Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi"

Transkript

1 Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS Juni 200

2 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f ) (x) = f (x + z) die um z geshiftete Funktion, so hat diese die Fouietansfomiete (T z f )(y) = 2π = 2π f (x + z) e iyx dx f (x) e iy(x z) dx = e iyz f (y), d.h. f (y) und (T z f )(y) untescheiden sich nu um einen Phasenfakto, andes gesagt: f (y) = (T z f )(y) Analog gilt das fü die diskete Fouietansfomation

3 f : Z C ist eine peiodische Funktion mit Peiode ( Z), wenn f (x + ) = f (x) fü alle x Z Meist bezeichnet man als Peiode von f das kleinste positive mit diese Eigenschaft Beispiel: fü f : x a x mod ist die Odnung von a modulo, also od (a), die Peiode Sei f peiodisch mit Peiode, fü die diskete FT de Odnung ist f (y) = 0 x< ω yx f (x) f (x) = Dann gilt fü (T z f ) (x) = f (x + z): (T z f )(y) = ω yz f (y) 0 y< ω yx f (y)

4 Intepetation im Kontext des Quantencomputing f : Z C sei peiodische Funktion mit Peiode > 0 die f (x) (0 x < ) bestimmen f vollständig, sie seien O-Basisvektoen eines l-qubit-raumes mit 2 l Betachte unitäe (Shift-)Tansfomationen { f (x + z mod ) (0 x < ) U z : f (x) f (x) ( x < 2 l ) Betachte Vektoen f (y) = ω yx f (x) f (x) = 0 x< f (y) ist Eigenvekto von U z mit Eigenwet ω yz Peiodenbeechnung wie Odnungsbeechnung mittels Phasenschätzung! 0 y< ω xy f (y)

5 Algoithmus zu Peiodenbeechnung Initialisieung : 0 t 0 l mit t = O(l + /ε), T = 2 t Übelageung : T x 0 U : x y x y f (x) Invese QFT T : Messung : Kettenbuchappox. : 0 x<t T T ỹ/ 0 x<t x f (x) = 0 y< 0 x<t 0 y< ỹ/ f (y) ω yx x f (y)

6 Zweidimenensionale diskete Fouietansfomation de Odnung fü Funktionen f : Z Z C f (u, v) = f (x, y) = 0 x< 0 y< 0 u< 0 v< ω (ux+vy) f (x, y) ω ux+vy f (u, v)

7 f : Z Z C hat Peiode (, s) modulo, falls (x, y) Z Z : f (x +, y + s) = f (x, y) Dann gilt insbesondee (x, y) Z Z : f (x, y) = f (0, y xs) Folgeung fü die Fouietansfomiete f (u, v) = = 0 x< 0 y< 0 y< ω (ux+vy) f (x, y) f (0, y) 0 x< ω (ux+v(sx+y))

8 und weite wobei f (u, v) = 0 x< und somit 0 y< ω (u+sv)x = f (0, y) ω vy { 0 x< ω (u+sv)x falls u + sv 0 mod 0 sonst { f (u, v) = 0 y< ω vy f (0, y) falls u + sv 0 mod 0 sonst f (x, y) = 0 v< ω svx+vy f ( sv, v)

9 Ist f : Z Z C eine (, s)-peiodische Funktion, so sind die von 0 veschiedenen Fouiekoeffizienten f (u, v) auf die Geade u + sv 0 mod, also de Geaden mit Steigung /s duch den ullpunkt, konzentiet (und umgekeht!) Etwas abstakte fomuliet: betachte die Guppe G = Z Z H s := {(x, y) G; sx = y} ist eine Unteguppe von G Hs := {(u, v) G; u = sv} = H /s ist die dazu komplementäe Unteguppe von G: G = H s H s G/H s H s f hat Peiode (, s) f konstant auf den H s -ebenklassen f duch Wete auf einem Repäsentantensystem fü die H s -ebenklassen, also auf Hs, eindeutig bestimmt f ist auf Hs konzentiet

10 Sind a, b, > 0 ganze Zahlen, dann nennt man die kleinste positive Zahl s mit a s = b mod (falls sie existiet) den disketen Logaithmus modulo von b zu Basis a : s = log a b mod Es sind keine effizienten klassischen Algoithmen (auch pobabilistische) zu Beechnung von disketen Logaithmen bekannt Die besten Algoithmen fü diskete Logaithmen modulo und zu Faktoisieung von haben die gleiche asymptotische Komplexität (das ist eine empiische Feststellung!) Die vemeintliche Schwieigkeit, diskete Logaithmen zu beechnen, ist Sicheheitshypothese fü Kyptosysteme, ebenso wie die vemeintliche Schwieigkeit des Faktoisieens

11 Betachte die Funktion f : Z Z Z : (x, y) b x a y mod Diese Funktion ist peiodisch mit de Peiode (, s), d.h. f (x + l, y ls) = b x+l a y ls = b x a y = f (x, y) mod Damit egibt sich (Indices und Exponenten mod) f (x, y) = ω svx+vy f (sv, v) 0 v< Die Beechnung von log a b mod setzt voaus, dass = od a bekannt ist Die unitäe Tansfomation U : x y z x y z f (x, y) fü f : (x, y) b x a y mod muss ealisieba sein

12 Shos Algoithmus zu Beechnung des disketen Logaithmus Initialisieung : 0 t 0 t 0 l mit t = O( + /ε) Übelageung : x y 0 T U : Invese QFT T T : Messung : Kettenbuchappox. : T T T 0 x,y<t 0 x,y<t 0 v< 0 x,y<t 0 v< 0 v< ( sv/, ṽ/) s x y f (x, y) = 0 x<t ω svx+vy x y f (sv, v) = ω svx x sv/ ṽ/ f (sv, v) 0 y<t ω vy y f (sv, v)

13 hidden subgoup: die Poblemstellung allgemein: G sei Guppe, H unbekannte Unteguppe von G ρ : G R sei eine Funktion, die auf den ebenklassen von H konstant ist und diese diskiminiet x, y G : ρ(x) = ρ(y) x y H Aufgabe: bestimme ein Ezeugendensystem von H speziell: G = B m, H ein unbekannte Unteaum von G ρ : G R eine Funktion, die auf den ebenklassen von H konstant ist und diese diskiminiet Aufgabe: bestimme eine Basis von H

14 Lösungsstategie es genügt, effizient eine Basis von zu finden (dabei ist H = { y G ; y h = 0 ( h H) } (x,..., x m ) (y,..., y m ) := x y x 2 y 2 x m y n das übliche Skalapodukt auf G). Daaus kann man mit klassischen Mitteln leicht eine Basis von H beechnen. es genügt, effizient Elemente von H gleichveteilt ezeugen zu können

15 Zu Komplexität (vgl. Simons Algoithmus) Allgemein: wähle in B n unabhängig und gleichveteilt n + m (Spalten-)Vektoen v, v 2,..., v n+m und betachte die Matix.. w V = v v n+m =. = W n.. w n Die Matix bestehend aus den esten k Zeilen von V = W n sei w W k =. w k Dann gilt ang W k = k ang W k = k w k / L(W k ) wobei L(W k ) = Zeilenaum von W k

16 (Fots.) Mit P[...] fü Wahscheinlichkeit von [... ] gilt ) P [ang W k = k] = P [ang W k = k ] ( 2k 2 n+m und somit pe Induktion P [ang W k = k] = 0 j<k ) ( 2j 2 n+m ( k n) und schliesslich P [ang W n = n] = 0 j<n ( 2j 2 n+m ) ( 2 n+m + + ) 2 m+ 2 m

17 Lemma: { h H ( )h y H falls y H = 0 sonst Beweis fü y H ist die Aussage kla fü y H gibt es ein k H mit k y 0, also h H( ) h y = h H( ) (h k) y = ( ) k y h H( ) h y = h H dahe muss h H ( )h y = 0 sein T sei ein Repäsentantensystem fü die ebenklassen von H (beachte: T H = G = 2 m ) ( ) h y

18 Gleichveteilte Ezeugung von Elementen aus H mittels QC Initialisieung, H m : m b ρ(b) simultan : H m : Messung : 2 m 2 m b G t T b H b 0 b G b ρ(b) = 2 m 2 m t b ρ(t) t T b H ( ) (t b) y y ρ(t) y G = 2 m t T y G( ) t y ( ) b y y ρ(t) b H = H 2 m ( ) t y y ρ(t) t T y H y mit Wkeit ( ) 2 H ( )t y 2 m = t T T H2 2 2m = H

19 Abschliessende Bemekungen Deutsch-Josza, Odnungs- und Peiodenbeechnung und diskete Logaithmus lassen sich als hidden-subgoup-pobleme auffassen Das Lösungsvefahen lässt sich auf beliebige abelsche Guppen übetagen De histoische Statpunkt fü diese Entwicklung wude von D. S. Simon (994) gesetzt, de das hidden-subgoup-poblem fü eindimensionale Unteäume von B m betachtet hat; P. Sho (994) hatte anschliessend die Idee, die Hadamad-Tansfomation übe B m duch die Fouie-Tansfomation übe Z fü die Odnungsbeechnung (und damit fü die Faktoisieung) zu vewenden

20 D. R. Simon, On the powe of quantum computation, IEEE Poc. 35th Ann. Symp. Foundations of Compute Science, Los Alamos, 994. D. R. Simon, On the powe of quantum computation, SIAM J. Computing, 26(5): , 997. P. W. Sho, Algoithms fo quantum computation: discete logaithms and factoing, IEEE Poc. 35th Ann. Symp. Foundations of Compute Science, Los Alamos, 994. P. W. Sho, Polynomial-time algoithms fo pime factoization and discete logaithms on a quantum compute, SIAM J. Computing, 26(5): , 997.

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Anhang V zur Vorlesung Kryptologie: Hashfunktionen

Anhang V zur Vorlesung Kryptologie: Hashfunktionen Anhang V zu Volesung Kyptologie: Hashfunktionen von Pete Hellekalek Fakultät fü Mathematik, Univesität Wien, und Fachbeeich Mathematik, Univesität Salzbug Tel: +43-0)662-8044-5310 Fax: +43-0)662-8044-137

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Wavelet-Analysen ozeanischer Drehimpulszeitreihen

Wavelet-Analysen ozeanischer Drehimpulszeitreihen ISSN 1610-0956 Publication: Scientific Technical Repot No.: STR 03/08 Autho: R. Hengst Wavelet-Analysen ozeanische Dehimpulszeiteihen Rico Hengst GeoFoschungsZentum Potsdam, Depatment 1: Geodäsie und Fenekundung,

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570

Mehr

Technische Fachhochschule Berlin University of Applied Sciences

Technische Fachhochschule Berlin University of Applied Sciences Technische Fachhochschule Belin Univesity of Applied Sciences TFH Belin Fachbeeich III Bauingenieu- und Geoinfomationswesen Luxembuge St. 10 13353 Belin Pof. D. Jügen Schweikat Telefon: 030) 45 04-2038/2613

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011 Einige Gundlagen de magnetischen Nahfeld-Kopplung Volesung Michael Gebhat TU Gaz, Sommesemeste Inhalt Übeblick Methode des Magnetischen Moments Biot-Savat Gesetz zu Bestimmung de H-Feldstäke Koppelsystem:

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro 01-U4-JB-2009-Umschlag-Y:01-U4-JB-2008-Umschlag-A 11.03.2010 9:51 Uh Seite 1 JAHRBUCH 2010 29. Euo s unte o f n I Meh sikoi e i d www..de e manag Union Investment Wi optimieen Risikobudgets Union Investment

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie Endliche Köpe Von Chistiane Telöken und Stefanie Meye im WS 03/04 Ausgewählte Titel de Kyptologie Gliedeung. Einleitung. Kyptologie im Altetum. Definitionen de Kyptologie.3 Kyptologie heute. Endliche Köpe.

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Übung 10. Das Mundell-Fleming-Modell

Übung 10. Das Mundell-Fleming-Modell Univesität Ulm 89069 Ulm Gemany Dipl.-Kfm. Philipp Buss Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2013/2014 Übung 10 Das

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 Robet.Lahmann@physik.uni-elangen.de - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Software Engineering Projekt

Software Engineering Projekt FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN Softwae Engineeing Pojekt Softwae Requiements Specification SRS Vesion 1.0 Patick Bündle, Pascal Mengelt, Andy Wyss,

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

P. Knoll, Vorlesung: Raman- und Infrarot-Spektroskopie, 2std. SS 2004 Seite 1. VORLESUNG und UE. P. Knoll. Vorbesprechung

P. Knoll, Vorlesung: Raman- und Infrarot-Spektroskopie, 2std. SS 2004 Seite 1. VORLESUNG und UE. P. Knoll. Vorbesprechung P. Knoll, Volesung: Raman- und Infaot-Spektoskopie, std. SS 4 Seite 1 VORLESUNG und UE P. Knoll RAMAN- UND INFRAROT-SPEKTROSKOPIE LVA: 437783 (VO) std., 4377 (UE) std. Vobespechung Ot: HS411, Univesität

Mehr

AR: Grundlagen der Tensor-Rechung

AR: Grundlagen der Tensor-Rechung Auto: Walte Bisli vo walte.bislis.ch/doku/a 8..3 7:57 AR: Gudlage de Teso-Rechug Matheatisch wede Beechuge de Eegiedichte ud de zugehöige Rauzeitküug it de Wekzeug de Teso-Aalysis ausgefüht. Auf de folgede

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

Tomographische Rekonstruktion beim in-beam PET Monitoring der Schwerionentherapie

Tomographische Rekonstruktion beim in-beam PET Monitoring der Schwerionentherapie Tomogaphische Rekonstuktion beim in-beam PET Monitoing de Schweionentheapie Physikalische Gundlagen des in-beam PET Spezielle Pobleme de tomogaphischen Rekonstuktion bei in-beam PET Eine Anwendung: Dosisquantifizieung

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

1 Filter mit NIC. a12. abgeschlossen gilt für die Eingangsimpedanz Z 1. Werden diese Zweitore nach Bild 0-1 mit der Impedanz Z 2

1 Filter mit NIC. a12. abgeschlossen gilt für die Eingangsimpedanz Z 1. Werden diese Zweitore nach Bild 0-1 mit der Impedanz Z 2 Aktive Filte basieend auf LCStuktuen Mit Hilfe von Impedanzkonveten können passive LCFilte als Aktivfilte aufgebaut weden. Hiebei weden die Induktivitäten mit geeigneten Schaltungen aktiv ealisiet. Diese

Mehr

Individuelle Indienreisen

Individuelle Indienreisen Individualeisen in Süd-Indien Keala, Thekkady, Tamil Nadu, Süd-Indien www.heliches-indien.de Individuelle Vo-Ot Beteuung Pefekte Beteuung: Ihe Reisefühein ist Deutsche Authentizität: Ihe Reisefühein kennt

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Suche nach Dunkler Materie

Suche nach Dunkler Materie Beobachtungen, Expeimente, Modelle Seminaabeit SS 00 RWTH Aachen - Stefan Höltes Beteue: Pof. C. Bege - 1 - Inhalt Vowot 1 Bestimmung de Masse von Galaxien 1.1 Rotationskuven 1. Leuchtkaft von Stenen 1.

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

8.2 Nominaler Zinssatz und die Geldnachfrage

8.2 Nominaler Zinssatz und die Geldnachfrage 8.2 Nominale Zinssatz und die Geldnachfage Die Geldnachfage ist die Menge an monetäen Vemögensweten welche die Leute in ihen Potfolios halten wollen Die Geldnachfage hängt vom ewateten Etag, Risiko und

Mehr

Multiple Vergleiche mit der SAS-Prozedur MIXED

Multiple Vergleiche mit der SAS-Prozedur MIXED Multiple Vegleiche mit de SAS-Pozedu MIXED Eich Schumache Mac Weime Institut fü Angewandte Mathematik und Statistik Deutsches Kebsfoschungszentum Univesität Hohenheim Im Neuenheime Feld 80 70593 Stuttgat

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme.

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme. Bandenbugische Technische Univesität Cottbus Fakultät fü Mathematik, atuwissenschaften und Infomatik Lehstuhl Gafische Systeme Diplomabeit Umsetzung eines vollautomatisieten Objektefassungs- Systems übe

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife MATHEMATIK Aufgabenestellung und Bewetung von Klausuen und Püfungen fü den Eweb de Fachhochschuleife in beuflichen Bildungsgängen im Rahmen duale ode vollqualifizieende Bildungsgänge, in de Beufsobeschule

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Vergleich von stochastischen Optimierungsstrategien mit Hilfe der Monte-Carlo-Simulation

Vergleich von stochastischen Optimierungsstrategien mit Hilfe der Monte-Carlo-Simulation UNIVERSITÄT SIEGEN FACHBEREICH - MASCHINENTECHNIK INSTITUT FÜR SYSTEMTECHNIK Lehstuhl fü Simulationstechnik und Infomatik im Maschinenbau Pof. D. Wolfgang Wiechet STUDIENARBEIT ST Vegleich von stochastischen

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

3D-Verformungsmessungen auf 10nm genau Grundlagen und Anwendungsbeispiele der Speckle-Interferometrie

3D-Verformungsmessungen auf 10nm genau Grundlagen und Anwendungsbeispiele der Speckle-Interferometrie MW - nstitutsmitteilung N. (998) D-Vefmungsmessungen auf nm genau Gundlagen und Anwendungsbeispiele de Speckle-ntefemetie Käfestein, B. Die Speckleintefemetie ist eine Methde u hchgenauen Vefmungsmessung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

PKV-Beitragsoptimierer-Auftragserteilung

PKV-Beitragsoptimierer-Auftragserteilung PKV-Beitagsoptimiee-Auftagseteilung zu einmaligen Beatung Bei dem Vesichee : mit de Vetagsnumme : fü folgende Pesonen : Auftaggebe Name : Geb.-Dat. : Staße : PLZ und Ot : Telefon : Mobil : E-Mail : Beuf

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell Abeitsgemeinschaft Copoate Finance 3. Feb 2011 RKU Heidelbeg David Dell Gundpinzipien de Finanzieung Investition = Entscheidung fü eine bestimmte Vewendungsmöglichkeiten von Kapital Aufgaben de Finanzieung

Mehr

Möglichkeiten und Grenzen einer Marktbewertung von Krediten

Möglichkeiten und Grenzen einer Marktbewertung von Krediten 7 B e i c h t e Möglichkeiten und Genzen eine Maktbewetung von Kediten von ofesso D. homas Hatmann-Wendels * Gliedeung oblemstellung 2 Bewetung von Kediten bei vollkommenem Kapitalmakt 2. De Fall sichee

Mehr

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19 Fachbeeich Mathematik/Infomatik Optimieung de Lagehaltung im Kaftfahzeugteile-Gohandel Diplomabeit beabeitet von Diete Stumpe beteut von Pof. D. Olive Vonbege 2. Apil 1996 Diete Stumpe Am Gewenkamp 19

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von Unvebindliche Mustebeechnung fü den Wealthmaste Classic Plan von Die anteilsgebundene Lebensvesicheung mit egelmäßige Beitagszahlung bietet Ihnen die pefekte Kombination aus de Sicheheit eine Kapitallebensvesicheung

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Programm für alle Öffentlich-rechtlicher Rundfunk

Programm für alle Öffentlich-rechtlicher Rundfunk Wie untescheiden sich öffentlich-echtliche und pivate Sende in Pogamm und Finanzieung? Die Tabellen stellen einige Unteschiede da. Macht aus den Zahlen aussagekäftige Gafiken. Anteile de Sendungen veschiedene

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

BMS. berufsmaturitätsschule Formelsammlung Physik

BMS. berufsmaturitätsschule Formelsammlung Physik beufsatuitätsschule oelsalung Physik BMS Inhaltsvezeichnis ehleechnung Rechnen in de Physik 3 Wäelehe 4 Hydostatik 5 Kineatik 6 Dehbewegungen 6 Käfte 7 Statik 9 Dynaik 1 Abeit, Enegie und Leistung 11 Stoffwete

Mehr

Nachtrag (fortgesetzt)

Nachtrag (fortgesetzt) p. 1/1 Nachtag (fotgesetzt) Waum in aumtupeln? Sei D = (E,, P, R, ) wobei E = {, a, b}, =, P () = (a b), P (a) = P (b) = ɛ. paths(d) = {,.a,.b}, t mit t(.a), t(.b) ist ein aumtupel. Sei T ein XML-aum mit

Mehr

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN Spezialgebiet in Physik Maco Masse BG Bluenstasse 2003 Inhaltsvezeichnis 1.Kenfusion 1 1.1. Allgeeines 1 1.2. Veschelzung 1 1.3. Theonukleae Reaktion 1 2.Die

Mehr

4/09. Interview mit Prof. Margrit Kennedy: Komplementärwährungen im Aufwind. Halbjahresbericht: Bilanzsumme wächst weiter. Hauptsitz im neuen Look

4/09. Interview mit Prof. Margrit Kennedy: Komplementärwährungen im Aufwind. Halbjahresbericht: Bilanzsumme wächst weiter. Hauptsitz im neuen Look Inteview mit Pof. Magit Kennedy: Komplementäwähungen im Aufwind 12 Halbjahesbeicht: Bilanzsumme wächst weite Hauptsitz im neuen Look 4 8 www.wibank.ch INHALT Ein neues Kleid fü die WIR Bank in Basel. 8

Mehr

1 Strömungsmechanische Grundlagen 1

1 Strömungsmechanische Grundlagen 1 Stömungsmechanische Gundlagen -i Stömungsmechanische Gundlagen. Eigenschaften von Gasen und Flüssigkeiten.. Fluide.. Extensive und intensive Gößen..3 Zähigkeit und Fließvehalten 4. Bilanzgleichungen 0.3

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Zum Leverage Effekt. Text 01-2013. Ausgangssituation und Ansatzpunkte der Kapitalstrukturpolitik

Zum Leverage Effekt. Text 01-2013. Ausgangssituation und Ansatzpunkte der Kapitalstrukturpolitik Zum Leveage Effekt Text 01-2013 Ausgangssituation und Ansatzpunkte de Kapitalstuktupolitik De finanzwitschaftliche Themenbeeich de Kapitalstuktupolitik fokussiet die ökonomische, i.e. finanzwitschaftliche

Mehr

Generalthema: Ausgewählte Fragen der Fremdfinanzierung

Generalthema: Ausgewählte Fragen der Fremdfinanzierung Institut fü Geld- und Kaitalvekeh de Univesität Hambug Pof. D. Hatmut Schmidt Semina zu llgemeinen Betiebswitschaftslehe und Bankbetiebslehe Wintesemeste 1999/2000 Zuständige Mitabeite: Dil.-Kfm. Dik Niedeeichholz

Mehr

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen 2 Vowot 4 1. Einfühung 4 2.

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr