Mathematik Rechenfertigkeiten

Größe: px
Ab Seite anzeigen:

Download "Mathematik Rechenfertigkeiten"

Transkript

1 27 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 8. August 27

2 Inhltsverzeichnis Grundlgen der Integrlrechnung 2. Definition und Bedeutung Ds unbestimmte Integrl Ds bestimmte Integrl Prtielle Integrtion 3 Integrtion durch Substitution 3 4 Uneigentliche Integrle 7

3 Grundlgen der Integrlrechnung Wir hben in den letzten Tgen die Ableitung, respektive ds Differenzieren, kennengelernt. Nun kommen zweiten grossen Gebiet der Anlysis, der Integrlrechnung. Ziel des ersten Teils ist es zu zeigen, dss ein Zusmmenhng besteht zwischen dem Ausrechnen des Flächeninhltes unter dem Grphen einer Funktion f und dem Finden einer Funktion F mit der Eigenschft F = f, einer sogennnten Stmmfunktion von f. Im zweiten und dritten Teil werden wir einige Integrtionsregeln und -methoden behndeln, welche uns helfen, eine gegebene Funktion f zu integrieren. Schliesslich werden wir uns im vierten und letzten Teil noch mit sogennnten uneigentlichen Integrlen beschäftigen.. Definition und Bedeutung Wir betrchten eine Funktion f(x), welche überll ist. Wie gross ist die Fläche, welche zwischen dem Grphen der Funktion und der x Achse sowie den vertiklen Gerden x = und x = b liegt? f b Wir teilen diese Fläche in n Stücke uf, und zwr so, dss wir sie einerseits von unten und ndererseits von oben pproximieren: 2

4 f b Wir bruchen folgende Bezeichnungen: Innere Treppenfläche U n : Äussere Treppenfläche O n : Die dunkel schttierte Fläche Die dunkel schttierte plus die hell schttierte Fläche Unterteilen wir nun die Fläche in immer kleinere Stücke, so wird die Approximtion immer besser. Anders gesgt, bekommen wir den korrekten Flächeninhlt, sobld wir n lufen lssen. Definition. Flls lim U n = lim O n, n n wird dieser Limes ls bestimmtes Integrl bezeichnet, und wir schreiben b f(x)dx. Für eine positive Funktion entspricht lso ds Integrl gerde der Fläche unter der Kurve. Bemerkung. Für eine stetige Funktion ist obige Bedingung immer erfüllt. Es gibt ber Funktionen, bei welchen ds nicht mehr zutrifft. Betrchte, x Q [,] f(x) =, x / Q [,] Dnn gelten U n = und O n = für lle n N und somit lim n U n = = lim n O n. Der Grph dieser Funktion lässt sich nicht zeichen, d der Wert beliebig schnell zwischen und 3

5 hin und her springt. In diesem Fll ist uch nicht klr, ws die Fläche unter diesem Grphen sein soll. Dies erfordert eine tiefergehende Behndlung der Integrtionstheorie. Beispiel. Wir betrchten die Funktion f(x) = x 2 und wollen die Fläche von bis zu einer Zhl b berechnen (in der Grfik unten ist b = 5) Wir unterteilen die Fläche zuerst wieder in n Teile und pproximieren sie von oben sowie von unten Wir werden folgende Formel benutzen: n k= k 2 = n(n+)(2n+) 6 4

6 Wir erhlten für die äussere Treppenfläche O n = b ( ) 2 b n + b ( ) 2 2b n n + b ( ) 2 3b n n + + b ( nb n n n ( (b = b ) 2 ( ) 2 ( ) 2 ( ) ) 2 2b 3b nb n n n n n = b3 ( n 2) n 3 ( ) ( ) n(n+)(2n+) = b3 (n 2 +n)(2n+) 6 n 3 6 ( ) ( 2n 3 +3n 2 +n = b n + ) 6n 2 = b3 n 3 = b3 n 3 ) 2 lso ( lim O n = lim b 3 n n 3 + 2n + ) = b3 6n 2 3. Auf die gleiche Art und Weise erhlten wir für die innere Treppenfläche und für den Limes U n = b n 2 + b n ( ) 2 b + b n n ( ) 2 2b + + b n n = b3 ( (n ) 2) n 3 ( ) = b3 (n )n(2(n )+) n = b ( lim U n = lim b 3 n n 3 2n + ) = b3 6n 2 3. Die zwei Grenzwerte stimmen überein, und somit erhlten wir ( (n )b n ) 2 ( 3 2n + ) 6n 2 b x 2 dx = b3 3. 5

7 .2 Ds unbestimmte Integrl Eine Funktion F(x) heisst Stmmfunktion der Funktion f(x), flls F (x) = f(x). Wenn F(x) eine Stmmfunktion von f(x) ist, dnn bezeichnet mn f(x)dx = F(x)+C ls unbestimmtes Integrl. Dbei ist C R eine Konstnte, die sogennnte Integrtionskonstnte. D die Ableitung einer Konstnten ist, können wir jeweils eine Konstnte ddieren, ohne dss sich die Ableitung ändert. Stmmfunktionen sind dher nicht eindeutig. Zwei Stmmfunktionen unterscheiden sich ber lediglich durch eine Konstnte. Es reicht us, die Integrle von ein pr wichtigen Funktionen zu kennen, um integrieren zu können. Zusmmen mit den Eigenschften der Integrtion sowie wie mit den Methoden prtielle Integrtion (Kpitel 2) Substitution (Kptiel 3) können wir sehr viele Integrle berechnen. Es gibt jedoch Funktionen, deren Stmmfunktionen sich nicht ls eine geschlossene Funktionsgleichung bestimmen lssen. Drum gleich zu Beginn die unbestimmten Integrle der wichtigsten Funktionen (überprüfen durch Ableiten): x dx = 2 x2 +C x n dx = n+ xn+ +C, wobei n R\{ } e x dx = e x +C dx = ln( x )+C x sin(x) dx = cos(x)+c cos(x) dx = sin(x)+c D eine Stmmfunktion bestimmt wird, indem mn die Opertion des Ableitens umkehrt, überrscht es nicht, dss es nlog zu den Ableitungsregeln uch entsprechende Integrtionsregeln gibt. Die ersten beiden dieser Regeln sind die Konstnten- und die Summenregel. 6

8 Eigenschften: c f(x) dx = c f(x) dx für c R (f(x)+g(x)) dx = f(x) dx+ g(x) dx.3 Ds bestimmte Integrl Wir hben gesehen, dss ds bestimmte Integrl b f(x) dx die Fläche zwischen dem Grphen der positiven Funktion f(x) und der x-achse zwischen den Integrtionsgrenzen und b ngibt. Im Unterschied zum unbestimmten Integrl ist dies eine Zhl, keine Funktion. Zusätzliche Eigenschften: Für c b gilt: b f(x) dx = c f(x) dx+ b c f(x) dx Vertuschen der Integrtionsgrenzen: b f(x) dx = b f(x) dx Die Berechnung des bestimmten Integrls der Funktion y = x 2 wr nur möglich, d eine Formel für die Summe der Qudrtzhlen existiert. Wenn ber schon die Integrtion einer so einfchen Funktion schwierig ist, wie soll dnn ds bestimmte Integrl komplizierterer Funktionen berechnet werden? Die entscheidende Idee ist der sogennnte Huptstz der Differentil- und Integrlrechnung, der grob gesgt besgt, dss zwischen dem bestimmten und dem unbestimmten Integrl, zwei grundlegend verschiedenen Konzepten, eine sehr enge Beziehung besteht. Konkret ist die Aussge folgende: und wir schreiben uch b f(x) dx = F(b) F() 7

9 b f(x) dx = F(x) b Beispiele. () 5 3 x 3 dx = x = = = 36 (b) Gesucht ist die Fläche, die zwischen der y-achse, dem Grphen von e x und der konstnten Funktion y = e eingeschlossen ist Der Schnittpunkt von e und e x liegt bei, dher sind und die Integrtionsgrenzen. (e e x ) dx = ex e x = e e ( ) = Bis jetzt hben wir immer Funktionen f betrchtet. Ws pssiert mit dem Flächeninhlt, wenn die Funktion negtiv wird? Flächen unterhlb der x Achse werden negtiv gezählt (denn bei der Berechnung der jeweiligen Ober- und Untersumme wird die Intervlllänge (positiv) mit dem Funktionswert (negtiv!) multipliziert). 8

10 + + Beispiel. Wir wollen die Fläche zwischen dem Grphen von sin(x) und der x Achse zwischen und 2π berechnen: Berechnen wir 2π sin(x)dx = cos(2π)+cos() = + =, entspricht dies nicht der Fläche. Die Fläche oberhlb der x-achse und diejenige unterhlb der x-achse heben sich gegenseitig uf. Die Fläche ber entspricht dem Integrl 2π sin(x) dx. Wir teilen die Funktion in die positiven und in die negtiven Teile uf:, flls x π sin(x), flls π x 2π und erhlten somit 9

11 2π sin(x) dx = π sin(x)dx+ 2π π ( sin(x))dx = cos(x) π +cos(x) 2π π = cos(π) ( cos())+cos(2π) cos(π) = ( )++ ( ) = 4. Ds Vorgehen bei der Flächenberechnung (Fläche zwischen einem Grphen und der x-achse, bzw. zwischen zwei Grphen) ist lso folgendes:. Mn berechnet die Nullstellen der Funktion. (Soll die Fläche zwischen zwei Grphen berechnet werden, muss mn die Schnittpunkte bestimmen.) 2. Mn integriert von Nullstelle zu Nullstelle (bzw. von Schnittpunkt zu Schnittpunkt). Dbei wird ds Integrl negtiv, wenn der Grph unter der x-achse verläuft. Die Fläche ist dnn der entsprechende positive Wert. 3. Mn ddiert schliesslich die verschiedenen Flächeninhlte, um so die Gesmtfläche zu erhlten.

12 2 Prtielle Integrtion Die Prtielle Integrtion entspricht der Produktregel der Differentition, welche lutet: (f g) = f g +f g, respektive etws umgeformt f g = (f g) f g. Durch Integrtion beider Seiten erhlten wir f g dx = (f g) dx f gdx D h dx = h+c für jede Funktion h, entspricht dies f g dx = f g f g dx (+C) Dies nennt mn die prtielle Integrtion. Die zu integrierende Funktion muss lso usgedrückt werden können ls Produkt zweier Funktionen f(x) g (x). Diese Regel gilt sowohl für unbestimmte ls uch für bestimmte Integrle. In solchen Formeln wird die Konstnte C häufig weggelssen, d sie in den unbestimmten Integrlen bsorbiert werden knn. Überhupt muss mn mit Formeln, die unbestimmte Integrle enthlten vorsichtig sein. Die Version für bestimmte Integrle nimmt folgende Form n: b f g dx = f(x) g(x) b b f g dx Beispiele. () Um xcos(x) dx zu bestimmen, wählen wir die Funktionen: f(x) = x f (x) = g (x) = cos(x) g(x) = sin(x) Dnn gilt: xcos(x) dx = f(x)g (x) dx = f(x)g(x) f (x)g(x) dx =xsin(x) sin(x) dx = xsin(x)+cos(x)+c.

13 Zur Kontrolle, dss dies uch die richtige Stmmfunktion ist, können wir die Stmmfunktion bleiten: (xsin(x)+cos(x)+c) = sin(x)+xcos(x) sin(x)+ = xcos(x), ws der ursprünglichen Funktion entspricht. Wir hben lso richtig integriert! e 2 (b) Für ln(x) dx betrchten wir: f(x) = ln(x) g (x) = f (x) = x g(x) = x Dmit gilt: e 2 ln(x) dx = e 2 e 2 e 2 ln(x) dx = xln(x) x x dx = e 2 ln(e 2 ) ln() x e 2 = e 2 2 ln() e 2 + = e

14 3 Integrtion durch Substitution Die prtielle Integrtion entsprch der Produktregel. Gibt es uch so etws wie eine Kettenregel für Integrle? Ttsächlich gibt es eine Regel, die besonders geeignet ist, Integrle von verschchtelten Funktionen zu berechnen. Allerdings ist es so, dss diese Regel, die Substitutionsregel, nicht für jede verschchtelte Funktion zum Ziel führt. Wenn die zu integrierende Funktion jedoch von der Form f(g(x))g (x) ist, ds heisst, ds Integrl ht folgende Form f(g(x))g (x) dx, dnn können wir die Funktion g(x) durch eine Vrible u ersetzen und dnch über u integrieren. Nicht immer ist diese Form einfch bzulesen. Vermuten wir, dss wir Substitution nwenden können, probieren wir es einfch us, und zwr wie folgt: (i) Suche eine Funktion, welche wir ersetzen wollen (üblicherweise die innere Funktion der Verschchtelung): u = g(x). (ii) Leite u nch x b: du dx = g (x), wobei du dx u nch x ist. eine ndere Schreibweise für die Ableitung von (iii) Löse diese Gleichung nch dx uf: dx = du du. Es hndelt sich bei zwr nicht um g (x) dx einen wirklichen Bruch (es ist bloss eine Schreibweise). Es stellt sich jedoch herus, dss mn in vielen Situtionen (so uch hier) dmit Rechnen drf, wie wenn es ein Bruch wäre. (iv) Ersetze im Integrl g(x) durch u und dx durch du. Flls es ein bestimmtes Integrl ist g (x) und Integrtionsgrenzen und b vorkommen, werden diese ersetzt durch u() und u(b). g(x) u dx du g (x) Integrtionsgrenzen, b u(), u(b) (v) Ds g (x) sollte sich nun ruskürzen, so dss im Integrl kein x mehr vorkommt. Pssiert ds nicht, können wir nicht Substitution nwenden oder wir müssen eine ndere Substitution vornehmen. Sonst weiter zum nächsten Schritt. Mn knn uch die Vrible x durch die neue Vrible u usdrücken, x = g (u). Ddurch wird ds neue 3

15 (vi) Es gilt nun: f(g(x))g (x) dx = f(u)du b respektive f(g(x))g (x) dx = u(b) u() f(u)du Ds neue Integrl entspricht lso dem lten Integrl. (vii) Beim unbestimmten Integrl müssen wir wieder g(x) für u einsetzen, um die Lösung zu bekommen. Bemerkung. Ansttt ds bestimmte Integrl mit Integrtionsgrenzen direkt zu lösen, knn ds Integrl uch zuerst nur unbestimmt, ds heisst ohne Integrtionsgrenzen, betrcht werden. Dnn müssen nch dem Lösen des Integrls und der Rücksubstitution (u durch g(x) ersetzen) noch die Integrtionsgrenzen eingesetzt werden. Beispiele. () Wir wollen ds Integrl xe x2 dx lösen und setzen dfür u(x) = x 2. Es folgt, dss du du = 2x, und somit dx = dx 2x. Wir erhlten somit xe x2 dx = xe u du 2x = e u du 2 = 2 eu +C = +C. 2 ex2 (b) Nun ein bestimmtes Integrl. Wir berechnen x+ dx: Integrl durch die Substitution eher komplizierter ls einfcher. In seltenen Fällen knn ds trotzdem zielführend sein. Dies ist ber eher etws für Fortgeschrittene und wird hier nicht vorkommen. 4

16 Wir setzen u = x+ und erhlten du dx =, lso du = dx. x+ dx = = u() u() 2 u du u 2 du = 2u 2 2 = Bemerkung. Vergleich Prtielle Integrtion Substitution: Wnn benutzen wir prtielle Integrtion, wnn die Substitution? Grundsätzlich können wir drei Punkte festhlten.. Finden wir im Integrl eine Funktion einer Funktion, eine Verschchtelung lso? Also so etws wie f(g(x))? Substitution (d.h. g(x) ersetzen) 2. Werden im Integrl zwei Funktionen multipliziert, es kommen ber keine Funktionen in Funktionen vor? Prtielle Integrtion 3. Ist ds Integrl nch Anwendung einer der Methoden komplizierter ls vor dem Integrieren, dnn wurde entweder die flsche Methode gewählt, oder es muss etws nderes substituiert oder die prtielle Integrtion nders ngewendet werden. (In seltenen Fällen muss ds Integrl zuerst komplizierter gemcht werden, um es dnn lösen zu können, ber ds ist für Fortgeschrittene.) Es brucht etws Intuition, um jeweils die richtige Methode richtig uszuwählen... Mit etws Übung klppt ds ber schon. Einfch nicht ufgeben und usprobieren. 5

17 Beispiel. Wnn soll welche Methode wie ngewendet werden? Ein pr Beispiele: Funktion Methode Ws wird wie ersetzt? sin( 3x 2 + π 6 ) t cos(t) e y cos(y) 5x ln(x) ln ( ) 8 3x ln(x) x x 2 cos(x) (3x 2 5) 6 6

18 4 Uneigentliche Integrle Frgestellung: Knn mn eine nicht beschränkte Fläche berechnen? Ws pssiert, wenn die Integrtionsgrenzen unendlich oder Polstellen der Funktion sind? Fll : Knn mn die Fläche unter dem Grphen von f(x) uf dem Intervll [A, [ messen? A Wenn N lim f(x) dx N A existiert, dnn nennt mn dies ein uneigentliches Integrl und schreibt: A f(x) dx Beispiel. Wir lösen ds Integrl N x n dx = lim x e x dx. ex n xe x dx mit prtieller Integrtion: f(x) = x f (x) = g (x) = e x g(x) = e x 7

19 N N xe x dx = xe x + N e x dx = Ne N e N ( e ) = e N (N +)+ Wegen lim N ( e N (N +)) existiert der Grenzwert und es gilt: xe x dx = lim N N xe x dx =. Fll 2: Knn mn die Fläche unter dem Grphen von f(x) uf einem Intervll messen, welches eine Polstelle bei A beinhltet? B Anlog zum ersten Fll: Wenn B lim α A α existiert, dnn existiert ds uneigentliche Integrl: f(x) dx B A f(x) dx 8

20 Beispiel. Betrchte dx = lim dx. D x ε ε x ε dx = 2 x x ε = 2 2 ε und lim ε ε =, folgt, dss x dx = 2 existiert. Beispiel. Betrchte x dx = lim ε ǫ x dx. D ε x dx = ln(x) ε = ln() ln(ε) = ln(ε) für ε, existiert x dx nicht. 9

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Mathematik. Ingo Blechschmidt. 22. Januar 2007

Mathematik. Ingo Blechschmidt. 22. Januar 2007 Mthemtik Ingo Blechschmidt 22. Jnur 2007 Inhltsverzeichnis I Mthemtik 2 1 Anlysis 2 1.1 Stetigkeit und Differenzierbrkeit........... 2 1.1.1 Stetigkeit..................... 2 1.1.2 Differenzierbrkeit................

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Differential- und Integralrechnung: eine kurze Wiederholung

Differential- und Integralrechnung: eine kurze Wiederholung Differentil- und Integrlrechnung: eine urze Wiederholung Dvid Wozbl 8. September 8 Zusmmenfssung Die folgenden Seiten sind ls urze Wiederholung bzw Einführung in die Differenzil- und Integrlrechnung zu

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ...

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ... Kpitel 7 Ds Riemnn Integrl 7.1 Unter und Obersummen 7.2 Riemnn Integrl 7.3 Riemnnsche Summen 7.4 Rechenregeln 7.5 Differentition und Integrtion 7.6 Die L p Normen 7.1 Unter und Obersummen Unter einer Prtition

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

1 Ergänzungen zur Differentialrechnung

1 Ergänzungen zur Differentialrechnung $Id: nlytisch.te,v 1.3 2011/04/13 11:01:11 hk Ep $ 1 Ergänzungen zur Differentilrechnung Dieses einleitende Kpitel wollen wir verwenden um den Anschluss n ds vorige Semester herzustellen. Eine direkte

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3 2.5 Algebr Inhltsverzeichnis Fktorisieren 2. Terme fktorisieren...................................... 2.2 (-) usklmmern....................................... 2.3 Terme mit Klmmern fktorisieren..............................

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Integrieren kurz und bündig

Integrieren kurz und bündig mthe online Skripten http://www.mthe-online.t/skripten/ Integrieren kurz und bündig Frnz Embcher Fkultät für Mthemtik der Universität Wien E-mil: frnz.embcher@univie.c.t WWW: http://homepge.univie.c.t/frnz.embcher/

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10 Mthemtik I für E-Techniker C. Erdmnn WS /, Univerität Rotock,. Vorleungwoche Zutzmteril zur Mthemtik I für E-Techniker Übung Uneigentliche Integrle Die Funktion f ei für x definiert und in jedem Intervll

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Wie wirkt sich eine reiserhöhung für Gut uf die konsumierte Menge n us: Bzw.: d (,, ) h (,, V ) 2 V 0,5 0,5 Für die Unkompensierte Nchfrgefunktion gilt:

Mehr

Mathematik für Biologen

Mathematik für Biologen Vorbskript zur Vorlesung Mthemtik für Biologen Wintersemester 05/ 6 Prof. Dr. Helmut Mier Dr. Hns- Peter Reck Institut für Zhlentheorie und Whrscheinlichkeitstheorie Universität Ulm Inhltsverzeichnis Grundlgen

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Facharbeit über algebraische Gleichungen vierten Grades

Facharbeit über algebraische Gleichungen vierten Grades Fchrbeit über lgebrische Gleichungen vierten Grdes inkl. der Crdni schen Formeln und dem Beweis der Formeln. Verfßt von Ing. Wlter Höhlhubmer im Oktober ergänzt im Juli und August und erweitert im Dez.

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung In der Differentilrechung estnd die ufge u drin, zu einer gegeenen Funktion f deren leitungsfunktion

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen

Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen www.mthe-ufgben.com Lösungen zum Pflichtteil (ohne GTR und Formelsmmlung) Gebrochenrtionle Funktionen Aufgbe : ) wgr. Asymptote: y, b) wgr. Asymptote: y 0 senkr. Asymptote: x - mit VZW senkr. Asymptote:

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr