Getriebe und Übersetzungen Übungsaufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Getriebe und Übersetzungen Übungsaufgaben"

Transkript

1 Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen Quelle: Ai-Prüfungen des Lndes Bden-Württeerg 1 HP 1996/97-1 Shiffsufzug Bei der Bergfhrt uss von jeder Motor-Getrieeeinheit eine Krftdifferenz von F 60 kn ufgerht werden. Der Durhesser der Seilsheien eträgt D Mit welher Geshwindigkeit v in /in ewegt sih die Aufzugswnne uf den Shienen? Welhe Leistung uss ein Antriesotor (von zwei Motoren) ufnehen? Wirkungsgrde: Lgerungen: η 1 0,8 Getriee: η 0,75 Motor: η 3 5 otor /in; z 1 18; z 56; z 3 (Shneke); z 4 4 HP 1996/97- Wndshwenkkrn Der Antrie der Seiltroel in der Hueinrihtung erfolgt durh einen Bresotor üer ein Getriee. Bestien Sie die notwendige Motorleistung. η Getriee otor /in d 1 00 z 1 z 3 1 z z xile Seilkrft F N 3 HP 1997/98-1 Verldenlge Zwishen Elektrootor und Seil sitzt ein Shneken- und ein einstufiger Stirnrdtrie. 3 Berehnen Sie die erforderlihe Leistung des Elektrootors. Motor /in Shnekentrie i 1 30:1; η 1 0,8 Stirnrdtrie z 3 18; z 4 85 η 5 Seiltroel D 300 F S 100 kn 4 HP 98/99- Lstkrftwgen 4 Die Pupenwelle der Hydruliknlge erfordert ein Antriesoent vo p 100 N ei einer Drehzhl von n p 1000 in -1. Die Pupe wird vo Fhrzeugotor üer ein einstufiges Getriee ngetrieen, Berehnen Sie die gegeene Motorleistung und die Motordrehzhl : i,5 ; η G 1 ) v 6,9 /in ) P 47, kw ) P erf 83 W 3 ) erf 0,4 kw 4 11,6 kw 500/in 5 HP 1997/98- Hueinrihtung Mit der Hueinrihtung einer Krnnlge sollen Lsten gehoen werden. Ds Huseil wird uf eine Seiltroel gewikelt, die von eine Elektrootor üer ein zweistufiges Getriee ngetrieen wird. 5 Üerprüfen Sie, o die Lst F L gehoen werden knn. Motor: n ot 70 1/in P ot 10 kw Getriee: z 1 16; z 3 0; z 64; z 4 80; η getr 0,8 Seiltroel: d Tr 00 F L 15 kn η tr 5 6 HP 1980/81- Verldekrn Die Seiltroel der Lufktze wird von eine Elektrootor it 7,5 kw und der Drehzhl 710 1/in üer ein Shnekengetriee (Shneke 1-zähnig, Shnekenrd 35 Zähne, Wirkungsgrd η ges 0,7) ngetrieen. Der Seildurhesser soll dei vernhlässigt werden. 6 Mit welher Geshwindigkeit wird die Lst gehoen? Welhe xile Lst könnte it der ngegeenen Motorleistung ngehoen werden? 7 HP 1981/8-1 Spnnen ei Fräsen Der Motor einer Senkrehtfrässhine ht eine Antriesleistung von P 10 kw ei n /in. An der Frässpindel stehen folgende Drehzhlen zur Verfügung: n ,5 7,5 1/in. Welhe der Drehzhlen ist einzustellen, wenn ds Shruppen des Werkstüks it einer Shnittgeshwindigkeit v 0 /in ei eine Fräserdurhesser d F 00 erfolgen soll? Berehnen Sie für ds xile Drehoent die Durhesser D und d der Frässpindel, wenn diese ls Hohlwelle it de Durhesserverhältnis D : d : 1 usgeführt werden soll. τ tzul 50 N/²; Wirkungsgrd η ges 0,75 5 Viele Lösungen, z.b. (Angeot) 13 N > (Bedrf) 13 N 6 ) v 0,1 /s ) F x 4,7 kn 7 ) n Rehnung 31,8 /in ) M x 3183 N D 70, Getriee_U.odt, Seite 1 / 5

2 Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen 8 HP 001/0- Drehkrn Ein Elektrootor treit üer ein zweistufiges Getriee die Seiltroel n der Lufktze n. 8 Dten: 1400,in -1 d TR 00, z 1 1 z 75 z 3 14 z 4 90 F L 17,kN Bestien Sie die Geshwindigkeit in /in, it der die Lst ngehoen wird. Welhe Leistung git der Motor ei eine Getrieewirkungsgrd von 90 %? Berehnen Sie den Durhesser d der Seiltroelwelle für τ tzul 160 N/². 9 HP 000/01-1 Bhnshrnke Berehnen Sie die erforderlihe Antriesleistung des Motors. 9 Kolenkrft: F K 10,kN Öffnungszeit: t 6,s Kolenhu: s 50, Gestwirkungsgrd: η 75,% 10 HP 000/01- Deihsel-Gelhuwgen Ds Antriesrd wird üer ein zweistufiges Stirn-Kegelrdgetriee ngetrieen. 10 z 1 17 z 51 z 3 18 z 4 48 Berehnen Sie die Motordrehzhl, wenn sih der Wgen it der Geshwindigkeit v 6 k/h fortewegt. Antriesrd: d A 30 Diensionieren Sie die Antrieswelle des Rdes A ls Vollwelle it: τ tzul 95, N/² ot 1,3 kw ot 1000, in -1 η ges 0,7 11?? Der Motor git eine Leistung von 15 kw. Dei fährt der Trktor it v 10 k/h. Der Wirkungsgrd des Getriees it Gelenkwelle eträgt η. Die Antrieswelle, die nh de Getriee ds Antriesoent üerträgt, esteht us C45E. Berehnen Sie ihren Durhesser ei 5-fher Siherheit gegen unzulässige Verforung. Der Rddurhesser eträgt D HP 1999/00-1 Shrägufzug Der Motor treit üer ein Getriee die Seiltroel n, die ds Zugseil ufwikelt. Ddurh wird der Trnsportwgen üer eine Ulenkrolle hohgezogen. 1 Antrie des Trnsportwgens Motor: 400,/in 30,N Getriee: η G 0,7 Seiltroel: F Sx 4,kN d TR 50, v Hu 60,/in Berehnen Sie die vo Motor gegeene Leistung. Prüfen Sie nh, o diese Leistung usreiht, u den Trnsportwgen hohzuziehen. Die Reiung in der Seiltroel und in der Ulenkrolle wird vernhlässigt. Berehnen Sie die erforderlihe Getrieeüersetzung. 13 HP 1999/000- Turdrehkrn Der Antrie der Seiltroel erfolgt üer einen Elektrootor und ein Getriee. 13 Dten: Motor 1500,in -1 Getriee i 50:1, Wirkungsgrd η G 0,8 Seiltroel d T 500, Hulst F L 10,kN Eritteln Sie die Hugeshwindigkeit der Lst. Welhe Leistung uss der Elektrootor geen? 14 HP 199/93-1 Mountinike D 680, F G1 560,N F G 140,N Gefälle 8,% Kettenlätter (vorne) it 48 / 38 / 8 Zähnen Ritzel (hinten) it 15 / 18 / 1 / 4 / 8 / 3 Zähnen Die Rdfhrerin fährt in der Eene it einer konstnten Trittfrequenz von n 90 1/in. Welhe xile Geshwindigkeit knn sie erreihen? Bei Aufwärtsfhren leistet die Fhrerin kurzzeitig 0 W ei einer Trittfrequenz von n 30 1/in. Berehnen Sie die Vortrieskrft F Vor i niedrigsten Gng ei eine Gestwirkungsgrd η 0,81. Welhe xile Steigung könnte die Rdfhrerin it einer Vortrieskrft von 00 N efhren? 14 8 ) V Seil 1,9 /in ) 6,9 kw ) d 37,8 9 ) otor 556 W 10 ) otor 1107 /in ) M A 69,5 N d 15,5 11 ) M Antrie 1,944 kn derf 5,1 1 ) (Angeot) 7,54 kw > 5,56 kw (Bedrf) 13 ) v Hu 0,79 /s ) erf 9,8 kw 14 ) v x 36,9 k/h ) FVor 190,7 N ) α 16,6 ~9,8% Getriee_U.odt, Seite / 5

3 Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen Lösungen 1 HP 1996/97-1 Shiffsufzug z 56 z 1 z ,3 n S n S 1400U /in 1,4in 1 65, ,9 vn S D1,4 1 in ges 1 3 0,8 0,75 50,57 P S F v60 kn 6,9 in 6,9kW in ges P S P E P E P S 6,9 kw 47, kw je Antrieseinheit ges 0,57 HP 1996/97- Wndshwenkkrn z z z 1 z n S n S in 9,7 in v s d 1 n S 0, 9,7 in 6,1 in 0,10 s P F 1 v s 500N 0,10 s 54,5 W g P P P 54,5 W 83W M g lterntive Rehnung M F d N N M M N 50 1,93 N 144 1,93 N 1400 in 83W 3 HP 1997/98-1 Verldenlge M F D s 100 kn kn i 1 i i 1 z ,67 ges 1 0,8 50,76 ges M M 15 kn 139,3 N ges 141,67 0,76 139,3 N in 0,4kW 4 HP 98/99- Lstkrftwgen4 i n i n p,5 1000in in 1 P P P M P n P 100 N s 1047W G P P P P 1047W 11,6 kw G 5 HP 1997/98- Hueinrihtung z 64 z 1 z ges getr Tr 0,8 50,76 Bedrf : M Tr F L d Tr 15 kn 00 1,5 kn ges M Tr M ot M ot M Tr 1,5kN 13 N ges 16 0,76 Angeot : P ot M ot n ot M ot P ot 10kW n ot N Die Lst knn gehoen werden, d ds Angeot den Bedrf üershreitet. Es git zhlreihe weitere Lösungsöglihkeiten. Alle Lösungsöglihkeiten hen geein, dss n irgendeiner Stelle der Krftüertrgung Angeot und Bedrf iteinnder verglihen werden üssen. 6 HP 1980/81- Verldekrn i z 35 z n n V V i in 0,3in1 0,338 s 1 vn V d0,338 s ,74 in 0,1 s v Hinweis: Ds Mß d 00 wurde in der Zeihnung nh einer heute niht ehr gültigen Nor eßt. 7,5 kw n 110 N M 710 in M V i M ges M M V i ges 35 0,7 10 N471 N M V F d F M d 471 N 00 4,7 knf x Getriee_U.odt, Seite 3 / 5

4 Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen 7 HP 1981/8-1 Spnnen ei Fräsen n F v 0 /in d F 00 31,8in1 gewählt :31,5 in 1 n F Ds xile Drehoent tritt ei der kleinsten öglihen Drehzhl n Fin des Fräsers uf. i x otor 1400 in1 n Fräserin,5in 16, P otor otor otor 10 kw 1400 in 168, N ges i x M Fräser otor M Fräser ges i x otor 0,75 6, 68, N3183 N lterntiver Weg P Fräser otor 10 kn 0,757,5 kn M Fräser P Fräser n Fräser in 7,5 kw 168, N3183 N,5in Festigkeitserehnung tzul t M Fx M Fx tzul 50 N ² 3183 N t 3183 N 50 N/² 63,66 ³ D 4 d 4 4 d 4 d d 3 16 D 16 d 3 d 3 W p ,66 ³ 3 35,1 d 15 D d 35,1 70, D 8 HP 001/0- Drehkrn n Troel otor 1400 in 40,18 34,84 1 in z 75 z 1 z ,18 v Seil n Troel d Troel 34,84 1 0, 1,9 in in P F L v Seil 17 kn 1,9 17 kn 1,9 6, kw in P zu P kw 6, 6,9 kw τ tzul > M t W M t N τ 1700 tzul p 160 N 10,6 ³ ² M t F L d Troel 17 kn 0, 1700 N (Vollwelle) π d³ 16 d 3 16 π ,6 ³ π 37,8 9 HP 000/01-1 Bhnshrnke P K F vf K s t P P 1 10 kn W 6 s otor P K 416W 0,75 556W 10 HP 000/01- Deihsel-Gelhuwgen n A v π d A n A 6 k/h π ,4 in1 π 0,3 60 in z 51 z 1 z i n 1 n n ot n A 138,4 in in 1 P π M n ot ot 1,3kW π ot π 1000in 11,4 N i η M M 1 M A ot η ges M A 1,4 N 8 0,769,5 N τ tzul >τ t M A M 69,5 N τ 0,73 ³ tzul 95 N /² π d³ 16 d 3 W 16 p π 3 11?? V n d n Rd v 0,73 ³ 16 π 15,5 10 k/h 1,105 s1 d 800 P Rd otor 15 kw 13,5kW P Rd n Rd M Rd M Rd P Rd n 13,5 kw 11,944 kn 1,105s tf M t tzul t M t 1944 N 5 7,8 ³ tf 350 MP Vollwelle d³ 16 d 3 16 W p ,8 ³ 5, Getriee_U.odt, Seite 4 / 5

5 Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen 1 HP 1999/00-1 Shrägufzug x π π 30 N 400 7,54 kw P Serf F S v Hu 4kN 60 4kW η P S erf P Serf η 4 kw 0,7 5,56 kw es reiht! n v Hu /in 60 d 0,5 76,4 in1 1,7s 1 i 400 in1 31,4 1 n 76,4in 13 HP 1999/000- Turdrehkrn i n n T T i in1 in 50 V H d T n T in 1 47,1 in 0,79 s G P H P H F L v H 10kN 0,79/s 9,8 kw G 0,8 G 14 HP 199/93-1 Mountinike i in z in 15 z 1x 48 0,315 i in n zu n x n x n zu 90 in1 88 in1 i in 0,315 v x n x D 88 in ,5 s 615 in 36,9 k h v x i x z x 3 z 1in 8 1,14 P zu M zu n zu M zu P zu 0 W n zu N i x M M zu M M zu i x 70 N 3 0,8164,8 N 8 M F vor D F vor M 64,8 N D ,7 NF Vor F Vor F Hngtrie F Vor F G1 F G sin 00 N560 N140 N sin sin 16,6 Steigungswinkel 7 Bei Strßen git n für die Steigung den Tngens des Steigungswinkels in % n Steigung tn 16,6 9,8%Steigung Getriee_U.odt, Seite 5 / 5

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung Anleitung Online Fhrzeug-Registrierung 1. Vorussetzung Ihr Unternehmen muss ereits ei Toll Collet ls Kunde registriert sein. Den Antrg finden Sie unter www.toll-ollet.de/registrierung 2. Erstmlig nmelden

Mehr

1. Berechnen Sie in den folgenden Strahlensatzfiguren die unbekannten Stücke! z y 23

1. Berechnen Sie in den folgenden Strahlensatzfiguren die unbekannten Stücke! z y 23 Trigonometrie 1: Strhlensätze 1. Berehnen Sie in den folgenden Strhlenstzfiguren die uneknnten Stüke! ) 2.5 4 5 9 ) 4 3 5 10 z w 7 9 7 z 23 11 w 13 15 d) 18 3 e) 8 6 8 4 3 z 2. Welhe der folgenden Verhältnisse

Mehr

Klausur Grundlagen der Elektrotechnik (Version 5 für Diplom)

Klausur Grundlagen der Elektrotechnik (Version 5 für Diplom) Prüfung Grundlgen der Elektrotehnik Seite 1/34 Klusur Grundlgen der Elektrotehnik (Version 5 für Diplom) Die Klusur esteht us 11 Aufgen, dvon 10 Textufgen à 5 Punkte und ein Single-Choie-Teil mit 30 Punkten.

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q.

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q. Mthetik PM Rtionle Zhlen Rtionle Zhlen. Einführung Die Gleihung = 9 ht ie Lösung. Z 9 9 Die Gleihung = ht ie Lösung. Z Definition Die Gleihung =, it, Z un 0, ht ie Ist kein Vielfhes von, so entsteht eine

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Stabile Hochzeiten wie und warum?

Stabile Hochzeiten wie und warum? Stile Hohzeiten wie un wrum? Tg er Mthemtik HU erlin 25. pril 2009 Stefn elsner TU erlin, Mthemtik felsner@mth.tu-erlin.e Ws sin stile Hohzeiten? Gegeen: Menge von ruen, M Menge von Männern, = M. Jee Person

Mehr

Hilfsrelais HR 116. Bilfinger Mauell GmbH

Hilfsrelais HR 116. Bilfinger Mauell GmbH Bilfinger Muell GmH Hilfsrelis HR 11 Die Hilfsrelis ienen zur glvnishen Trennung, Kontktvervielfhung un Trennung zwishen Hilfs- un Steuerstromkreisen. Bilfinger Muell GmH Inhltsverzeihnis Inhlt Seite Anwenung

Mehr

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x!

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x! M Üung: Strhlenstz, Teilungsrehnung, Streken teilen Nme: 1)Stelle eine Verhältnisgleihung uf und erehne! 1,5 4,0,0 2)Berehne mit einer Proportion! (Mße in m!) 6,0 6,5 1, )Stelle eine Verhältnisgleihung

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Klausur Grundlagen der Elektrotechnik (Musterlösung)

Klausur Grundlagen der Elektrotechnik (Musterlösung) Prüfung Grundlgen der Elektrotehnik Seite von 0.03.03 Klusur Grundlgen der Elektrotehnik (Musterlösung) Lösung :. Berehnung des Quershnitts A A π (d/)² π (0,mm/)² 7,85 0 9 m² Berehnung des Widerstndes

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

1 152.17. 1. Gegenstand und Zweck

1 152.17. 1. Gegenstand und Zweck 5.7. März 0 Verordnung üer die Klssifizierung, die Veröffentlihung und die Arhivierung von Dokumenten zu Regierungsrtsgeshäften (Klssifizierungsverordnung, KRGV) Der Regierungsrt des Kntons Bern, gestützt

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Insiu für Mehnishe Verfhrensehnik und Mehnik Bereih Angewnde Mehnik Tehnishe Mehnik III (Dnik) Aufge..3 Bereiungszei: h 3 in (8 Punke), q g + - E h Gegeen:, q, E, g,, v, h Ein Plenkondensor (Höhe h) is

Mehr

McAfee Firewall Enterprise

McAfee Firewall Enterprise Hnduh für den Shnellstrt Revision C MAfee Firewll Enterprise Version 8.3.x In diesem Hnduh für den Shnellstrt finden Sie kurzgefsste Anweisungen zum Einrihten von MAfee Firewll Enterprise. 1 Üerprüfen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

Musterfragen HERMES 5.1 Foundation

Musterfragen HERMES 5.1 Foundation Musterfrgen HERMES 5.1 Fountion Inhlt Seite 2 A Seite 3 Einführung Multiple-Choie-Frgen HERMES ist ein offener Stnr er shweizerishen Bunesverwltung. Die Shweizerishe Eigenossenshft, vertreten urh s Informtiksteuerungsorgn

Mehr

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper 1 Anwendungsaufgaen Geh ei Anwendungsaufgaen zu Körpererehnungen folgendermaßen vor: 1. Üerlege, o die gegeenen Körper mit einem geometrishen Grundkörper üereinstimmen.. Findest du keine Üereinstimmung,

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden.

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden. Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: http://www.wiwi.uni muenster.de/vwt/studieren/pruefungen_marktpreis.htm

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler von udolf Fiedler Zusmmenfssung: Der Beitrg eshreit die Aufgen des Projektontrollings, insesondere des strtegishen Projektontrollings. Für die wesentlihen Aufgenereihe werden prktikle Instrumente vorgestellt.

Mehr

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen DOWNLOD rigitte Penzenstler 5./6. Klsse: Multipliktion Mthetrining in 3 Kompetenzstufen rigitte Penzenstler ergeorfer Unterrihtsieen Downlouszug us em Originltitel: Mthetrining in 3 Kompetenzstufen n 1:

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

Gewählt wird eine viersträngige Seilführung mit oberer Ausgleichsrolle (siehe Skript Blatt 4.4-10).

Gewählt wird eine viersträngige Seilführung mit oberer Ausgleichsrolle (siehe Skript Blatt 4.4-10). Zahlenbeispiel - erechnung und Entwurf eis ubwerks a) Anordnung (siehe Skript latt 0a) Das ubwerk hat die auptbaugruppen otor, TK Troelkupplung, K elastische Kupplung it resscheibe, T Seiltroel, echanische

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

Aktion: Der Patient führt eine Pro- bzw. Supination

Aktion: Der Patient führt eine Pro- bzw. Supination .5 Üungen mit un ohne Gerät 389 A..103 Extension es Ellenogen gelenks. Ausgngsstellung. En stellung. Anmerkung: Es ist uf einen stilen Rumpf zu hten. Neen iesen reltiv isolierten Streküungen für en M.

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

Formeln für Metallberufe

Formeln für Metallberufe EUROPA-FACHBUCHREIHE für ufe Urih Fisher Mx Heinzer Friedrih Näher Heinz Pezod Rond Goeringer Rond Kigus Sefn Oesere Andres Sehn Foren für ufe 9. Aufge Bidereiung: Zeihenüro des Verges Euro-Lehrie, Leinfeden-Eherdingen

Mehr

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM Instlltionsnleitung Hier eginnen ADS-2100 Lesen Sie zuerst die Produkt-Siherheitshinweise, evor Sie ds Gerät einrihten. Lesen Sie dnn diese Instlltionsnleitung zur korrekten Einrihtung und Instlltion.

Mehr

Haus B Außenwand, Sockel

Haus B Außenwand, Sockel Hus B 18 Außenwnd, Sokel 19 Innenwnd, Bodenpltte 20 Außenwnd, Fundment 21 Innenwnd, Fundment 22 Außenwnd, Deke, Fenster 23 Innenwnd, Deke, Tür 24 Außenwnd, Trufe 25 Außenwnd, Ortgng 26 Außenwnd, Eke 27

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

VIESMANN. VITODENS Abgassysteme für Gas-Brennwertkessel 3,8 bis 105,0 kw. Planungsanleitung ABGASSYSTEME VITODENS

VIESMANN. VITODENS Abgassysteme für Gas-Brennwertkessel 3,8 bis 105,0 kw. Planungsanleitung ABGASSYSTEME VITODENS VIESMANN VITODENS Agssysteme für Gs-Brennwertkessel 3,8 is 105,0 kw Plnungsnleitung ABGASSYSTEME VITODENS 5369 08 5/011 Inhltsverzeihnis Inhltsverzeihnis 1. Agssysteme 1.1... 4 Butehnishe Einheit... 4

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlgen der Elektrotehnik Seite 1 von 20 Klusur Grundlgen der Elektrotehnik 1) Die Klusur esteht us 8 Aufgen, dvon 7 Textufgen und ein Single- Choie-Teil. 2) Zulässige Hilfsmittel: Linel, Winkelmesser,

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206 Felix Brndl Münhen ZDfB_Ü01_SW_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 30 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Lesen Sie den folgenden Text zuerst

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung ehnishe niversität Münhen ommer 2016 Prof. J. Esprz / Dr. M. Luttenerger,. ikert 18. Juni 2016 HA-Lösung A-Lösung Einführung in die theoretishe Informtik Aufgenltt 8 Behten ie: oweit niht explizit ngegeen,

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Aufgaben. Technischen Mechanik. - Statik -

Aufgaben. Technischen Mechanik. - Statik - Otto-von-Guericke-Universität Mgdeurg Institut für Mechnik ufgen ur Technischen Mechnik - Sttik - usge 008 Otto-von-Guericke-Universität Mgdeurg kutät für Mschinenu Institut für Mechnik ufgen ur Technischen

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

STUDIENPLAN ZUM STUDIENGANG BACHELOR BETRIEBSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. AUGUST 2007

STUDIENPLAN ZUM STUDIENGANG BACHELOR BETRIEBSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. AUGUST 2007 STUDIENPLAN ZUM STUDIENGANG BACHELOR BETRIEBSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. AUGUST 2007 Die Wirtshfts- und Sozilwissenshftlihe Fkultät der Universität Bern erlässt, gestützt uf Artikel 39 Astz

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie Allgemeines Nme: Emil: Stefn Shrmm stefn.shrmm@wiwi.uni muenster.de Motivtion für die Vernstltung Üung zur Mrkt und Preistheorie Inhlt der Klusur Vorlesung Skrit und Üung Sehr gut vorzuereiten! Tis zur

Mehr

Mit Würfeln Quader bauen 14

Mit Würfeln Quader bauen 14 3 1 Quder uen Ein Spiel zu zweit Würfelt wehslungsweise mit einem Spielwürfel und fügt die gewürfelte Anzhl Holzwürfel den vorhndenen Würfeln hinzu. In jeder Spielrunde versuht ihr, us llen vorhndenen

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

FordMondeo 0965237 2 3 4 5 6 7 8 9 10 11 6 1 3 2 4 7 8 10 5 9 13 12 11 14 13 12 11 22 23 24 25 26 27 28 29 30 32 34 36 38 40 Mountinike us der Ford Lifestyle Collection Für spontne Ausflüge und Spss

Mehr

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Kapitel 3: Deckabbildungen von Figuren - Symmetrie. 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

Kapitel 3: Deckabbildungen von Figuren - Symmetrie. 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Gruppe er Kongruenzilungen 1 Gruppe er Kongruenzilungen 2 Kpitel 3: ekilungen von Figuren - Symmetrie 3.1 ie Gruppe (K,o) ller Kongruenzilungen einer Eene K ist ie Menge ller Kongruenzilungen E E; o ist

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Allgemeine Bedingungen für die Kfz-Versicherung AKB. Stand 01.10.2014

Allgemeine Bedingungen für die Kfz-Versicherung AKB. Stand 01.10.2014 Allgemeine Bedingungen für die Kfz-Versiherung AKB Stnd 1.1.214 VOLKSWOHL BUND Shversiherung AG Südwll 37-41 44137 Dortmund VBS K 111 1.214 Seite 1 Inhltsverzeihnis A Welhe Leistungen umfsst Ihre Kfz-

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

DIN 41612/60603-2 Steckverbinder und ergänzende Komponenten. www.erni.com. Katalog D 074559 11/09 Ausgabe 2

DIN 41612/60603-2 Steckverbinder und ergänzende Komponenten. www.erni.com. Katalog D 074559 11/09 Ausgabe 2 DIN /00- tekverinder und ergänzende Komponenten www.erni.om Ktlog D 09 /09 Ausge www.erni.om Ctlog E 0 Ktlog 0/0 D 09 /09 Edition Ausge www.erni.om DIN /IEC 00- tekverinder Inhltsverzeihnis DIN /IEC 00-

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

Kapitel 6 E-Mails schreiben und organisieren

Kapitel 6 E-Mails schreiben und organisieren Kpitel 6 E-Mils shreien und orgnisieren Die Kommuniktion vi E-Mil ist heute essenziell. Und Ihr M ist estens gerüstet für den Empfng, ds Verfssen und die Orgnistion von E-Mils. Wie Sie effektiv mit dem

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

Installations und Bedienungsanleitung

Installations und Bedienungsanleitung Instlltions und Bedienungsnleitung EKRUCBS Instlltions und Bedienungsnleitung Deutsch Inhltsverzeichnis Inhltsverzeichnis Für den Benutzer 2 1 Schltflächen 2 2 Sttussymole 2 Für den Instllteur 3 3 Üersicht:

Mehr

Technische Mechanik III Aufgabensammlung 2. Aufgabensammlung 2

Technische Mechanik III Aufgabensammlung 2. Aufgabensammlung 2 Tehnishe Mehnik III Augbenslung Augbenslung Augbe : Kinetik Zwei Hltestellen sind 5 oneinnder enternt. Eine Strßenbhn ährt gerdlinig it einer konstnten Beshleunigung A on der einen Hltestelle n und erreiht

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Prof. V. Prediger: Aufgaben zur Lehrveranstaltung Kinematik und Kinetik 1. 4. Kinetik des Massenpunktes. 4.1 Prinzip von D`Àlambert

Prof. V. Prediger: Aufgaben zur Lehrveranstaltung Kinematik und Kinetik 1. 4. Kinetik des Massenpunktes. 4.1 Prinzip von D`Àlambert Pof. V. Pedie: ufaen zu Lehveanstaltun Kineatik und Kinetik 4. Kinetik des Massenpunktes 4. Pinzip von D`Àlaet ufae 4.: Ein PKW fäht auf ein staes Hindenis zu. Es elint de Fahe vo de ufpall, seine Geshwindikeit

Mehr

ANATOMIE-QUIZ KÖRPER-QUIZ

ANATOMIE-QUIZ KÖRPER-QUIZ ANATOMIE-QUIZ KÖRPER-QUIZ 1 Viel Spß eim Rätseln! Dein Körper esteht us vielen Orgnen, die in gnz esonderer Weise zusmmenreiten. Die meisten Orgne kennst du ereits, sie hen eine estimmte Form und einen

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

Aufgabe 1: Die Zahl 100 soll derart in zwei Summanden zerlegt werden, dass die Summe der Quadrate der beiden Summanden möglichst klein wird.

Aufgabe 1: Die Zahl 100 soll derart in zwei Summanden zerlegt werden, dass die Summe der Quadrate der beiden Summanden möglichst klein wird. Etremwertufgen Zhlenrätsel ufge : Die Zhl 00 soll derrt in zwei Summnden zerlegt werden, dss die Summe der Qudrte der eiden Summnden möglichst klein wird. ufge : Die Zhl 60 ist so in zwei Summnden zu zerlegen,

Mehr

Prüfung 1 Messen und Prüfen Kfz-Mechatroniker. Prüfungsvariante 1. Messen und Prüfen. Beleuchtungseinrichtung/Starter und Glühanlage.

Prüfung 1 Messen und Prüfen Kfz-Mechatroniker. Prüfungsvariante 1. Messen und Prüfen. Beleuchtungseinrichtung/Starter und Glühanlage. Prüfung 1 Messen un Prüfen Kfz-Mehtroniker Prüfungsvrinte 1 Messen un Prüfen Beleuhtungseinrihtung/Strter un Glühnlge Zeit: 60 Minuten Punkte: mx. 100 Jee Areitsufge esteht us 20 progrmmierten un 10 offenen

Mehr

Satzung Elephants Club e.v. Stand Dezember 2010. ELEPHANTS CLUB e. V. Vereinsregister-Nr.: 10751, Amtsgericht Frankfurt/Main

Satzung Elephants Club e.v. Stand Dezember 2010. ELEPHANTS CLUB e. V. Vereinsregister-Nr.: 10751, Amtsgericht Frankfurt/Main Stzung Elephnts Clu e.v. Stnd Dezemer 2010 ELEPHANTS CLUB e. V. Vereinsregister-Nr.: 10751, Amtsgeriht Frnkfurt/Min 1 Nme, Sitz und Geshäftsjhr 1.1 Der Nme der Vereines lutet: Elephnts Clu e.v. 1.2 Der

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Hnuh für en Shnellstrt Revision A MAfee Firewll Enterprise Control Center Version 5.3.1 In iesem Hnuh für en Shnellstrt finen Sie llgemeine Anweisungen zum Einrihten von MAfee Firewll Enterprise Control

Mehr