Tutorium Makroökonomik I:

Größe: px
Ab Seite anzeigen:

Download "Tutorium Makroökonomik I:"

Transkript

1 UNIVERITÄTKOLLEG Unverstätskolleg: #tdm+ Ttorm Makroökonomk I:. Lneare Fnktonen mehrerer Varablen Dr. Krstn aetz Tobas Fscher Kostenlose satzangebote nd Lehrmateralen für alle tderenden

2 Ttorm Makroökonomk I:. Lneare Fnktonen mehrerer Varablen el: Graphsche Darstellng lnearer Fnktonen, Verständns endogener nd eogener Varablen Mathematsche Grndlagen: Kaptel, 5, m Bch Afgabe (vgl. Kaptel, 5) - Fnktonen ener Varablen, graphsche Darstellng. Betrachten e de abgebldete Fnkton: = a + b (lnke Graphk) Abb. (a) Bestmmen e de arameter a nd b nd geben e damt de Fnkton eplzt an. (b) elchen ert nmmt an, wenn = st? nd wenn =? Bestmmen e des graphsch. (c) e verändert sch, wenn...? Bestmmen e des graphsch, herbe können e ach de zwete Graphk ntzen.. a stegt. b stegt. stegt ydsæter, Hammond nd trøm, Mathematk für rtschaftswssenschaftler, earson, 05 etere Afgaben fnden e her sowe m Übngsbch der Makroökonome: Forster, Klüh nd aer, Makroökonome - Das Übngsbch, earson, 0

3 . echnen e skzzenhaft. Beschrften e dabe mmer Achsen nd Achsenabschntte: (a) = 5 + mt af der vertkalen Achse (Ordnate) nd af der horzontalen Achse (Abszsse) (b) = mt af der Ordnate, af der Abszsse (c) = s 0 + s mt s 0 < 0, 0 < s < nd mt af der Ordnate, af der Abszsse. elchen ert nmmt an, wenn = 0 st? Und wenn =? Bestmmen e des graphsch.. e verändert sch, wenn...? Bestmmen e des graphsch. (d) M = m 0 mt m 0 > 0 A. s 0 stegt B. s stegt C. stegt. wobe e M af der Ordnate abtragen nd af der Abszsse. e verändert sch de Gerade, wenn m 0 stegt? e verändert sch M?. wobe e M af der Abszsse abtragen nd af der Ordnate. e verändert sch de Gerade, wenn m 0 stegt? e verändert sch M? Afgabe (vgl. Kaptel ) - Fnktonen mehrerer Varablen Der Verkafspres enes Hases n $ ( ) hängt von velen Faktoren ab: = X + 000X X X X - Grndstücksgröße n m X 3 - Anzahl Badezmmer X - Anzahl chlafzmmer X - Anzahl tockwerke Nehmen e m Folgenden an, en Has hat chlafzmmer, Badezmmer nd en tockwerk.. e hoch st der Verkafspres, wenn das Has en 00m großes Grndstück hat?. e hoch st der Verkafspres, wenn das Has statt n en 0m großes Grndstück hat nd alles andere glech blebt? 3. e hoch st der hypothetsche Verkafspres, wenn das Has statt n en 0m großes Grndstück hat nd alles andere glech blebt?. echnen e den sammenhang zwschen X nd für deses Has n ene Graphk, wobe se af der Ordnate abtragen nd X af der Abszsse. Bestmmen e graphsch (kzze!). 5. Erlätern e, we sch der Verkafspres ändert nd we sch des graphsch aswrkt, wenn

4 (a) X stegt (b) X stegt (c) X 3 stegt (d) X stegt. echnen e den sammenhang zwschen X nd n ene Graphk, wobe e X af der Ordnate abtragen nd af der Abszsse. Bestmmen e graphsch (kzze!). 7. Erlätern e, we sch der Verkafspres ändert nd we sch des graphsch aswrkt, wenn (a) X stegt (b) X stegt (c) X 3 stegt (d) X stegt Afgabe 3 (vgl. Kaptel, 5) - Lneare Modelle. In ener Volkswrtschaft gelten folgende Verhaltensglechngen: = C + I + G C = c 0 + c I = 00 G = 00 - Güternachfrage - Enkommen/Güterprodkton C - prv. Konsm c 0 - atonomer Konsm, c 0 > 0 c - margnale Konsmnegng, 0 < c < I - Investtonen G - taatsasgaben (a) tellen e de Nachfrage als Fnkton des Enkommens dar ( ). (b) tegt oder snkt de Güternachfrage, wenn... stegen?. c 0. I. G v. (c) echnen e de Fnkton n ene Graphk, wobe e af der Ordnate abtragen nd af der Abszsse (d) Verschebt sch de Gerade oder wandern wr entlang der Geraden, wenn... stegen?. c 0. I. G v.. In ener Volkswrtschaft gelten folgende Verhaltensglechngen: (a) Lösen e nach af. = C + I + G C = c 0 + 0, 5 V I = , G = 50 V = T T = 00 c 0 = 00 (b) kzzeren e den sammenhang von nd für enen gegebenen nssatz, wobe e af der Ordnate abtragen nd af der Abszsse. 3

5 (c) Bestmmen e graphsch den glechgewchtgen Otpt ( = ). (d) Erlätern e, we sch () de Güternachfrage ändert, we sch des () af den glechgewchtgen Otpt aswrkt nd we sch des (3) graphsch aswrkt, wenn. c 0 stegt. T stegt. G stegt v. stegt (e) Lösen e nach dem glechgewchtgen Otpt af ( = ). (f) Nehmen e an der nssatz betrage 0,0. e hoch snd dann, C, I, G, T,? (g) elche Varablen snd her endogen, welche eogen? (h) tellen e de Glechgewchtsbedngng graphsch dar, wobe e das Glechgewchtsenkommen af der Abszsse nd den nssatz af der Ordnate abtragen. () Erlätern e, we sch der glechgewchtge Otpt ändert nd we sch des graphsch aswrkt, wenn.... c 0 stegt. T stegt. G stegt v. stegt (Herz könnte Ihre Antwort nter d hlfrech sen.)

6 satzafgaben. Fnktonen ener Varablen echnen e skzzenhaft. Beschrften e dabe mmer Achsen nd Achsenabschntte: (a) C = 0, 3 + 0, 5 V mt C af der Ordnate nd V af der Abszsse (b) = +µ mt 0 < µ <. wobe e af der Ordnate abtragen nd af der Abszsse. e verändert sch de Gerade, wenn µ stegt? e verändert sch?. wobe e af der Abszsse abtragen nd af der Ordnate. e verändert sch de Gerade, wenn µ stegt? e verändert sch? (c) = c 0 + ( c ) V mt c 0 > 0, 0 < c < nd mt af der Ordnate, af der Abszsse. elchen ert nmmt an, wenn V = 0 st nd welchen, wenn V = 0 st?. e verändert sch de Gerade, wenn c 0 stegt? e verändert sch?. e verändert sch de Gerade, wenn c stegt? e verändert sch? v. e verändert sch de Gerade, wenn V stegt? e verändert sch? (d) M d = (0, 3 ) mt = nd 0 < < 0, 3 wobe e M d af der Ordnate nd af der Abszsse abtragen. e verändert sch de Gerade, wenn stegt? e verändert sch M d?. e verändert sch de Gerade, wenn stegt? e verändert sch M d?. Fnktonen mehrerer Varablen Der Verkafspres enes Hases n $ ( ) hängt von zwe Faktoren ab: = X + X mt X - Grndstücksgröße n m X - ohnfläche n m (a) echnen e den sammenhang zwschen X, X nd n ene Graphk, wobe se X af der Ordnate abtragen nd X af der Abszsse: echnen e Höhenlnen für. = = = 5000 v. = 0000 (b) Erlätern e, we sch der Verkafspres ändert nd we sch des graphsch aswrkt, wenn. X stegt nd konstant. X stegt nd konstant. X stegt nd X konstant v. X stegt nd X konstant 3. Lneare Modelle In ener Volkswrtschaft se der Geldmarkt drch folgende Verhaltensglechngen 5

7 beschreben: M d = d d M s = 50 d = 0, 3 d =.500 (a) Bestmmen e das Glechgewcht af dem Geldmarkt ( M d = M s ). (b) kzzeren e de so erhaltene Glechgewchtsbedngng (LM-Krve) n enem Dagramm mt af der Ordnate nd af der Abszsse (c) Führen e de LM-Krve mt der I-Krve as Afgabe 3. (h) n enem Dagramm zsammen. Bestmmen e den glechgewchtgen nssatz ( ) nd den glechgewchtgen Otpt ( ) graphsch nd rechnersch. (d) egen e graphsch, we sch glechgewchtger nssatz nd Otpt verändern, wenn:. c 0 snkt. d stegt. T snkt v. M s stegt v. G snkt

8 C satzafgaben - Lösng 0,3. Fnktonen ener Varablen C (a) +µ (b). µ. µ Verschebng nach nten Verschebng nach lnks 0,3 (c). c 0 ; 0 0c c 0 C +µ. arallelverschebng nach nten, snkt für alle erte von V. tegng wrd flacher, snkt für alle erte von V > 0 0,3 v. anderng entlang der Geraden, stegt +µ (d) C. tegng wrd steler, M d stegt für alle erte von. tegng wrd flacher, M d snkt für alle erte von +µ C 0,3 +µ c0 M d +µ 0,3 +µ X c0 750 M d +µ. Fnktonen mehrerer Varablen c0 +µ +µ 000 (a). X = 000, 5X Nllstelle be X c0 = 00 (b) anderng c0 entlang der Höhenlne, X snkt. X = 50, 5X Nllstelle be X = M. X d =, 5X Nllstelle be X = 00 X X v. X = 750, 5X Nllstelle be X = 300. anderng entlang der Höhenlne, X M d snkt Verschebng der Höhenlne, stegt v. Verschebng der Höhenlne, stegt X X X X X X M d v X X X 3. Lneare Modelle X X 750 (a) = d (b) 750 d = 0, 000 0, v (c) 000 = (d) d M s 35 = 0, 057 = 9, 57. c 0 00 snkt 00 00C X I-Krve verschebt X sch nach lnks, X v

9 -0, 0,55. d stegt d d tegng der LM-Krve wrd steler, I. T snkt C I-Krve verschebt sch nach rechts, M v. s stegt M s d der negatve Achsenabschntt LM der LM-Krve wrd größer, se verschebt sch nach nten, v. G snkt C I-Krve verschebt sch nach lnks, -0, -0, 0,55 0,55 I I LM LM &v LM -0, -0, -0, v 0,55 0,55 I I LM &v LM -0, -0, v 0,55 I &v LM -0, v

10 Hapttel - Lösng Afgabe - Fnktonen ener Varablen, graphsche Darstellng. (a) a = (Ordnatenabschntt) b = 0, 5 (tegngsparameter) 0= + 0, 5 b a 0 0,5 5, b 5 Abb. :.b&c a + s 0 s 5 M + s s 0 0 m 0 m0 0 Abb. 3:.a,b,c s + s M s 0 0 m 0 m0 s + s m0 m 0 M s 0 0 s Afgabe - Fnktonen mehrerer Varablen Abb. :.d s m0 m 0 M 0 Nehmen e m Folgenden an, en Has hat chlafzmmer, Badezmmer nd en tockwerk.. $. 3505$ (also 5 Dollar höher) 9 3

11 $. = X 5. (a) X stegt stegt, anderng entlang der Krve (b) X stegt stegt für jedes X, Krve verschebt sch nach oben (c) X 3 stegt stegt für jedes X, Krve verschebt sch nach oben (d) X stegt stegt für jedes X, Krve verschebt sch nach oben. X = , 7. (a) X stegt stegt, anderng entlang der Krve (b) X stegt stegt für jedes X, Krve verschebt sch nach rechts 00 (c) X 3 stegt stegt für jedes X, Krve verschebt a sch nach rechts 3000 (d) X stegt stegt für jedes X, Krve verschebt sch nach rechts X 3000 X 00 a X X 00 X X 3000 X X a 00 a 00 X X a X 00 X Abb. 5:.&5.,.&7. a Afgabe 3 - Lneare Modelle X X X. (a) = c c (b) stegt mmer 00 (c) (d) a c0 + I + G X a,, 3000 c0 + I + G v Abb. :.c&d,,. (a) = , (b) (c) (d) v. c 0 stegt C -Krve verschebt sch nach oben c 0, G 000 T,

12 c0 + c0 + I + G. T stegt C -Krve verschebt sch nach nten. G stegt -Krve verschebt,, sch nach oben v. stegt I -Krve verschebt v sch nach nten (e) = (f) = 00 C = 0 I = 0 G = 50 T = 00 = 00 (g) endogen:,, V, C, I, (h) = 0, 55 0, 0005 () eogen: c 0, T, G. c 0 stegt C I-Krve verschebt sch nach rechts. T stegt C I-Krve verschebt sch nach lnks. G,, stegt I-Krve verschebt sch nach rechts v. stegt v I anderng entlang der I-Krve ämtlche Veränderngen eogener Komponenten, de be gegebenem nssatz z ener tegerng des Glechgewchtsenkommens führen, verscheben de I-Krve nach rechts c 0, G 0, T, I T c 0, G 00 Abb. 7:. & h, c 0, G T,

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonome I/Grundzüge der Makroökonome Page 1 1 Makroökonome I/Grundlagen der Makroökonome Kaptel 5: Das IS-LM Modell Günter W. Beck 1 Makroökonome I/Grundzüge der Makroökonome Page 2 2 Der Gütermarkt

Mehr

K A P I T E L. Das IS-LM-Modell. Modell. Prof. Dr. Ansgar Belke Makroökonomik I Sommersemester 2009 Folie 1

K A P I T E L. Das IS-LM-Modell. Modell. Prof. Dr. Ansgar Belke Makroökonomik I Sommersemester 2009 Folie 1 K A P I T E L 5 Das IS-LM-Modell Modell Prof. Dr. Ansgar Belke Makroökonomk I Sommersemester 2009 Fole Das IS-LM-Modell aptel 5 Ka 5 5. Der Gütermarkt und de IS- Glechung 52 5.2 Geld- und Fnanzmärkte und

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

Makroökonomik für Betriebswirte

Makroökonomik für Betriebswirte Makroökonomk für Betrebswrte 6.3 Dr. Mchael Paetz Unverstät Hamburg Fachberech Volkswrtschaftslehre Dezember 2017 Emal: Mchael.Paetz@wso.un-hamburg.de Outlne : 1. Wederholung: Der Gütermarkt 2. De Abletung

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

F E R N U N I V E R S I T Ä T

F E R N U N I V E R S I T Ä T Matrkelnmmer Name: Vorname: F E R N U N I V E R S I T Ä T Fakltät für Wrtschaftswssenschaft Klasr: Modl 7 Markt nd Staat (6 SWS) Termn:.0.0, 9.00.00 Uhr Prüfer: Unv.-Prof. Dr. Thomas Echner Afgabe Smme

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Protokoll zu Versuch C1-Mischungsvolumina

Protokoll zu Versuch C1-Mischungsvolumina Protokoll zu Prnz: De sezfschen Mschungsvolumna ener Lösung werden durch auswegen fester Flüssgketsvolumna bekannter Lösungszusammensetzungen mt Hlfe von Pyknometern bestmmt. Theoretsche Grundlagen: Um

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

3. Textprobe Makroökonomik (Auszug aus Kapitel 9)

3. Textprobe Makroökonomik (Auszug aus Kapitel 9) 3. extprobe Makroökonomk (Auszug aus Kaptel 9. abelle zum keynesanschen Grunmoell Enogene Varable +Reallohn Exogene Störungen Gelmengenerhöhung M > Kretfnanzerte Staatsausgabenerhöhung >, = Steuerfnanzerte

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am U Graz, Insttt Regelngs- nd Atomatserngstechnk Schrftlche Prüfng as Sstemtechnk am 3.. Name / Vorname(n): Matrkel-Nmmer: Bonspnkte as den MALAB-Übngen: O ja O nen 3 4 errechbare Pnkte 5 6 6 4 errechte

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

IK: Einkommen, Beschäftigung und Finanzmärkte (Wintersemester 2011/12) Das IS LM Modell

IK: Einkommen, Beschäftigung und Finanzmärkte (Wintersemester 2011/12) Das IS LM Modell IK: Enkommen, Beschäftgung und Fnanzmärkte (Wntersemester 2011/12) Das IS LM Modell Zele und Inhalt Zel: Zusammenführung von Güter-und Fnanzmärkten um den Output und den Znssatz ener Ökonome n der kurzen

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Protokoll: Labor: Analogelektronik. Versuch: Transistorgrundschaltungen. Alexander Böhme Matthias Pätzold

Protokoll: Labor: Analogelektronik. Versuch: Transistorgrundschaltungen. Alexander Böhme Matthias Pätzold Protokoll: Labor: Analogelektronk Versch: Transstorgrndschaltngen Von: Alexander Böhme Matthas Pätzold Te1 Grndschaltngen mt bpolaren Transstoren. 1.1 Nachwes der thermschen Stablserng des Arbetspnktes.

Mehr

Datenaufbereitung und -darstellung III

Datenaufbereitung und -darstellung III Datenafberetng nd Darstellng 1 Glederng: Zel der Datenafberetng nd Darstellng Datenverdchtng Tabellen nd grafsche Darstellngen Darstellng nvarater Datenmengen (Abschntt 4.4 Darstellng mltvarater Daten

Mehr

3. Das IS-LM Modell: Die Integration von

3. Das IS-LM Modell: Die Integration von 3. Das IS-LM Modell: De Integraton von kurzfrstgem Güter- & Fnanzmarkt-Glechgewcht Blanchard & Illng Kaptel 5 Vorberetet durch: Floran Bartholomae / Sebastan Jauch / Angelka Sachs 5-1 Der Gütermarkt und

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

Erstes Kirchhoffsches Gesetz

Erstes Kirchhoffsches Gesetz Amaterfnkkrs Landesverband Wen m ÖVSV Erstellt: 2010-2011 Letzte Bearbetng: 20. Febrar 2016 Themen 1 2 3 4 5 Erstes s Gesetz 3 2 1 4 5 2 + 3 + 5 =? Erstes s Gesetz 3 2 1 4 5 2 + 3 + 5 = 1 + 4 Zwetes s

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Vorlesungsprüfung Politische Ökonomie

Vorlesungsprüfung Politische Ökonomie Vorlesungsprüfung Poltsche Ökonome 22.06.2007 Famlenname/Vorname: Geburtsdatum: Matrkelnummer: Studenrchtung: Lesen Se den Text aufmerksam durch, bevor Se sch an de Beantwortung der Fragen machen. Ihre

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell AVWL II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 28.10.2009 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G+ X IM Das

Mehr

Übung 11. Endogene Wachstumstheorie - Das Romer-Modell II

Übung 11. Endogene Wachstumstheorie - Das Romer-Modell II Unverstät Ulm 89081 Ulm Germany Tno Conrad, M.Sc. Insttut für Wrtschaftspoltk Fakultät für Mathematk und Wrtschaftswssenschaften Ludwg-Erhard-Stftungsprofessur Wntersemester 2018/19 Übung 11 Endogene Wachstumstheore

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am U Graz, Insttut egelungs- und Automatserungstechnk Schrftlche Prüfung aus Systemtechnk am 4.. 5 Name / Vorname(n): Kenn-Matr.Nr.: Bonuspunkte: 4 errechbare Punkte 4 5 7 5 errechte Punkte U Graz, Insttut

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abturprüfung 2014 (ohne CAS) Baden-Württemberg Lneare Optmerung Hlfsmttel: GTR, Formelsammlung beruflche Gymnasen (AG, BTG, EG, SG, TG, WG) Alexander Schwarz www.mathe-aufgaben.com Oktober

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Übung zur Makroökonomik BA im. Teil 4: Makroökonomisches Gleichgewicht

Übung zur Makroökonomik BA im. Teil 4: Makroökonomisches Gleichgewicht Übung zur BA m Wntersemester 2010/11 Tel 4: akroökonomsches Glechgewcht 1) Erklären Se, we langfrstg makroökonomsche Unglechgewchte auf em Gütermarkt ohne staatlche Interventonen besetgt weren können.

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technschen Informatk 12. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 12. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Technische Universität Chemnitz Professur für Hochfrequenztechnik und Theoretische Elektrotechnik. Praktikum Grundlagen der Elektrotechnik

Technische Universität Chemnitz Professur für Hochfrequenztechnik und Theoretische Elektrotechnik. Praktikum Grundlagen der Elektrotechnik Technsche Unverstät hemntz Professr für Hochfreqenztechnk nd Theoretsche Elektrotechnk Praktkm Grndlagen der Elektrotechnk Versch: W1 Komplexer Wderstand 1. Verschszel Vertratwerden mt dem Wesen des komplexen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Potenzen einer komplexen Zahl

Potenzen einer komplexen Zahl Potenzen ener komplexen Zahl 1-E1 1-E Abraham cc de Movre Abraham de Movre (17 175) französscher Mathematker Abraham de Movre der als Emgrant n London lebte glt als ener der Ponere der Wahrschenlchketsrechnung.

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Lineare Optimierung Einführung

Lineare Optimierung Einführung Kaptel Lneare Optmerung Enführung B... (Dre klasssche Anwendungen) Im Folgenden führen wr de ersten dre klassschen (zvlen) Anwendungen der lnearen Optmerung an: BS... (Produktonsplanoptmerung) En Betreb

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

Physikalische Chemie II

Physikalische Chemie II Prof.Dr.M.Bredol / FB01 Physkalsche Cheme II Modulprüfung PC-II (Klausur) 26.3.2014 Name, Vorname Aufgabe 1 2 3 4 5 Punkte maxmal 20 20 20 20 20 Errechte Punktzahl Matrkel-Nr. Gesamtpunktzahl Note 1. Welcher

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am TU Graz, Insttut für Regelungs- und Automatserungstechnk 1 Schrftlche Prüfung aus Sgnaltransformatonen Tel: Dourdoumas am 1. 10. 01 Name / Vorname(n): Kennzahl / Matrkel-Nummer: 1 errechbare Punkte 4 errechte

Mehr

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Leistungsanpassung am einfachen und gekoppelten Stromkreislauf

Leistungsanpassung am einfachen und gekoppelten Stromkreislauf hyskalsches Grundpraktkum Versuch 311 alf Erlebach Lestungsanpassung am enfachen und gekoppelten Stromkreslauf Aufgaben 1. Angabe enes theoretschen, normerten Kurvenverlaufs.. Bestmmung der gegebenen Wderstande,

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Optimierung 4.3 A2 : Warenhauszentrale a 2 +b 2 =c 2 Materialbörse Mathematik

Optimierung 4.3 A2 : Warenhauszentrale a 2 +b 2 =c 2 Materialbörse Mathematik Zechenerklärung: [ ] - Drücken Se de entsprechende Taste des Graphkrechners! [ ] S - Drücken Se erst de Taste [SHIFT] und dann de entsprechende Taste! [ ] A - Drücken Se erst de Taste [ALPHA] und dann

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

7) Modelle der Makroökonomik

7) Modelle der Makroökonomik 7) Modelle der Makroökonomk 7.1) Das keynesansche Grundmodell 7.1.1) De Modellglechungen Das Grundmodell wrd durch de folgenden ver Glechungen beschreben: 1a) = C( T ) + I( ) + G oder 1 1b) S( T ) = I(

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Baudynamik und Erdbebeningenieurwesen

Baudynamik und Erdbebeningenieurwesen Baudynamk und Erdbebenngeneurwesen Themen und Antworten für de Lzenzprüfung 1. Defneren Se den Begrff: Grad des dynamschen Frehetsgrads. Geben Se Bespele von Systemen mt enem enzgen Grad des dynamschen

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr