log 1 log 100 log3 3 log 3 2ln

Größe: px
Ab Seite anzeigen:

Download "log 1 log 100 log3 3 log 3 2ln"

Transkript

1 6

2 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was können Sie durch die Art des Logarithmus erkennen? Worin liegt der Unterschied zwischen LN und LD? Wie lautet der Deinitionsbereich von Log-? Aus welchen Schritten besteht das Lösen von Log-Ausdrücken? Durch welchen Punkt verläut jede Eponentialunktion Warum? Wie kann man eine Ln-Funktion an beiden Achsen spiegeln? Worin besteht der Unterschied zwischen Ergebnis und Lösung? Wie verläut die ln-funktion im Vergleich zu Log? Welchen Einluss hat die Basis au eine Eponentialunktion? Was bewirkt das Addieren einer Konstanten zu einer Funktion? 6

3 Vereinachen Sie olgende Ausdrücke soweit als möglich. log y log y log y log 5 y y ln ln ln ln ln a b c d 5 6 ld.000 log e ln 5 ln e log 00 ld 8 6 ld ln log e 0,ld 0 log ,0 6ln 6 e 65

4 I. Bestimmen Sie bei den olgenden Ausdrücken die Lösungsmenge. 8 9 log56 log 0,5 log,5 log9 log log ln ln ln ln 0,5 ln6 ln II. Berechnen Sie bei den olgenden Funktionen den Deinitions- und Wertebereich ln 8 g log h ln 5 66

5 Für die Sinus/ Cosinus-Funktion sind im Bereich der Addition der Argumente zwei Additionstheoremedeiniert, wodurch stets bei rechtwinkliger Konstellation entweder ein Sinus oder ein Cosinus aus der Funktion enternt werden kann. a ± b a cos b ± b cos a cos cos 0 cos cos 90 Phasenverschiebung der Sinusunktion Cosinusunktion cos a ± b cos a cos b a b cos cos cos cos 0cos 70 Phasenverschiebung der Cosinusunktion -Sinusunktion 67

6 I. Geben Sie Schätzungen ür die olgenden Werte an. a 00 b cos60 c cos00 d 800 II. Vereinachen Sie die olgenden Ausdrücke soweit als möglich. a b cos c cos III. Beweisen Sie den olgenden Zusammenhang. sin cos 68

7 I. Vereinachen Sie die olgenden Ausdrücke soweit als möglich. a 9 b,5 7,5 c cos 5 d cos 7 6,5 69

8 Eine rein trigonometrische Funktion sinus/ cosinus stellt eine Schwingung innerhalb einer bestimmbaren Periodeund eines konstanten Wertebereichs dar, die ür alle reellen Zahlen deiniert ist. a b c d Die vier Parameter in der Funktion beziehen sich zum einen au die Verschiebung und zum anderen au die Streckung/ Stauchung in der -Achsen bzw. y-achsen-richtung: a: Amplitudenaktor Streckung/Stauchung in y-achsen-richtung b: Periodenaktor Streckung/Stauchung in -Achsen-Richtung c: Phasenverschiebung Verschiebung in -Achsen-Richtung d: Wertebereichverschiebung Verschiebung in y-achsen-richtung Symmetrie: SIN: Punktsymmetrie COS: Achsensymmetrie cos cos Bei dem Periodenaktor gilt ür die neue Periode: P NEU P ALT b 70

9 Anhand der olgenden Viereldertaelkönnen die grundlegenden Eigenschaten einer trigonometrischen Funktion direkt abgelesen werden. Es wird dabei davon ausgegangen, dass es sich um eine Standardunktion in der Form oder handelt. Viereldertael $% & 0; 0; ; ; WS 0/ Torsten Schreiber 7

10 Beispiel: Vereinachung: Wertebereich: Periode: cos cos [ ] [ ] [ ] ;7 ; ; y W P NEU cos 0 cos cos Pre-Study 07 7 Torsten Schreiber

11 Beispiel: Symmetrie: Skizze: [ ] Punktsymmetrie [ ] 7

12 Vereinachen Sie die olgenden Funktionen mittels der Additionstheoreme und bestimmen Sie den Wertebereich, das Symmetrieverhalten und ertigen Sie eine Skizze an. 5 5 g sin 5 h [ cos ] k 5 cos 7

13 Vereinachen Sie die olgenden Funktionen mittels der Additionstheoreme und bestimmen Sie den Wertebereich, das Symmetrieverhalten und beweisen Sie die Periode. 0,5 5,5 g cos,5,5 8 h [ cos 5] 7 k 8 75

14 Welche neuen Begrie habe ich kennen gelernt? 76

Wintersemester 2013/14. Torsten Schreiber

Wintersemester 2013/14. Torsten Schreiber Mathematik BW8 Wintersemester 0/ Torsten Schreiber Mathematik ist begreibar... www.mathematik-guru.de ... und macht sogar Spaß! schreiber@mathematik-guru.de Methodik meiner Veranstaltung WarmUp n-sandwich

Mehr

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können: Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt

Mehr

Eigenschaften von Funktionen. Definition der Umkehrfunktion. WS 2013 Torsten Schreiber

Eigenschaften von Funktionen. Definition der Umkehrfunktion. WS 2013 Torsten Schreiber Eigenschaten von Funktionen Deinition der Umkehrunktion WS 013 Torsten Schreiber Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Eine basiert au einem Produkt und stellt die vorhandenen Komponenten

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Der Zusammenhang zwischen x und y wird dargestellt durch die Schreibweise y=f(x).

Der Zusammenhang zwischen x und y wird dargestellt durch die Schreibweise y=f(x). 2. 2.1 Der Begri der Funktion De: (Funktion, Deinitionsmenge, Wertemenge, Bild einer Funktion) Eine Funktion ist eine Zuordnungsvorschrit, die jedem Element x einer Menge D,, der Deinitionsmenge von, eindeutig

Mehr

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik

Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.

Mehr

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1 Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

9 Differentialrechnung für Funktionen von mehreren Variablen

9 Differentialrechnung für Funktionen von mehreren Variablen 9 Dierentialrechnung ür Funktionen von mehreren Variablen 9.1 Funktionen von zwei reellen Variablen und ihre Darstellung Unter Funktionen von zwei unabhängigen Variablen versteht man eine Vorschrit, die

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

Kapitel VII Untersuchung von Funktionen mittels Ableitungen (Lösungen)

Kapitel VII Untersuchung von Funktionen mittels Ableitungen (Lösungen) Kapitel VII Untersuchung von Funktionen mittels Ableitungen (Lösungen) 7 cos sin 7 a) b a b b a a b a ln ln ln b) 8 sin cos sin ) ( lnsin π π π π π c) + + + ln 7 a) + e e e e b) ) + + ( + + 7 a) + + +

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@m.uni-saarland.de SS 07 Vorlesung 5 MINT Mathkurs SS 07 / 8 Vorlesung 5 (Lecture 5) Reelle Funktionen einer reellen Veränderlichen

Mehr

Klausur zum Wintersemester 2011/12

Klausur zum Wintersemester 2011/12 Klausur zum Wintersemester 0/ Name: Matrikel-Nr: EMail: (optionale Schnell-Korrektur) Aufgabe 4 5 6 Punkte 5 8 0 5 0 Als Hilfsmittel sind die von dem Lehrbeauftragten zur Verfügung gestellten sowie eigene

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

9.5 Graphen der trigonometrischen Funktionen

9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).

Mehr

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)

Mehr

Mathematikaufgaben > Analysis > Kurvendiskussion/Funktionsuntersuchung

Mathematikaufgaben > Analysis > Kurvendiskussion/Funktionsuntersuchung Michael Buhlmann Mathematikaufgaben > Analysis > Kurvendiskussion/Funktionsuntersuchung Aufgabe: a) Führe für die Sinusfunktion f ( x) = sin( x ) eine Kurvendiskussion durch, wobei die Funktion auf Definitions-

Mehr

Ankathete Hypothenuse

Ankathete Hypothenuse Arbeitsauftrag: Trigonometrische Funktionen Bearbeitet folgendes Blatt und macht Euch mit den Trigonometrischen Funktionen und ihren Eigenschaften vertraut. 1.) Grundlagen - Wiederholung: Trigonometrische

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

4 Funktionen und Transformationen

4 Funktionen und Transformationen 4 Funktionen und Transformationen In diesem Arbeitsblatt geht es um Begriffe wie lineare und quadratische Funktionen, Wurzelfunktionen, trigonometrische Funktionen sowie Transformationen von Funktionen.

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013 Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen:

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: für alle x [0,2000]. Das Intervall [0,2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maximalauslastung bei 2000 produzierten Waschmaschinen liegt. Folgende Eigenschaft beschreibt eine

Mehr

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist:

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 15 y 10 5 5 x 10 15 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 98 Sei f : R R eine Funktion. Ist x 0 D(f) eine reelle

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Musteraufgaben zu den Mathematikmodulen Ein Selbsttest

Musteraufgaben zu den Mathematikmodulen Ein Selbsttest Musteraufgaben zu den Mathematikmodulen Ein Selbsttest I. Grundlagen der Mathematik I Terme und Gleichungen, elementare Funktionen (bis zu 5 h) Grundsätzliches zum Vereinfachen von Termen und Lösen von

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss emanuel.duss@gmail.com 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer

Mehr

5. Bestimmen Sie die Fläche, die von den beiden Parabeln f ( x) und ( ) 2

5. Bestimmen Sie die Fläche, die von den beiden Parabeln f ( x) und ( ) 2 Klausur (Mathematik II) - Wintersemester 0/ Name: Matrikel-Nr: EMail: (optionale Schnell-Korrektur) Aufgabe 5 6 7 8 Punkte 0 0 0 0 6 0 Als Hilfsmittel sind die von dem Lehrbeauftragten zur Verfügung gestellten

Mehr

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Übungsmaterial 9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Die trigonometrischen Funktionen sind die Sinus-, die Kosinus- und die Tangensfunktion. 9. Eigenschaften der trigonometrischen

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx =

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = Übung 3 Aufgabe 48) Integrieren Sie die folgenden Funktionen a) tan(x)dx b) e x cos(x)dx c) +ax dx Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = sin(x)

Mehr

Überblick über die Winkelfunktionen Sinusfunktion

Überblick über die Winkelfunktionen Sinusfunktion Überblick über die Winkelfunktionen Sinusfunktion -x2 -x1 x1 x2 Die Funktion x sin x ; x ℝ heißt Sinusfunktion und ihr Graph Sinuskurve. Die Sinusfunktion ist punktsymmetrisch (blau in der Zeichnung) zum

Mehr

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen .8. Prüfungsaufgaben zu trigonometrischen Funktionen Aufgabe : Schaubilder der trigonomtrischen Funktionen (8) a) Zeichne den Graphen der Sinusfunktion im Bereich π und gib fünf verschiedene Funktionswerte

Mehr

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ;

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ; Einige Graphen spezieller Funktionen Lineare Funktion: f = a C b. Der Graph ist eine Gerade (Linie), der Koeffizient a bei gibt die Steigung der Geraden (den Tangens des Winkels, den die Gerade mit der

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik BBS Gerolstein Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik für die Berufsoberschule II www.bbs-gerolstein.de/cms/download/mathematik/vorkurs-mathe-bos-.pdf bzw. www.p-merkelbach.de/bos/mathe/vorkurs-mathe-bos-.pdf

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2 Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß

Mehr

6 Lösungen zu trigonometrischen Funktionen Lö 36. a = 1. Winkel im Gradmaß Winkel im Bogenmaß

6 Lösungen zu trigonometrischen Funktionen Lö 36. a = 1. Winkel im Gradmaß Winkel im Bogenmaß Lösungen zu trigonometrischen Funktionen Lö LLöössuunnggeenn zzuum 77.. Kaappi iteel l: : TTrri iggoonnoomeet trri isscchhee FFuunnkkt tioonneenn. 0 90 a a a h 0 0 a Mit Pythagoras olgt: d Mit Pythagoras

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

Brückenkurs Mathematik zum Sommersemester 2015

Brückenkurs Mathematik zum Sommersemester 2015 HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaugabe Klasse. Gegeben ist die Funktion mit () = 3 4 + 8 D = a) Bestimme die Nullstellen von! b) Ermittle diejenigen Intervalle, in denen G unterhalb der -Achse verläut!. Gegeben ist die

Mehr

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 =

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 = Trriigonomettrriische Funkttiionen Bezeichnungen Das Wort Trigonometrie stammt aus dem Griechischen: τρι (tri) bedeutet drei und γονυ (gony) Winkel, insgesamt also Dreiwinkligkeit oder Dreiecksberechnung.

Mehr

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen .8. Prüfungsaufgaben zu trigonometrischen Funktionen Aufgabe : Schaubilder der trigonomtrischen Funktionen () a) Zeichne das Schaubild der Funktion f() = sin(,5) im Bereich π. b) Zeichne das Schaubild

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis

II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis 263/1 a) c = 5 cm; 53,13 ; 36,87 b) b = 12 cm; 22,62 ; 67,38 c) a 4,11 cm; b 5,66 cm; = 54 d) c 7,46 cm; b 6,58 cm; = 62 e) c 1631,73 cm;

Mehr

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1. Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B

Mehr

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge Zweite Fassung Mai 04 Duale Hochschule Baden-Württemberg Stuttgart Campus Horb Testfragen Schreiben Sie das Ergebnis in das dafür vorgesehene

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.

Mehr

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4 Aufgabe : Probe Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,9 0, = 0, 0, =, 0,0 =,, = : 0,7 = 8 0, : 0, = 7 0, 0, = 0, = 0,7 0,8 0 =,

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Analysis Aufgabengruppe 1.. Der Graph von f wird mit G f bezeichnet.

Analysis Aufgabengruppe 1.. Der Graph von f wird mit G f bezeichnet. BE 1 Gegeben ist die Funktion mit x Analysis Augabengruppe 1 1 1 und Deinitionsbereich x 1 x 3 D IR\ 3; 1. Der Graph von wird mit G bezeichnet. x zu jedem der drei olgenden Terme äquivalent ist: 2 2 1

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 0. Jahrgangsstufe Mathematik Kreis und Kugel. Kreissektor und Bogenmaß Kreis Umfang U π rπ d Flächeninhalt Aπ r Kreissektor mit Mittelpunktswinkel α Bogenlänge α π r 60 Flächeninhalt A α π

Mehr

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt. Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Mengen, Relationen, Abbildungen A B = A B. Schreiben Sie die unten dargestellte Relation als Teilmenge von A B.

Mengen, Relationen, Abbildungen A B = A B. Schreiben Sie die unten dargestellte Relation als Teilmenge von A B. Aufgabensammlung zum Vorkurs in Mathematik Thomas Püttmann Mengen, Relationen, Abbildungen Aufgabe : Verdeutlichen Sie das Distributivgesetz und das Gesetz von De Morgan durch Mengendiagramme. A (B C)

Mehr

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α Grundwissen athematik 0.Klasse Gymnasium SOB.Kreiszahl..Kreis α Länge des Kreisbogens b r 360 α Fläche des Kreissektors A r 360 Das Bogenmaß b eines Winkels α ist die Länge der zugehörigen Bogenlänge b

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS05 09.0.05 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 6 4... Polynome

Mehr

1 Diskrete Fourier Transformation. 2 Definition der Diskreten Fourier Transformation (DFT)

1 Diskrete Fourier Transformation. 2 Definition der Diskreten Fourier Transformation (DFT) Diskrete Fourier Transormation Das Ausgangssignal eines nachrichtentechnischen Systems oder Verarbeitungsblocks lässt sich im Zeitbereich bei Kenntnis der Impulsantwort h(n) mit Hile der diskreten Faltung

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung

Mehr

Planungsblatt Mathematik für die 7A

Planungsblatt Mathematik für die 7A Planungsblatt Mathematik für die 7A Woche 24 (von 29.02 bis 04.03) Hausaufgaben 1 Donnerstag 03.03: Lerne die Grundkompetenzen zu Exponentielfunktionen FA 5.1 bis FA 5.6. Lerne/Erledige das kleine Arbeitsblatt

Mehr

Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19

Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19 Inhaltsverzeichnis Inhaltsverzeichnis iv Einleitung 1 1 Aussagen, Mengen und Quantoren 3 1.1 Aussagen und logische Verknüpfungen........................ 3 1.2 Mengen.........................................

Mehr

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3 2 Komplexe Zahlen 2.1 Grundlagen Aufgabe 2.1.1 Sei z 1 = 2 + und =. Stellen Sie a) z 1 +, b) z 1, c) z 1. zeichnerisch dar und berechnen Sie die Werte. Aufgabe 2.1.2 Berechnen Sie die folgenden Werte,

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Ableitungen

Übungen mit dem Applet Grundfunktionen und ihre Ableitungen Grundfunktionen und ihre Ableitungen 1 Übungen mit dem Applet Grundfunktionen und ihre Ableitungen 1 Ziele des Applets... Überblick über die Funktionen....1 Sinusfunktion y = f(x) = a sin(bx + c).... Cosinusfunktion

Mehr

6.Gebrochen-rationale Funktionen

6.Gebrochen-rationale Funktionen Das solltest du können 6.Gebrochen-rationale Funktionen Eine gebrochen-rationale Funktion ist eine Bruchunktion, deren Nenner die Variable enthält. ( ) 4 Bsp: Der Unterschied zu den bisher bekannten linearen

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung

Mehr

Höhere Mathematik für Ingenieure , Uhr (1. Termin)

Höhere Mathematik für Ingenieure , Uhr (1. Termin) Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 8-I Symmetrie einer Funktion: Aufgabe 8 Prüfen Sie, ob die Funktionen gerade, ungerade oder keines von beiden sind: a ) f (x ) = cos

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

Einstieg. Bogenmaß. Allgemeine Formeln

Einstieg. Bogenmaß. Allgemeine Formeln 2 Einstieg Differenzialrechnung * Integralrechnung * Geometrie Stochastik * Zusatzthemen * Prüfungsaufgaben Wiederholung einiger Formeln Aufgaben aus dem Pflichtteil Schaubilder und Funktionsterme Streckung

Mehr

Selbsteinschätzungstest

Selbsteinschätzungstest D-MATH ETHZ-Semesterbeginn HS 0 Selbsteinschätzungstest Dieser Test bietet Ihnen die Möglichkeit, Ihre mathematischen Schulkenntnisse abzurufen und zu überprüfen. Die Teilnahme ist freiwillig. Bei jeder

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R.

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R. FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 006 Prof. Dr. H.-R. Metz Aufgabe 1 Skizzieren Sie die Funktionen e x, ln(x) = log e (x) und e

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

1 Die natürliche Exponentialfunktion und ihre Ableitung

1 Die natürliche Exponentialfunktion und ihre Ableitung Schülerbuchseite 5 5 Lösungen vorläuig VI Natürliche Eponential- und Logarithmusunktion Die natürliche Eponentialunktion und ihre Ableitung S. 5 Durch Ausprobieren erkennt man, dass < a

Mehr