein Intervll, X ein Bnchrum und f : D X eine Funtion Stz Tylorsche Formel Ist f (n +)-ml stetig differenzierbr, so gilt

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen . Die reellen Zhlen Definition. (Verkettung). Die Verkettung oder Komposition der Abbildungen f : P N und g : M P ist die Abbildung f g : M N, x f(g(x)). Flls Definitionsbereich und Wertebereich gleich

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen Friedrich-Schiller-Universität Jen Institut für Physiklische Chemie BC 1.2 Mthemtik PD Dr. Thoms Bocklitz BC 1.2 Mthemtik Zusmmenfssung Kpitel III: Funktionen einer Veränderlichen 1 Konzept Funktionen

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mthemtik für Ingenieure I (Wintersemester 2007/08) Kpitel 6: Integrlrechnung R R Volker Kibel Otto-von-Guericke Universität Mgdeburg (Version vom 21. Dezember 2007) Stetige oder monotone Funktionen

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.7 2011/05/27 11:41:25 hk Exp hk $ 4 Funktionenfolgen und normierte Räume 4.3 Gleichmäßige Konvergenz und Differenzierbrkeit Wir sind weiter mit der Untersuchung der gleichmäßigen Konvergenz

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale Doppel- und Dreifchintegrle Sei [, b] ein Intervll des R 2 oder R 3 (lso ein Rechteck bzw. ein Quder), i.e. [, b] = [, b ] [ 2, b 2 ] oder [, b] = [, b ] [ 2, b 2 ] [ 3, b 3 ]. Für Intervlle des R 2 bzw.

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

Fourierreihen. Timo Dimitriadis

Fourierreihen. Timo Dimitriadis Fourierreihen Timo Dimitridis 4.5.9 In diesem Vortrg geht es im prktischen Sinne um die Anlyse von Schwingungsvorgängen, wie sie zum Beispiel in der Physik häufig vorkommen. Oft mg es nützlich sein, diese

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

Analysis 2. Timo Weidl

Analysis 2. Timo Weidl Anlysis 2 Timo Weidl INSTITUT FÜR ANALYSIS, DYNAMIK UND MODELLIERUNG FAKULTÄT MATHEMATIK UND PHYSIK UNIVERSITÄT STUTTGART 23 Inhltsverzeichnis Kpitel 1. Reihen und uneigentliche Integrle 5 1.1. Grundlegende

Mehr

Mathematik II. Vorlesung 31

Mathematik II. Vorlesung 31 Prof. Dr. H. Brenner Osnbrück SS 2010 Mthemtik II Vorlesung 31 In den folgenden Vorlesungen beschäftigen wir uns mit der Integrtionstheorie, d.h. wir wollen den Flächeninhlt derjenigen Fläche, die durch

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

21. Das bestimmte Integral

21. Das bestimmte Integral 1. Ds bestimmte Integrl Wir betrchten eine Kurve y = f(x) mit f(x) 0 uf dem Intervll [, b]. Obwohl der Flächeninhlt eines Rechteces (und in weiterer Folge eines Dreieces und nderer elementrer geometrischer

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen . Die reellen Zhlen Die reellen Zhlen sind eine Menge R zusmmen mit zwei Rechenvorschriften, die je zwei Elementen x, y R ein Element x + y R und ein Element x y R zuordnen, wobei ferner eine Teilmenge

Mehr

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a Prof. Dr. H. Brenner Osnbrück WS 203/204 Anlysis I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f: [, b] R knn mn f(t)dt b ls die Durchschnittshöhe der Funktion

Mehr

Kapitel 1. Das Riemann-Integral. 1.1 *Motivation

Kapitel 1. Das Riemann-Integral. 1.1 *Motivation Kpitel Ds Riemnn-Integrl. *Motivtion Wir betrchten eine stetige Funktion f : [, b] R, wobei, b R und < b. Frge: Wie groß ist der Flächeninhlt zwischen dem Abschnitt [, b] uf der x-achse und dem Grph von

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Höhere Mathematik Vorlesung 2

Höhere Mathematik Vorlesung 2 Höhere Mthemtik Vorlesung 2 März 217 ii Ordnung brucht nur der Dumme, ds Genie beherrscht ds Chos. Albert Einstein 2 Prmeterbhängige Integrle Sie belieben wohl zu scherzen, Mr. Feynmn! Eine Sche, die ich

Mehr

Analysis für Informatiker Panikzettel

Analysis für Informatiker Panikzettel pnikzettel.philworld.de Anlysis für Informtiker Pnikzettel Philipp Schröer Version 5 7.04.08 Inhltsverzeichnis Einleitung Grundlgen. Formeln und Ungleichungen.................................. Unendlichkeit..........................................

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

$Id: integral.tex,v /05/09 11:21:33 hk Exp $ $Id: uneigentlich.tex,v /05/11 13:45:45 hk Exp $

$Id: integral.tex,v /05/09 11:21:33 hk Exp $ $Id: uneigentlich.tex,v /05/11 13:45:45 hk Exp $ $Id: integrl.te,v.62 28/5/9 :2:33 hk Ep $ $Id: uneigentlich.te,v.22 28/5/ 3:45:45 hk Ep $ 2 Integrlrechnung 2.4 Integrtion rtionler Funktionen In der letzten Sitzung hben wir die Integrtion rtionler Funktionen

Mehr

a = x 0 < x 1 <... < x n = b

a = x 0 < x 1 <... < x n = b 7 Integrtion 7.1 Integrtion von Treppenfunktionen Im folgenden ezeichnen wir mit I = [, ] ein eschränktes und geschlossenes Intervll. Für Punkte = x 0 < x 1

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Anlysis 1 Fbin Hfner und Thoms Blduf TUM Wintersemester 2014/15 18.03.2015 Ds Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfsst von Andres Wörfel. Inhltsverzeichnis

Mehr

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n?

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n? Kpitel 9 Gleichmäßige Konvergenz von Funktionenfolgen 9.1 Gleichmäßige Konvergenz 9.2 Eigenschften der Grenzfunktion 9.3 Gleichmäßige Konvergenz von Funktionenreihen 9.4 Anwendung uf Potenzreihen 9.5 Tylor

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Definition von Gebietsintegralen, Mehrfachintegration

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Definition von Gebietsintegralen, Mehrfachintegration Vorlesung: Anlysis II für Ingenieure Wintersemester 7/8 Michel Krow Them: Definition von Gebietsintegrlen, Mehrfchintegrtion Treppenfunktionen uf Intervllen Eine Funktion f : [, b] heisst Treppenfunktion,

Mehr

Integralrechnung. Fakultät Grundlagen

Integralrechnung. Fakultät Grundlagen Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2

Mehr

Analysis 3 Zweite Scheinklausur Ws 2018/

Analysis 3 Zweite Scheinklausur Ws 2018/ Anlysis 3 weite Scheinklusur Ws 8/9..9 Es gibt 8 Aufgben. Die jeweilige Punktzhl steht m linken Rnd. Die Mximlpunktzhl ist 7. um Bestehen der Klusur sind Punkte hinreichend. Die Berbeitungszeit beträgt

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt

Mehr

Analysis I. Jörg Eschmeier. Universität des Saarlandes. Wintersemester 2018/19

Analysis I. Jörg Eschmeier. Universität des Saarlandes. Wintersemester 2018/19 Anlysis I Jörg Eschmeier Universität des Srlndes Wintersemester 208/9 Inhltsverzeichnis Induktion 3 2 Körperxiome 8 3 Anordnungsxiome 3 4 Konvergenz von Folgen 9 5 Vollständigkeit 27 6 Unendliche Reihen

Mehr

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Sebstin Lngendörfer e Integrlrechnung Zustzunterlgen zur Vorlesung Anlysis II Sommersemester 2014 Dieses Bltt enthält

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Universität Ulm Abgabe: Freitag,

Universität Ulm Abgabe: Freitag, Universität Ulm Abgbe: Freitg, 19.06.2009 Prof. Dr. W. Arendt Robin Nittk Sommersemester 2009 Punktzhl: 38+7 13. Zeige: Lösungen Prtielle Differentilgleichungen: Bltt 5 Sei (, b) ein reelles Intervll.

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Anlysis Vorlesungssript Enno Lenzmnn, Universität Bsel 7. November 213 5 Konvergenz- und Approximtionssätze 5.1 Monotone und Dominierte Konvergenz Wir strten mit einem grundlegenden Stz der Integrtionstheorie,

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Numerische Mathematik Sommersemester 2013

Numerische Mathematik Sommersemester 2013 TU Chemnitz 5. Februr 2014 Professur Numerische Mthemtik Prof. Dr. Oliver Ernst Dipl.-Mth. Ingolf Busch Dipl.-Mth. techn. Tommy Etling Numerische Mthemtik Sommersemester 2013 Musterlösungen zu nicht behndelten

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. r. H. Spohn r. M. Prähofer Zentrlübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik 14. Stetigkeit der Umkehrfunktion Mthemtik für Physiker 3 (Anlysis ) http://www-m5.m.tum.de/allgemeines/ma903

Mehr

HM I Tutorium 6. Lucas Kunz. 28. November 2018

HM I Tutorium 6. Lucas Kunz. 28. November 2018 HM I Tutorium 6 Lucas Kunz 28. November 208 Inhaltsverzeichnis Theorie 2. Exponentialfunktion.............................. 2.2 Trigonometrische Funktionen......................... 2.3 Potenzreihen...................................

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt (Ω, P) ein diskreter Whrscheinlichkeitsrum,

Mehr

Unbestimmtes Integral, Mittelwertsätze

Unbestimmtes Integral, Mittelwertsätze Unbestimmtes Integrl, Mittelwertsätze Ist f R-integrierbr, dnn knn f(x)dx einfch bestimmt werden, wenn eine Stmmfunktion F (x) von f existiert und beknnt ist. Wir wissen, dss dnn uch F (x) = F (x) + C

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr