Modellierung und Simulation mechatronischer Systeme

Größe: px
Ab Seite anzeigen:

Download "Modellierung und Simulation mechatronischer Systeme"

Transkript

1 Prüfungsklausur im Fach Modellierung und Simulation mechatronischer Systeme 12. August 2013 Name: Vorname: Matrikelnummer: Zugelassene Hilfsmittel: Taschenrechner, Schreib- und Zeichenwerkzeug (kein roter Stift, kein Bleistift) Das Mitbringen nicht zugelassener Hilfsmittel wie Schriftstücke oder lose Blätter gilt als Täuschung und führt zur Nichtanerkennung der Klausur. Telefone, PDAs und andere Kommunikationsmittel sind auszuschalten! Bitte beachten: 1. Schreiben Sie auf dieses Deckblatt Ihren Namen und Ihre Matrikelnummer. 2. Alle Lösungen samt Lösungsweg (Begründungen) sind in eindeutiger Weise an den gekennzeichneten Stellen einzutragen. Viel Erfolg! 1 / 16

2 Aufgabe 1 In der nachfolgenden Tabelle sind zehn physikalische Größen aufgelistet. Kennzeichnen Sie jeweils durch Ankreuzen, ob es sich um eine mengenartige oder um eine nicht-mengenartige Größe handelt. Größe Elektrische Spannung Elektrische Leistung Temperatur Volumen Drehimpuls Drehmoment Dichte Kinetische Energie Winkelgeschwindigkeit Molare Masse (= stoffspezifische Masse in kg/mol; 1 Mol 6,02*10^23 Teilchen) mengenartig nichtmengenartig 2 / 16

3 Aufgabe 2 Nachfolgend sind vier technische Systeme skizziert. Stellen Sie die jeweils geforderte Bilanz für die eingezeichnete Bilanzhülle auf. Vereinfachen Sie die Bilanzgleichung anschließend, soweit dies möglich ist. Die verwendeten Formelzeichen haben folgende Bedeutungen: M: Drehmoment : Dichte C: elektr. Kapazität : Winkelgeschwindigkeit i: elektr. Strom m: Masse J: Massenträgheitsmoment R: elektr. Widerstand c: Federsteifigkeit q V : Volumenstrom L: elektr. Induktivität d: Dämpfungskonstante a) Rotierende Massen: Stellen Sie eine Drallbilanz auf. (Bezugsachse: Welle; Zählrichtung des Dralls: mit ). Schwungmassen auf masseloser Welle Bilanzhülle M 1, J 1 J 2 M 2 b) Flüssigkeitsbehälter: Stellen Sie eine Massenbilanz auf. q V,1 Bilanzhülle Flüssigkeit konstanter Dichte q V,2 3 / 16

4 c) Elektrisches System: Stellen Sie eine Ladungsbilanz auf. d) Mechanisches System: Stellen Sie eine Impulsbilanz (für m) auf. Zum Zeitpunkt t = 0 sei das System in Ruhe. x(t) sei die Auslenkung von m zum Zeitpunkt t bezogen auf die Position x 0 = x(t = 0). z(t) entsprechend die Auslenkung des unteren Angriffspunkts bezogen auf z 0 = z(t = 0). 4 / 16

5 Aufgabe 3 a) Gegeben ist ein System mit der Eingangsgröße u(t) und der Ausgangsgröße y(t), das durch folgende Gleichung beschrieben wird: 3 2 d y d y dy a b c d y u. 3 2 dt dt dt Zeichnen Sie ein Signalfluss-orientiertes Blockschaltbild, das die obige Gleichung in der Art eines Simulink -Modells implementiert. Schreiben Sie die einzustellenden Parameter in Abhängigkeit der Koeffizienten a, b, c und d zu den entsprechenden Blöcken. Führen Sie die Eingangsgröße auf der linken Seite und die Ausgangsgröße auf der rechten Seite heraus. Verwenden Sie keinen Differenzierblock! 5 / 16

6 b) Gegeben ist ein System mit der Eingangsgröße u(t) und der Ausgangsgröße y(t), das durch folgende Gleichung beschrieben wird: 2 d y dy p q r y u 2 dt dt Zur Implementierung mittels des Simulink -Blocks State-Space soll das System in eine Zustandsraumdarstellung überführt werden: x A x B u ; y C x D u. Geben Sie die Matrizen A, B, C und D vollständig an. c) Geben Sie zum folgenden Simulink -Blockschaltbild die zugehörige (integralfreie) Differentialgleichung der Ausgangsgröße y(t) in Abhängigkeit von der Eingangsgröße u(t) an. 6 / 16

7 Aufgabe 4 Mit Hilfe der Modellierungssprache Modelica können objektorientierte Modelle dynamischer Systeme erstellt werden, beispielweise Modelle elektrischer Netzwerke mit Widerständen, Kondensatoren und Induktivitäten, etc. (vgl. Bild 4.1). Bild 4.1: Beispiel eines elektrischen Netzwerkmodells in Modelica Hinweis: Verwenden Sie im Folgenden stets den Datentyp real bei Variablendeklarationen. a) Ergänzen Sie die erforderlichen Variablendeklarationen im Modelica -Text der verwendeten Schnittstellen-Klasse Pin für elektrische Netzwerke. name name connector Pin (hier Deklarationen ergänzen) end Pin; b) Vervollständigen Sie die Modellklasse Inductor so, dass diese das Strom- und Spannungsverhalten von Induktivitäten in elektrischen Netzwerken beschreibt. Achten Sie bei der Variablendeklaration auch darauf, ob die jeweilige Variable vom Nutzer zugreifbar sein sollte oder nicht. (Hinweis: Verzichten Sie auf Vererbung.) model Inductor Pin p positiver Pin ; Pin n negativer Pin ; (hier Deklarationen ergänzen) equation (hier Gleichungen ergänzen) end Inductor; 7 / 16

8 c) Welche Aufgabe hat die Modellklasse, die der im Bild gezeigten Komponente ground zugrunde liegt? Ergänzen Sie auch hier den Modelica -Text. Modelica -Implementierung: name model Ground Pin p positiver Pin ; equation (hier Gleichung[en] ergänzen) end Ground; 8 / 16

9 Aufgabe 5 Im Folgenden ist ein E/A-Automat als Tabelle vorgegeben. Die Menge der Eingaben ist E = {u 1, u 2}, die Menge der Ausgaben A = {y 1, y 2}. Der Anfangszustand ist z 1. {z(k+1), y(k)} bei u(k) z(k) u 1 u 2 z 1 z 4, y 2 z 2, y 2 z 2 z 1, y 1 z 3, y 1 z 3 z 1, y 1 z 4, y 2 z 4 z 3, y 1 z 1, y 1 a) Geben Sie den Automatengraphen an. b) Handelt es sich um einen Mealy-Automaten oder um einen Moore-Automaten? Begründen Sie Ihre Antwort. 9 / 16

10 c) Ist der Automat vollständig? Begründen Sie Ihre Antwort. d) Mealy- und Moore-Automaten können ineinander überführt werden. Geben Sie die Automatentabelle an, die man nach Transformation in den anderen Automatentyp erhält. 10 / 16

11 Aufgabe 6 Gegeben ist ein zyklisches Fertigungssystem mit folgenden Eigenschaften: Ein Fertigungszyklus besteht aus 4 aufeinanderfolgenden Zuständen Z1, Z2, Z3, Z4. Anfangszustand ist Z1. Tritt ein Fehler auf, wechselt das System in den Fehlerzustand F. Aus dem Fehlerzustand F wechselt das System in Z1. (Die hier notwendige Initialisierung wird vernachlässigt.) Die Wahrscheinlichkeit, dass von einem der 4 Fertigungszustände korrekt zum nächsten gewechselt wird, beträgt 90 %. Die Rückkehrwahrscheinlichkeit vom Fehlerzustand F in den Zustand Z1 beträgt 75 % (Reparaturquote). a) Geben Sie den Automatengraphen des stochastischen Automaten an. 11 / 16

12 b) Formulieren Sie die entsprechende Matrixdarstellung des Automaten. c) Wie kann man bei gegebenem Anfangszustand berechnen, mit welcher Wahrscheinlichkeit sich das System nach 15 Fertigungszyklen nicht in einem Fehlerzustand befindet? 12 / 16

13 Aufgabe 7 Es soll die Steuerung einer Mikrowelle in Form eines hierarchischen Statecharts mit drei Hierarchieebenen entworfen werden. Eingangsseitig verarbeitet die Steuerung die Events On_Off und Start_Pause sowie das Datensignal High. (Das Event Clock dient lediglich als periodisches Triggersignal aus Simulink und muss im Folgenden nicht beachtet werden.) Ausgangsseitig werden die beiden Datensignale Output und Light beschaltet. (Vgl. Bild 7.1) Bild 7.1: Simulink -Modell mit Statechart Microwave Die Mikrowelle wird durch das Event On_Off ein- bzw. ausgeschaltet. Im eingeschalteten Zustand brennt die Beleuchtung, die Mikrowelle wechselt durch das Event Start_Pause zwischen Heizbetrieb und Pausenbetrieb. Im Heizbetrieb beeinflusst das Datensignal High, ob die Speisen mit 300 Watt (bei High == 0) oder mit 600 Watt (bei High == 1) erhitzt werden. Output gibt die Heizleistung in Watt zurück {0; 300; 600}, Light den Zustand der Beleuchtung {0; 1}. Modellieren Sie die Steuerung der Mikrowelle als hierarchisches Statechart. Orientieren Sie sich an der Simulink /Stateflow -Notation. Auf der obersten Hierarchieebene soll das Statechart die beiden exklusiven Zustände Off und On haben. Auf der mittleren Hierarchieebene soll das Statechart die beiden exklusiven Zustände Pause und Heating haben. Auf der unteren Hierarchieebene unterscheidet die Steuerung die Zustände Low_Power und High_Power. Wählen Sie Initialzustände, falls nötig. 13 / 16

14 14 / 16

15 Aufgabe 8 Eine Masse der Größe m kann sich unter dem Einfluss einer gegebenen Kraft F(t) und einer Reibungskraft F R in positiver und negativer x-richtung bewegen (Bild 8.1a). x H max F R m F(t) = u(t) G 0 x G 0 H max a. Masse mit Haft-/Gleitreibung b. Kennlinie der Reibungskraft Bild 8.1: Masse mit Reibung Befindet sich die Masse im Ruhezustand, so kann sich zwischen ihr und dem Untergrund eine Haftreibungskraft zwischen H max und +H max aufbauen. Übersteigt der Betrag der Kraft F(t) den Wert der maximalen Haftreibungskraft H max, so setzt sich die Masse in Bewegung und unterliegt von nun an der Gleitreibungskraft G sgn( x ) d x 0 (Bild 8.1b). Umgekehrt bleibt die sich bewegende Masse haften, wenn der Betrag ihrer Geschwindigkeit einen Wert ε 0 ( ε 0 ) unterschreitet. a) Ein hybrider Automat soll das oben beschriebene Verhalten der Masse erzeugen. Die kontinuierliche Eingangsgröße u sei stets die Kraft F. Die interessierenden kontinuierlichen Ausgangsgrößen y 1, y 2 sollen die Position und Geschwindigkeit der Masse in x- Richtung sein. Die kontinuierlichen Anfangsbedingung seien x ( 0) 1m und x ( 0) 1m/s. Geben Sie den Automatengraphen an. Notieren Sie in jedem diskreten Zustand die jeweiligen kontinuierlichen Zustandsgleichungen und an jedem diskreten Zustandsübergang die zugehörige Übergangsbedingung sowie den Anfangszustand des neu aktivierten kontinuierlichen Systems. b) Skizzieren Sie qualitativ die Verläufe der unter a) genannten kontinuierlichen Ausgangsgrößen sowie der Größe z, die den aktiven diskreten Automatenzustand angibt. Die kontinuierlichen Anfangsbedingungen seien wieder x ( 0) 1m und x ( 0) 1m/s, die Eingangsgröße F / 16

16 Lösung zu a): Lösung zu b): x t x t z 16 / 16 t

Modellierung und Simulation mechatronischer Systeme

Modellierung und Simulation mechatronischer Systeme Name: Vorname: Prüfungsklausur im Fach Modellierung und Simulation mechatronischer Systeme 8. August 2011 Aufgabe 1 In der nachfolgenden Tabelle sind zehn physikalische Größen aufgelistet. Kennzeichnen

Mehr

Modellierung und Simulation mechatronischer Systeme

Modellierung und Simulation mechatronischer Systeme Name: Vorname: Prüfungsklausur im Fach Modellierung und Simulation mechatronischer Systeme 08. August 014 Aufgabe 1 Nachfolgend sind vier technische Systeme skizziert. Stellen Sie die jeweils geforderte

Mehr

Mechatronische Elemente und Systeme II Teil B

Mechatronische Elemente und Systeme II Teil B Prüfungsklausur im Fach Mechatronische Elemente und Systeme II Teil B 27. Juli 2009 HINWEIS: Die nachfolgenden Klausuraufgaben Mechatronische Elemente und Systeme II Teil B stellen nur die Hälfte der Prüfungsaufgaben

Mehr

Modellierung und Simulation mechatronischer Systeme. Übung 5 Kontinuierliche Simulationsmodelle (Dymola /Modelica )

Modellierung und Simulation mechatronischer Systeme. Übung 5 Kontinuierliche Simulationsmodelle (Dymola /Modelica ) Modellierung und Simulation mechatronischer Systeme Übung 5 Kontinuierliche Simulationsmodelle (Dymola /Modelica ) Aufgabe 1: Einführung in Dymola /Modelica Machen Sie sich mit den Grundfunktionen der

Mehr

Systemmodellierung. Teil Ereignisdiskrete Systeme

Systemmodellierung. Teil Ereignisdiskrete Systeme Prüfungsklausur Im Modul Systemmodellierung Teil Ereignisdiskrete Systeme 12. März 2018 Name: Vorname: Matrikelnummer: Zugelassene Hilfsmittel: Taschenrechner, Schreib- und Zeichenwerkzeug (kein roter

Mehr

Kapitel 2 Kontinuierliche Systemmodelle (II)

Kapitel 2 Kontinuierliche Systemmodelle (II) Mechatronische Modellierung Elemente und Simulation und Systeme II mechatronischer Teil Systeme B () Kapitel Kontinuierliche Systemmodelle (II) 6. Anwendungsbeispiele 7. Zustandsraumdarstellung 6. Anwendungsbeispiele

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1/3 Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am 06. 10. 2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer:

Mehr

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Probeklausur: Mechatronik und elektrische Antriebe

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Probeklausur: Mechatronik und elektrische Antriebe Prof. Dr. Ing. Joachim Böcker Probeklausur: Mechatronik und elektrische Antriebe 8.1.214 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (2) 2 (2) 3 (2) Punkte Gesamt Bearbeitungszeit:

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am U Graz, Institut für egelungs- und Automatisierungstechnik Schriftliche Prüfung aus Nichtlineare elektrische Systeme eil: Dourdoumas am.. Name / Vorname(n): Kennzahl/ Matrikel-Nummer.: erreichbare Punkte

Mehr

Lehrstuhl für Elektrische Antriebssysteme Technische Universität München Prof. Dr.-Ing. Dr.-Ing. h.c. D. Schröder

Lehrstuhl für Elektrische Antriebssysteme Technische Universität München Prof. Dr.-Ing. Dr.-Ing. h.c. D. Schröder Lehrstuhl für Elektrische Antriebssysteme Technische Universität München Prof. Dr.-Ing. Dr.-Ing. h.c. D. Schröder Arcisstraße 21 D-80333 München Email: eat@ei.tum.de Internet: www.eat.ei.tum.de Tel.: +49

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am U Graz, Institut für egelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Nichtlineare elektrische Systeme eil: Dourdoumas am.1.11 Name / Vorname(n): Kennzahl/ Matrikel-Nummer.: 1 3 erreichbare

Mehr

Kapitel 3 Ereignisdiskrete Systeme (III)

Kapitel 3 Ereignisdiskrete Systeme (III) Systemmodellierung Teil 1: Ereignisdiskrete Systeme Kapitel 3 Ereignisdiskrete Systeme (III) Modellierung mit E/A-Automaten Modellbildung mit Automaten Verfeinerte Modellbildung Beispiel: Fahrstuhltür

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am..9 Name / Vorname(n): Kennzahl/ Matrikel-Nummer.: erreichbare

Mehr

Mechatronik und elektrische Antriebe

Mechatronik und elektrische Antriebe Prof. Dr. Ing. Joachim Böcker Mechatronik und elektrische Antriebe 28.3.214 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (25) 2 (25) 3 (25) 4 (25) Gesamt Note Bearbeitungszeit: 12 Minuten

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen

Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen Aufgabe 1: Abi 1999 / AI Ein erhitzter Körper kühlt sich im Laufe der Zeit allmählich auf die konstante emperatur a (in C) seiner Umgebung

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 9.2.04 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 26.07.202 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) () 2 (7) 3 (4) 4 (2) 5 (3) Punkte Klausur

Mehr

1. Übung zur Vorlesung Steuer- und Regelungstechnik

1. Übung zur Vorlesung Steuer- und Regelungstechnik 1. Übung zur Vorlesung Steuer- und Regelungstechnik Aufstellen von DGL s, lineare und nichtlineare Systeme Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 10.2.03 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

Ingenieurinformatik II Numerik für Ingenieure Teil 2

Ingenieurinformatik II Numerik für Ingenieure Teil 2 Hochschule München, FK 03 MB SS 013 Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Ingenieurinformatik II Numerik für Ingenieure Teil Bearbeitungszeit : 60 Minuten Aufgabensteller : Dr. Reichl Hilfsmittel

Mehr

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am 22.11.2008 Universität des Saarlandes Aufgabe 1.1: Gegeben ist der schematische Aufbau eines Mischers: Auf den Antriebsstrang Antriebsstrang

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Experimentalphysik EP, WS 2013/14

Experimentalphysik EP, WS 2013/14 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 205 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 19.08.2008 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (16) 2 (23) 3 (22) 4 (21)

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 07.04.2009 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (16) 2 (23) 3 (22) 4 (21) 5 (18) Fachprüfung Leistungsnachweis

Mehr

Klausur. Grundlagen der Mechatronik

Klausur. Grundlagen der Mechatronik 21.02.2011 Klausur Grundlagen der Mechatronik Name: Matrikel-Nr.: Hinweise zur Bearbeitung: Die Klausur besteht aus 4 Aufgaben. Es sind alle Aufgaben zu bearbeiten. Die Bearbeitungszeit beträgt 120 Minuten.

Mehr

Bearbeitungszeit: 40 Minuten

Bearbeitungszeit: 40 Minuten Name: Matrikelnummer: Studiengang: Übungsleiter: Aufgabe: 1 2 Gesamt Punkte: Bearbeitungszeit: 40 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4,

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Haupttermin: Nach- bzw. Wiederholtermin: 08.0.2002 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: Formelsammlung/Tafelwerk

Mehr

Schwerpunktfach Physik und Anwendungen der Mathematik

Schwerpunktfach Physik und Anwendungen der Mathematik KANTONSSCHULE REUSSBÜHL MATURITÄTSPRÜFUNG 003 (Bv, Bh) Schwerpunktfach Physik und Anwendungen der Mathematik Bemerkungen: Zeit: 3 Stunden Jede vollständig gelöste Aufgabe wird mit 10 Punkten bewertet.

Mehr

Klausur im Modul Grundgebiete der Elektrotechnik I

Klausur im Modul Grundgebiete der Elektrotechnik I Klausur im Modul Grundgebiete der Elektrotechnik I am 25.02.203, 9:00 0:30 Uhr : E-Mail-Adresse: Studiengang: Vorleistung vor WS 202/3 berücksichtigen? Ja Nein Prüfungsdauer: 90 Minuten Zur Prüfung sind

Mehr

Modellierung und Simulation mechatronischer Systeme (MSS) Kapitel 4 Hybride Systeme

Modellierung und Simulation mechatronischer Systeme (MSS) Kapitel 4 Hybride Systeme Modellierung und Siulation echatronischer Systee () Kapitel 4 Hybride Systee Hybride Systee Definition: Systee, die sowohl einen kontinuierlichen als auch einen ereignisdiskreten Anteil enthalten Beide

Mehr

Aufgabe 1: Sprungantwort und Ortskurve

Aufgabe 1: Sprungantwort und Ortskurve Aufgabe 1: Sprungantwort und Ortskurve Gegeben sei ein Übertragungssystem mit der Eingangsgröße u(t) und der Ausgangsgröße x(t): u(t) Übertragungssystem x(t) Der Zusammenhang zwischen Eingangsgröße u(t)

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-B 22. Juli 2005 berlin Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Seite 1 von 18 Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Textaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 14.03.2012 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (22) 2 (24) 3 (17) 4 (17) 5 (20) Note

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 16.08.2011 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) 1 (14) 2 (20) 3 (22) 4 (20) 5 (24) Note

Mehr

Klausur zur Vorlesung. Grundlagen der Technischen Informatik (GTI) und. Grundlagen der Rechnerarchitektur (GRA)

Klausur zur Vorlesung. Grundlagen der Technischen Informatik (GTI) und. Grundlagen der Rechnerarchitektur (GRA) Klausur zur Vorlesung Grundlagen der Technischen Informatik (GTI) und Grundlagen der Rechnerarchitektur (GRA) Prof. Marco Platzner Fachgebiet Technische Informatik Universität Paderborn.3.2008 Teil : (GTI)

Mehr

Prüfungsklausur im Fach Automatisierungstechnik Juli Name: Vorname: Matrikelnummer: Aufgabe 1

Prüfungsklausur im Fach Automatisierungstechnik Juli Name: Vorname: Matrikelnummer: Aufgabe 1 Aufgabe 1 Prüfungsklausur im Fach Automatisierungstechnik 1 27. Juli 2010 Name: In einer petrochemischen Anlage führen je nach Tageszeit ständig 5 bis 10 Personen Wartungsarbeiten durch. Die Anlage verarbeitet

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Nichtlineare elektrische Systeme am 24. 10. 2008 Name / Vorname(n): Kenn-Matr.Nr.: 1 2 erreichbare Punkte 7 4 erreichte

Mehr

Gegeben sei folgendes lineare zeitinvariante Zustandsraummodell mit der Eingangsgröße u und dem Zustandsvektor x: dx

Gegeben sei folgendes lineare zeitinvariante Zustandsraummodell mit der Eingangsgröße u und dem Zustandsvektor x: dx 1 Teilklausur WS 15/16 Aufgabe 1 (6 Punkte) Gegeben sei folgendes lineare zeitinvariante Zustandsraummodell mit der Eingangsgröße u und dem Zustandsvektor x: [ ] [ ] 2 1 3 = Ax + bu = x + u dt 0 1 1 a)

Mehr

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018 +//6+ Prof. Dr.-Ing. B. Schmülling Klausur Grundlagen der Elektrotechnik I im Wintersemester 7 / 8 Bitte kreuzen Sie hier Ihre Matrikelnummer an (von links nach rechts). Vor- und Nachname: 3 4 3 4 3 4

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich

Mehr

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand? 1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die

Mehr

Bachelorprüfung in. Grundlagen der Elektrotechnik

Bachelorprüfung in. Grundlagen der Elektrotechnik Bachelorprüfung in Grundlagen der Elektrotechnik für Wirtschaftsingenieure und Materialwissenschaftler Montag, 24.03.2015 Nachname: Vorname: Matrikelnr.: Studiengang: Bearbeitungszeit: 90 Minuten Aufg.-Nr.

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2 NIVERSITÄT LEIPZIG Institut für Informatik Prüfungsaufgaben Klausur Wintersemester 2/21 Abt. Technische Informatik Prof. Dr. do Kebschull Dr. Paul Herrmann Dr. Hans-Joachim Lieske Datum: 6. Februar 21

Mehr

Experimentalphysik EP, WS 2012/13

Experimentalphysik EP, WS 2012/13 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten

Mehr

Grundlagen der Elektrotechnik III

Grundlagen der Elektrotechnik III 1 Vordiplomprüfung Grundlagen der Elektrotechnik III 06. April 2006 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Hochschule München, FK 03 WS 2015/16. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz. Zulassung geprüft Note :

Hochschule München, FK 03 WS 2015/16. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz. Zulassung geprüft Note : Hochschule München, FK 03 WS 2015/16 Ingenieurinformatik Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Zulassung geprüft Note : Die Prüfung ist nur dann gültig, wenn Sie die erforderliche Zulassungsvoraussetzung

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2012 Grundlagen der Elektrotechnik I Datum: 17. September 2012 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen FB IW - Meschede Ingenieurmathematik (MB 0.09.018 Klausur Ingenieurmathematik - Lösungen Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 3 4 5 6 7 8 Summe Note Punkte Die Klausur

Mehr

Klausur Wirtschaftsmathematik (alte PO)

Klausur Wirtschaftsmathematik (alte PO) Vorname: Nachname: Matrikel-Nr.: Studiengang: Versuch Nr.: Klausur Wirtschaftsmathematik (alte PO) Prüfer Etschberger Prüfungsdatum 17. November 2018 Prüfungsort Augsburg Studiengang Wing Bearbeitungszeit:

Mehr

Mechatronik und elektrische Antriebe

Mechatronik und elektrische Antriebe Prof. Dr. Ing. Joachim Böcker Mechatronik und elektrische Antriebe 03.09.2014 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (30) 2 (18) 3 (22) Gesamt (60) Note Bearbeitungszeit: 120 Minuten

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Behrang Monajemi Nejad Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Bachelorprüfung MM I 2. März Vorname: Name: Matrikelnummer:

Bachelorprüfung MM I 2. März Vorname: Name: Matrikelnummer: Kurzfragen Bachelorprüfung MM I Kurzfragen Vorname: Matrikelnummer: Punkte Kurzfragen Aufgabe Erreichbare Punkte Erreichte Punkte 1 8 2 8 3 8 4 8 5 8 Summe 40 Kurzfragen Seite 3/11 1.3 Energiespeicher

Mehr

Probeklausur Elektronik (B06)

Probeklausur Elektronik (B06) Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:

Mehr

Diplomvorprüfung SS 2009 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2009 Fach: Elektronik, Dauer: 90 Minuten Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung Elektronik Seite 1 von 8 Diplomvorprüfung SS 2009 Fach: Elektronik,

Mehr

A1 A2 A3 A4 A5 Summe

A1 A2 A3 A4 A5 Summe 3. Klausur Grundlagen der Elektrotechnik I-B 17. Juli 2003 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Vordiplomprüfung Grundlagen der Elektrotechnik III

Vordiplomprüfung Grundlagen der Elektrotechnik III Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008

Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008 Klausur Physik für Pharmazeuten und Biologen (PPh) WiSe 07/08 11. Februar 2008 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min Bitte NICHT mit Bleistift schreiben! Nur Ergebnisse auf

Mehr

2. Übung zur Vorlesung Steuer- und Regelungstechnik

2. Übung zur Vorlesung Steuer- und Regelungstechnik 2. Übung zur Vorlesung Steuer- und Regelungstechnik Aufstellen von DGL s, lineare und nichtlineare Systeme Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Seite 1 von 20 Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Textaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger

Mehr

Gedächtnisprotokoll GGET 3 Klausur Vorwort:

Gedächtnisprotokoll GGET 3 Klausur Vorwort: Gedächtnisprotokoll GGET 3 Klausur 2010 Vorwort: Es handelt sich wieder einmal um ein Gedächtnisprotokoll, das direkt nach der Klausur erstellt wurde. Die Aufgaben entsprechen also in grober Näherung dem

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12.

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12. Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12.217 Arbeitszeit: 15 min Aufgabe

Mehr

Musterklausur 1 zu Signal- und Systemtheorie I 5. Januar 2013

Musterklausur 1 zu Signal- und Systemtheorie I 5. Januar 2013 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Musterklausur 1 zu Signal- und Systemtheorie I 5. Januar 2013 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Klausur Physik für Chemiker

Klausur Physik für Chemiker Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Winter Semester 2018 Prof. Dr. Mario Agio Klausur Physik für Chemiker Datum: 18.3.2019-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1

Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1 Anwendung von N3 Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Die Beschleunigung a des Zuges Massen zusammen. Die Antwort Fig. 1 sei konstant, die Frage ist, wie

Mehr

Klausur Experimentalphysik I

Klausur Experimentalphysik I Universität Siegen Winter Semester 2017/2018 Naturwissenschaftlich-Technische Fakultät Prof. Dr. Mario Agio Department Physik Klausur Experimentalphysik I Datum: 21.3.2018-10 Uhr Name: Matrikelnummer:

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Tetaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger Taschenrechner,

Mehr

Übung 4.1: Dynamische Systeme

Übung 4.1: Dynamische Systeme Übung 4.1: Dynamische Systeme c M. Schlup, 18. Mai 16 Aufgabe 1 RC-Schaltung Zur Zeitpunkt t = wird der Schalter in der Schaltung nach Abb. 1 geschlossen. Vor dem Schliessen des Schalters, betrage die

Mehr

Endliche Automaten 1 WS 00/01. Steuerautomaten

Endliche Automaten 1 WS 00/01. Steuerautomaten Endliche Automaten 1 WS 00/01 Steuerautomaten Steuerautomaten dienen zur Erzeugung von Steuersignalen. Die erzeugten Steuersignale hängen vom Bearbeitungsstand ("Zustand") der Aufgabe und von Eingangsgrößen

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

Vordiplomsklausur in Physik Montag, 25. Juli 2005, :00 Uhr für den Studiengang: Maschinenbau/Mechatronik-Intensiv

Vordiplomsklausur in Physik Montag, 25. Juli 2005, :00 Uhr für den Studiengang: Maschinenbau/Mechatronik-Intensiv Institut für Physik und Physikalische Technologien 25.07.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Montag, 25. Juli 2005, 09.00-11:00 Uhr für den Studiengang: Maschinenbau/Mechatronik-Intensiv

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Thema: Schwingung eines Hohlkörpers

Thema: Schwingung eines Hohlkörpers Abitur 9 Physik Klausur Hannover, 75 arei LK Semester Bearbeitungszeit: 9 min Thema: Schwingung eines Hohlkörpers 1 Aufgabe In einem Hohlkörper befindet sich ein Magnet (Abb1) In seiner Ruhelage schwebt

Mehr

Aufgabe 2 Relaxationsoszillator

Aufgabe 2 Relaxationsoszillator 6 6 Aufgabe elaxationsoszillator 6 Punkte) Die Bauelementewerte der folgenden Schaltung werden in dieser Aufgabe so bestimmt, dass sich eine Schwingung mit vorgegebener Amplitude und Frequenz ergibt. N

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik TECHNISCHE FAKULTÄT 11. Übung zur Vorlesung Grundlagen der Technischen Informatik Aufgabe 1 (VHDL) Gegeben ist ein binärer Taschenrechner (siehe Abb. 1), der als Eingabe die Tasten 0, 1, +, - und = und

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003 Abschlussprüfung an Fachoberschulen im Schuljahr 00/00 Haupttermin: Nach- bzw. Wiederholtermin: 0.09.00 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 10 Minuten Hilfsmittel: Formelsammlung/Tafelwerk

Mehr

Aufgabe III: Die Erdatmosphäre

Aufgabe III: Die Erdatmosphäre Europa-Gymnasium Wörth Abiturprüfung 212 Leistungskurs Physik LK2 Aufgabe III: Die Erdatmosphäre Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Taschenrechner

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1

Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1 (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 16.03.2016 Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1 Bearbeitungszeit: 90 Minuten

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 6.3.6 ame: Matrikel-r: Studiengang: Fachprüfung eistungsnachweis Aufgabe: 3 4 5 Σ ote Zugelassene Hilfsmittel: eine selbsterstellte,

Mehr

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl.

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl. Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Sommtersemester 2013 6.8.2013 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Aufgaben 2 Translations-Mechanik Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Lernziele - den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers anwenden können. - das

Mehr

Klausur im Modul Grundgebiete der Elektrotechnik I

Klausur im Modul Grundgebiete der Elektrotechnik I Klausur im Modul Grundgebiete der Elektrotechnik I am 09.03.2015, 9:00 10:30 Uhr Matr.Nr.: E-Mail-Adresse: Studiengang: Vorleistung vor WS 14/15 berücksichtigen? Ja Nein Prüfungsdauer: 90 Minuten Zur Prüfung

Mehr