5.5.Abituraufgaben zu Logarithmusfunktionen

Größe: px
Ab Seite anzeigen:

Download "5.5.Abituraufgaben zu Logarithmusfunktionen"

Transkript

1 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t ; si ds Schuild von g. (ln ) ) Untrsuchn Si t uf Asymptotn, Achsnschnittpunkt, Etrm- und Wndpunkt. Zichnn Si für 0,5 0 mit LE cm. () ) Untrsuchn Si uf Asymptotn, Achsnschnittpunkt und Etrmpunkt. Zichnn Si in ds oordintnsystm us Aufg. Hinwis: Bschränkn Si sich i dr Untrsuchung dr Etrmpunkt uf di. Alitung und rgumntirn Si gomtrisch! (8) c) Bstätign Si durch Intgrtion, dss F () (ln) 8ln + 0 und G() (ln ). (6) d) Brchnn Si dn Inhlt dr Fläch, di durch di urvn und ingschlossn wird. () Lösung Til ) Asymptotn: Für 0 strt f t () ggn + snkrcht Asymptot i 0 () Achsnschnittpunkt: (ln + t) 0 dopplt Nullstll i t Brührpunkt (Minimum!) N t ( t 0) () Alitungn: f t () (ln + t) ln + t t ln t + ln, f t (), ft (), f t () () Etrmpunkt: ln + t 0 t ; f t ( t ) t Tifpunkt T t ( t 0) () Wndpunkt: t ln 0 t, f t ( t ) ( t) 0 Wndpunkt W t ( t ) () Zichnung () Til ) Asymptotn: Für 0 strt g() ggn + snkrcht Asymptot i 0 (0,5) lim g() 0 wgrcht Asymptot y 0 für +. (0,5) + Achsnschnittpunkt: (ln ) 0 dopplt Nullstll i Brührpunkt (Minimum!) N( 0) () Alitungn: (ln ) (ln ) (ln ) (ln )( ln ) g(), g t () () Etrmpunkt: (ln )( ln ) 0 und > Tifpunkt T( 0) und Hochpunkt H( 8 ) () Bgründung: D di Funktionswrt ni ngtiv wrdn, vrläuft ds Schuild usschlißlich uf und ür dr -Achs. Ein Etrmpunkt, dr uf dr -Achs ligt, muß dhr in Tifpunkt sin. Dr zwit Etrmpunkt knn nicht widr in Tifpunkt sin, d zwischn zwi Tifpunktn in Hochpunkt (odr in Pol) lign muß. Zichnung ()

2 Til c) f () d (ln )(ln )d ( ln ) d () [( ln )(ln ) ] [ (ln ) ln ] + [ ln ] () [ (ln ) 8 ln + 0] F. () [ ] (ln ) g ()d Til d) Intgrtionsgrnzn: f () g() (ln ) () ln d z dz z (ln ) ln ln ln (ln ) [ ()] (ln ) (ln ) ( )(ln ) 0 G. () und / (dopplt Nullstll > Brührpunkt dr idn Schuildr!) () A ( f () g()) d [ F ] () G() Aufg : urvnuntrsuchung mit Prmtrn, Intgrtion () (ln ) 8 ln + 0 (ln ) 9. () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln t) und g() (ln ) Ds Schuild von f t hißt t ; si ds Schuild von g. ) Untrsuchn Si t uf Asymptotn, Achsnschnittpunkt, Etrm- und Wndpunkt. Zichnn Si für 0,5 0 mit LE cm. () ) Untrsuchn Si uf Asymptotn, Achsnschnittpunkt und Etrmpunkt. Zichnn Si in ds oordintnsystm us Til ). Hinwis: Bschränkn Si sich i dr Untrsuchung dr Etrmpunkt uf di. Alitung und rgumntirn Si gomtrisch! (8) c) Bstätign Si durch Intgrtion, dss F () (ln) 8ln + 0 und G() (ln ). (6) d) Brchnn Si dn Inhlt dr Fläch, di durch di urvn und ingschlossn wird. () Lösung Til ) Asymptotn: Für 0 strt f t () ggn + snkrcht Asymptot i 0 () Achsnschnittpunkt: (ln t) 0 dopplt Nullstll i t Brührpunkt (Minimum!) N t ( t 0) () Alitungn: f t () (ln t) ln t + t ln t + ln, f t (), ft (), f t () () Etrmpunkt: ln t 0 t ; f t ( t ) t > 0 Tifpunkt T t ( t 0) () Wndpunkt: + t ln 0 +t, f t ( +t ) (+t) 0 Wndpunkt W t ( +t ) () Zichnung ()

3 Til ) Asymptotn: Für 0 strt g() ggn + snkrcht Asymptot i 0 (0,5) lim g() 0 wgrcht Asymptot y 0 für +. (0,5) + Achsnschnittpunkt: (ln ) 0 dopplt Nullstll i Brührpunkt (Minimum!) N( 0) () Alitungn: (ln ) (ln ) (ln ) (ln )( ln ) g(), g t () () Etrmpunkt: (ln )( ln ) 0 und Tifpunkt T( 0) und Hochpunkt H( 8 ) () Bgründung: D di Funktionswrt ni ngtiv wrdn, vrläuft ds Schuild usschlißlich uf und ür dr -Achs. Ein Etrmpunkt, dr uf dr -Achs ligt, muß dhr in Tifpunkt sin. Dr zwit Etrmpunkt knn nicht widr in Tifpunkt sin, d zwischn zwi Tifpunktn in Hochpunkt (odr in Pol) lign muß. Zichnung () Til c) f () d (ln )(ln )d ( ln ) d () [( ln )(ln ) ] (ln ) ln + [ ln ] [ ] [ ] () (ln ) 8 ln + 0 () [ ] () F. (ln ) g ()d Til d) Intgrtionsgrnzn: f () g() (ln ) ln d z dz z (ln ) ln ln ln (ln ) [ G ()]. () (ln ) (ln ) ( )(ln ) 0 > und / (dopplt Nullstll Brührpunkt dr idn Schuildr!) () > A f() g()) d ( [ ] () G() F (ln ) 8 ln + 0 (ln ) 9. () Aufg : urvnuntrsuchung mit Prmtr, Tngntn, Optimirungsufg (0) Ggn sind di Funktionn f n durch f n () (ln) n mit R + * und n Z. n ist ds Schuild von f n. ) Untrsuchn Si uf gminsm Punkt mit dr -Achs, Etrm- und Wndpunkt sowi Asymptotn. Zichnn Si im Intrvll ]0;] mit LE cm. (9) ) Untrsuchn Si uf Asymptotn und zichnn Si in ds Schuild us ) in. () c) Zichnn Si in ds Schuild us ) in und rchnn Si dn Inhlt dr Fläch, di von und ingschlossn wird. (6) d) Gn Si di Glichungn dr Tngntn t und t n, di n und n dr Stll nglgt wrdn könnn. () ) Di Tngntn t und t schlißn mit dr Achs in Drick in. In diss Drick soll in Rchtck mit chsnprllln Sitn und mimlm Flächninhlt inschrin wrdn. Gn Si di oordintn dr Eckpunkt diss Rchtcks n. (8)

4 Lösung ) Alitungn: f () (ln), f () ln, f () ( ln ) () Schnittpunkt mit dr Achs: (ln) 0 S ( 0) () Asymptot: positiv y Achs ist snkrcht Asymptot, d f () + für 0 +. () Tifpunkt: (f () 0 und f () > 0) T( 0) () Wndpunkt: (f () 0 mit VZW) W( ) () Schuild: () t - 5 y - C B 0 D A - 0 t

5 ) Asymptot: snkrcht Asymptot i, d f () + für ±. () wgrcht Asymptot i y 0, d () 0. + () Schuild: () c) Intgrtionsgrnzn: f () f () > ln (ln) und (Sustitution ln z) () A ln d (ln ) d () [ ln ] [ ln ( ln ) ] + ( ln ) d () [ ln ] [ ] [ ] ln ( ln ) + ln () [ ln (ln ) ] () () 0,8 FE d) Tngnt durch W( ) mit Stigung f () t () () Tngnt durch ( ) mit Stigung f () t () + (odr Symmtritrchtung) () ) Aufgrund dr Achsnsymmtri zur Snkrchtn gnügt s, di rcht Hälft ds Rchtcks zu trchtn: () A(u) g h u t ( + u) u ( ( + u) + ) u + u mit A (u) u + () soluts und rltivs Mimum im Schitlpunkt i u () oordintn A( 5 0), B( 5 ), C( ) und D( 0) () 5

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Labor Messtechnik Versuch 5 Operationsverstärker

Labor Messtechnik Versuch 5 Operationsverstärker HS oblnz FB Ingnirwsn F Mschinnb Prof. Dr. röbr Lbor Msstchnik rsch 5 Oprtionsvrstärkr Sit von 5 rsch 5: Oprtionsvrstärkr. rschsfb.. Umfng ds rschs Im rsch wrdn folgnd Thmnkris bhndlt: - Nichtinvrtirndr

Mehr

Rotationskörper 2. Teil 2. Lösungen zu Teil 1. Datei Nr. 48 121 LC. Juli 2001. Friedrich Buckel. Internatsgymnasium Schloß Torgelow

Rotationskörper 2. Teil 2. Lösungen zu Teil 1. Datei Nr. 48 121 LC. Juli 2001. Friedrich Buckel. Internatsgymnasium Schloß Torgelow Rotationskörpr Til Lösungn zu Til Dati Nr. 8 LC Juli Fridrich Buckl Intrnatsgymnasium Schloß Torglow Inhalt Aufgabn: Rotation um di -Achs Lösungn dazu Aufgabn: Rotation um di y-achs 7 Lösungn dazu 8 Rotationskörpr

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

5.5. Prüfungsaufgaben zur Integralrechnung

5.5. Prüfungsaufgaben zur Integralrechnung .. Prüfunsufen zur Interlrechnun Aufe : Beriffe zur Interlrechnun () Erklären Sie die folenden Beriffe: Änderunsrte, Interl, Interlfunktion und Stmmfunktion. Lösun Die Änderunsrte n der Stelle ist leich

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Grundlagen Hubstapler

Grundlagen Hubstapler Thoms Wittich Grndlgn Hbstplr ch wnn ds Fhrn mit Hbstplrn inf ch rschint, mss dis Tätigkit mit großr Sorgf lt sgübt wrdn, d Fhlr grvirnd Folgn mit sich zihn kö nnn G mäß Fchknntnisnchwis-Vrordnng ist f

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011 Vorbritung Gomtrisch Optik Stfan Schirl Vrsuchsdatum: 22. Novmbr 20 Inhaltsvrzichnis Einführung 2. Wllnnatur ds Lichts................................. 2.2 Vrschidn Linsn..................................

Mehr

Finanzierung und Förderung von energetischen Maßnahmen für Wohnungseigentümergemeinschaften

Finanzierung und Förderung von energetischen Maßnahmen für Wohnungseigentümergemeinschaften Finanzirung und Fördrung von nrgtischn Maßnahmn für Wohnungsigntümrgminschaftn Rainr Hörl Litr Vrtribsmanagmnt Aktivgschäft Anton Kasak Firmnkundn Zntral Sondrfinanzirungn Sit 1 Finanzirung und Fördrung

Mehr

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016 An l äs s l i c h 2 5 0J a h r Wi n rpr a t r! Großr Faschingsumzugs 2016 im Winr Pratr Lib Frund ds Großn Faschingsumzugs 2016 im Winr Pratr! Es ist mir in bsondr Frud, Euch di Ausschribungsuntrlagn zum

Mehr

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen 5.5. Konkr Abiuraufgabn zu Exponnialfunkionn Aufgab : Kurvnunrsuchung, Ingraion () Übr in Vnil kann das Wassrvolumn in inm Wassrbhälr grgl wrdn. Di Särk ds Wassrsroms durch diss Vnil is ggbn durch in Funkion

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

2.6! Sicherheit, Zuverlässigkeit, Verfügbarkeit

2.6! Sicherheit, Zuverlässigkeit, Verfügbarkeit .6! Sihrhi, Zuvrlässigki, Vrfügbarki Sihrhi! EN ISO 9:5! Sihrhi safy is in Zusand, in dm das Risiko ins Prsonn- odr Sahshadns auf inn annhmbarn Wr bgrnz is. Sihrhi is nih bwsnhi von Risiko Wi hoh is in

Mehr

Aufgabe 2 Kurvendiskussion von Exponential- und Logarithmusfunktionen

Aufgabe 2 Kurvendiskussion von Exponential- und Logarithmusfunktionen Ank Krisn Augab Kurvndiskussion von Eponnial- und Logarihmusunkionn a) Ggbn is di Funkion mi (). Gib dn Diniionsbrich von an. Unrsuch dn Graphn dr Funkion au Symmri, Schnipunk mi dn Koordinanachsn, Erm-

Mehr

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c.

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c. Di FAIR-Mrkmal dr kbg! Bürgr-Enrgi für Schwalm-Edr! Unsr Stromtarif transparnt, günstig, fair! Di kbg ist in in dr Rgion sit 1920 vrwurzlt Gnossnschaft mit übr 1.400 Mitglidrn und in ihrm Wirkn fri von

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 5 Finanzmärkt und Erwartungn Güntr W. Bck Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Kurs und Rnditn

Mehr

SPARSETS 150 Teile! eile! 72 od. 144 T

SPARSETS 150 Teile! eile! 72 od. 144 T 62 SPARSETS v i s u l k n I s l v i s u l k n I s All Baumwolltaschn Sparst, 150-tlg. Baumwolltaschn Wrbartikl St: 150 naturfärbig Wrbtaschn inklusiv infarbigr Bdruckung auf inr Sit Maß: ca. 38 x 42 cm.

Mehr

chemisches Fortgeschrittenenpraktikum SS 2000

chemisches Fortgeschrittenenpraktikum SS 2000 Physikalisch-chmischs chmischs Fortgschrittnnpraktikum SS Vrsuch F- 3: UV/VIS-Spktroskopi Vrsuchstag: 7.6. Svn Entrlin Grupp 3 18 97 36 174 Vrsuch F-3: UV/VIS-Spktroskopi PC-Fortgschrittnnpraktikum Glidrung:

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH iv Sofwar GmH Wlnurgr Sr. 70 81677 Münhn Tl. 0 89 / 71 05 01-0 Fax -99 www.oiv.d info@oiv.d ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA BJECTIVE SFTWARE GMBH 1 Glungsrih, Awhrklausl Di Firma iv

Mehr

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)!

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)! M4 Üung für di 1. Sulrit Nm: 1)Von inr Rut knnt mn di Läng dr igonln f und di Sitnläng. rn dn Fläninlt! f 4 m; 5 m f )Ein glisnkligs rik t inn Fläninlt von 640 mm² und in 55 mm lng Hö. rn dn Umfng ds riks

Mehr

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen!

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen! Wir für Eupn! WEGEN Umbau... göffnt! Wir für Eupn! Wir für Eupn! Auch mit Baustll ohn Problm in di Eupnr Innnstadt! Rnovirung ds ltztn Tilstücks dr Lib Bürgrinnn und Bürgr, wir möchtn Si informirn, dass

Mehr

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka 10/106 Projktirn Litungsshutz, Bkup-Shutz NZM1, NZM2, NZM3 Mollr HPL0211-2007/2008 http://tlog.mollr.nt Listungsshltr, Lsttrnnshltr Shutz von PVC-isolirtn Litungn ggn thrmish Übrlstung bi Kurzshluss Nh

Mehr

ENERGIETECHNISCHES PRAKTIKUM I

ENERGIETECHNISCHES PRAKTIKUM I ENERGETECHNSCHES PRAKTKM Vrsuch 8: Glichstromstllr 1 ENFÜHRNG ND ZE DES VERSCHES... 2 2 DAS PRNZP DES TEFSETZSTEERS... 5 2.1 Tifstzstllr mit idln Butiln... 5 2.1.1 Kontinuirlichr Btrib... 5 2.1.2 Stromwlligkit

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Kunstdrucke im Linolschnitt

Kunstdrucke im Linolschnitt Kunstduck im Linolschnitt Di Malschul auf dn Innnsitn und vil wit kativ Idn findn Si in Min Kativ-Atli (Ausgab KT 55). www.shop.oz-vlag.d. Vil wit Idn unt www.fco.d hobbygoss El GmbH Goß Ahlmühl 10 76865

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Telephones JACOB JENSEN

Telephones JACOB JENSEN Tlphons JACOB JENSEN Mhr als nur in Tlfon... Das Jacob Jnsn Tlfon 80 kann wand- odr tischmontirt wrdn. Es ist in drahtloss, digitals DECT Phon mit inr Vilzahl übrragndr Funktionn wi digital Klangschärf,

Mehr

Feldliste Einmeldung Steuerdaten

Feldliste Einmeldung Steuerdaten Fldlist inmldung Sturdatn Fldnam Anlag 3a Ausschüttungn Datnsatz Rfrnz Fld (**) Wrt Ausschüttung (vor Abzug KSt), di dr Fonds für das Gschäftsjahr, auf das sich dis Mldung bziht, ausschüttt; im Fld Ausschuttung_nichtgmldt_

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 1/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall:

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall: Übrsicht EUROWINGS VERSICHERUNGSSCHUTZ Si intrssirn sich für in HansMrkur Risvrsichrung in gut Wahl! Listungsbstandtil im Übrblick BasicPaktschutz Bstandtil Ihrr Risvrsichrung: BasicSmartRücktrittsschutz

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Gute Gründe für Französisch!

Gute Gründe für Französisch! Gut Gründ für Französisch! Willkommn in dr Wlt ds Lrnns Französisch zum Grifn nah! Blgiqu Luxmbourg Suiss Franc Europ Vil unsrr uropäischn Nachbarn sprchn Tunisi Liban französisch! Ob in dr Schwiz, in

Mehr

Bedienungsanleitung. DSLT (Vorabversion vom 29.01.2001)

Bedienungsanleitung. DSLT (Vorabversion vom 29.01.2001) Bdinungsnlitung für DSLT (Vorbvrsion vom 29.01.2001) Inhlt pprtnsichtn...2 llgmins Löschn von Funktionn...3 nrufumlitung / nrufwitrlitung...3 nruf Bntwortn (xtrn)...4 nruf Bntwortn (intrn)...5 Extrn Gspräch

Mehr

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen Kapitl 2: Finanzmärkt und 1 /Finanzmärkt -Ausblick Anlihn Aktinmarkt 2 2.1 Anlihn I Anlih Ausfallrisiko Laufzit Staatsanlihn Untrnhmnsanlihn Risikoprämi: Zinsdiffrnz zwischn inr blibign Anlih und dr Anlih

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g 1 9 5 2-2 0 1 2 6 0 J h r E r f h r u n g 60 Jhr innoviv Tchnik... und wir gbn wir Gs! 60 Jhr Dibod Firmngründr Hmu & Id Dibod 195 2 Fir Firmngr M m H ündu sä chni mu ng sch WDibo rk d - 1965 Di dmig Frigung

Mehr

Erwartungsbildung, Konsum und Investitionen

Erwartungsbildung, Konsum und Investitionen K A P I T E L 7 Erwarungsbildung, Konsum und Invsiionn Prof. Dr. Ansgar Blk Makroökonomik II Winrsmsr 2009/0 Foli Kapil 7: Erwarungsbildung, Konsum, und Invsiionn Erwarungsbildung, Konsum und Invsiionn

Mehr

Grundlagen Elektrotechnik I

Grundlagen Elektrotechnik I Grundlgn Elktrotchnik I borvrsuch I-30 (vorläufig Nullvrsion ) C- und C-Glidr Dipl-Ing lf Schmi, Dr Andrs Sifrt = I C C Idn, Ergänzungn, Kritik usdrücklich rwünscht Bitt n uns prsönlich odr vi E-Mil n:

Mehr

Studien- und Prüfungsordnung B. Besonderer Teil 43 Bachelor-Studiengang Software Engineering (SE-B)

Studien- und Prüfungsordnung B. Besonderer Teil 43 Bachelor-Studiengang Software Engineering (SE-B) tudin- und Prüfungsordnung B. Bsondrr Til 43 Bachlor-tudingang oftwar Enginring (E-B) () Dr Gsatufang dr für dn rfolgrichn Abschluss ds tudius rfordrlichn Lhrvranstaltungn bträgt 0 strwochnstundn. () Di

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

L Hospital - Lösungen der Aufgaben B1

L Hospital - Lösungen der Aufgaben B1 L Hospital - Lösug dr Aufgab B Gsucht: = Übrprüf ob di Rgl vo L'Hospital agwdt wrd darf Für ght dr Zählr gg L'Hospital darf agwdt wrd, Für ght dr Nr gg = da Zählr ud Nr gg gh Zählr ud Nr diffrzir: ' =

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-

Mehr

Die weitere Umsetzung der BaustellV

Die weitere Umsetzung der BaustellV Di witr Umstzung dr BaustllV 7. Erfahrungsaustausch dr Koordinatorn Magdburg, 17. Novmbr 2004 Michal Jägr 1. Vorsitzndr ds Zntralvrbands dr Koordinatorn nach Baustllnvrordnung Dutschlands ZVKD.V. Di witr

Mehr

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der "Digitalen Kompetenzen" am Ende der Grundstufe II

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der Digitalen Kompetenzen am Ende der Grundstufe II Vorschlag ds Pädagogischn Birats für IKT Anglgnhitn im SSR für Win zur Umstzung dr "Digitaln Komptnzn" am End dr Grundstuf II Dis Komptnzlist ntstand untr Vrwndung dr "Digitaln Komptnzn für di 8. Schulstuf"

Mehr

Verarbeitung von Kunstoffen und Kunststoffe im Alltag. Von Christina Marth

Verarbeitung von Kunstoffen und Kunststoffe im Alltag. Von Christina Marth Vrarbitung von Kunstoffn und Kunststoff im Alltag Von Christina Marth Vrarbitung dr Thrmoplast in Wärm vrformbarn Kunststoff, di nach dr Abkühlung widr rstarrn Vorgang ist rvrsibl Vrarbitung von Thrmoplastn

Mehr

Autowaschanlage. Der Steuerungsablauf für eine Autowaschanlage soll mit einer speicherprogrammierbaren Steuerung realisiert werden.

Autowaschanlage. Der Steuerungsablauf für eine Autowaschanlage soll mit einer speicherprogrammierbaren Steuerung realisiert werden. Aufgab Auowaschanlag Lrninhi P-Programmbispil Auowaschanlag Inhalsübrsich Bdinn von Programmir- und urgrän Erslln von ymbolabll, Funkionsplan odr Anwisungslis urungsprogramm ingbn, in Brib nhmn und dokumnirn

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 2/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

2.2 Multiplizieren von Brüchen

2.2 Multiplizieren von Brüchen ! 2.2 Multiplizin von Büchn Ein Rzpt fü Hftig fodt 1 Lit Milch. Man nimmt di halb Rzptmng. Wi vil Lit Milch 1 l 1000 sind fodlich? 1 / 2 w 1 / 2 w 3 / 4 l 1 / 2 l 1 / 4 l 750 500 250 w 1 / 2 l Ein Hftigzpt

Mehr

19. Bauteilsicherheit

19. Bauteilsicherheit 9. Bautilsichrhit Ein wsntlich Aufgab dr Ingniurpraxis ist s, Bautil, di infolg dr äußrn Blastung inm allgminn Spannungs- und Vrformungszustand untrlign, so zu dimnsionirn, dass s währnd dr gsamtn Btribszit

Mehr

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon Entry Voic Mail für HiPath-Systm Bdinunsanlitun für Ihr Tlfon Zur vorlindn Bdinunsanlitun Zur vorlindn Bdinunsanlitun Dis Bdinunsanlitun richtt sich an di Bnutzr von Entry Voic Mail und an das Fachprsonal,

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Geldpolitik und Finanzmärkte

Geldpolitik und Finanzmärkte Gldpolitik und Finanzmärkt Di Wchslwirkung zwischn Gldpolitik und Finanzmärktn hat zwi Richtungn: Di Zntralbank binflusst Wrtpapirpris übr dn Zinssatz und übr Informationn, di si dn Finanzmärktn zur Vrfügung

Mehr

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party)

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party) QM9(3) Systmuitor nh ISO 9001 (1 st,2 n prty) Allgmin Hinwis: Es wir von n Tilnhmrn rwrtt, ss usrihn Knntniss vorhnn sin, um i Frgn 1.1 is 1.10 untr Vrwnung r ISO 9001 innrhl von 20 Minutn zu ntwortn (Slsttst).

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Betriebsanleitung. Digitales Multifunktionsmessgerät mit LCD-Display WPM 735 E WPM 735 P. Inhalt

Betriebsanleitung. Digitales Multifunktionsmessgerät mit LCD-Display WPM 735 E WPM 735 P. Inhalt Btribsanlitung Digitals Multifunktionsmssgrät WPM 735 E WPM 735 P Inhalt 1. Sichrhitshinwis...2 2. llgmins...3 3. bmssungn...4 4. nschluss...5 4.1. nschlussbildr...5 4.2. Klmmnblgung...6 4.3. Grät inbaun

Mehr

NEU. für Ih. PPL 10.0 PASCHAL-Plan light. Jetzt in 3D und mit kompletter Bauhofverwaltung

NEU. für Ih. PPL 10.0 PASCHAL-Plan light. Jetzt in 3D und mit kompletter Bauhofverwaltung Jtzt t stn! 60 40 O nlin -T w w w.p stzugng u ntr pl- clo ud.co m 40 60 45 135 135 135 45 135 l r t n z Di g n u s ö L r n w t f b o S g f u l h c S r für Ih 25 25 75 40 40 75 NEU PPL 10.0 PASCHAL-Pln

Mehr

Rechner in C - Version 2.0

Rechner in C - Version 2.0 Rchnr in C - Vrsion.0 0.03.000 Inhlt. Vorwort. Einlitung 3. Gross Zhln und drn Brchnungn. Binär Rlzhln. Wissnschftlich Drstllung rllr Zhln 3. Ds Spichrformt dr Zhln 4. Addition und Subtrktion 5. Multipliktion

Mehr

Selbstauskunft Frau Jane Doe (33)

Selbstauskunft Frau Jane Doe (33) Slbstuskunt Fru Jn Do (33) bmtr@myrlid.com public srvnt Bmtr 2.500 ID: #9IDYET 100%ţ Übrsicht Prson Arbitsvrhältnis Einkommn Allg. Angbn Mithistori Dokumnt Prsönlich Dtn gborn m 31. Dzmbr 1981 Bru Bmtr

Mehr

Ein MOSFET ist ein spannungsgesteuertes Bauelement. Schaltzeichen: n-kanal MOSFET p-kanal MOSFET

Ein MOSFET ist ein spannungsgesteuertes Bauelement. Schaltzeichen: n-kanal MOSFET p-kanal MOSFET 4.4 ER MOFET r MO-Fldffkttrnsistor (kurz MOFET Mtll Oxid miconductor Fild Effct Trnsistor) ist in Obrflächnbulmnt, dssn Funktion im wsntlichm durch nvrsion n dr Obrfläch ds Hlblitrs ggbn ist. Hirbi rfolgt

Mehr

Nachstehende Studien- und Prüfungsordnung wurde geprüft und in der 348. Sitzung des Senats am 15.07.2015 verabschiedet.

Nachstehende Studien- und Prüfungsordnung wurde geprüft und in der 348. Sitzung des Senats am 15.07.2015 verabschiedet. Nachsthnd Studin- und Prüfungsordnung wurd gprüft und in dr 348. Sitzung ds Snats am 15.07.2015 vrabschidt. Nur dis Studin- und Prüfungsordnung ist dahr vrbindlich! Prof. Dr. Rainald Kasprik Prorktor Studium,

Mehr

X B. Gleichrichtwert u oder i u = i = Nur bei sinusförmigem Wechselstrom! Formelsammlung Wechselstrom - Seite 1 von 10

X B. Gleichrichtwert u oder i u = i = Nur bei sinusförmigem Wechselstrom! Formelsammlung Wechselstrom - Seite 1 von 10 Formlsammlung Wchslstrom Allgmin: Komplx tromstärk i Komplxr Widrstand (mpdanz) chinwidrstand (trag dr mpdanz) odr Wirkwidrstand (sistanz) ( ) { } lindwidrstand (aktanz) sin ( ) m{ } hasnwinkl Komplxr

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

Selbstauskunft Frau Jane Sample (25)

Selbstauskunft Frau Jane Sample (25) Slbstuskunt Fru Jn Smpl (25) studnt@myrlid.com Studnt Studnt 400 ID: #EBRIVI 100% ţ Übrsicht Prson Arbitsvrhältnis Einkommn Allg. Angbn Mithistori Dokumnt Prsönlich Dtn gborn m 1. Jnur 1990 Bru Studnt

Mehr

Für Stadt, Land, Bus & Bahn. Semesterticket. Gültig ab dem Wintersemester. Gültig ab dem. Sommersemester 2014/2015

Für Stadt, Land, Bus & Bahn. Semesterticket. Gültig ab dem Wintersemester. Gültig ab dem. Sommersemester 2014/2015 Für Sad, Land, Bus & Bahn Smsrick Gülig ab dm Winrsmsr Sommrsmsr 014/015 Gülig ab dm 015 Wlchs Smsrick für wn? Das Tick mi dm grünn Srifn rhaln Sudirnd dr Ebrhard-Karls-Univrsiä Tübingn dr Fakulä für Sondrpädagogik

Mehr

Interpneu Komplettradlogistik

Interpneu Komplettradlogistik Zwi Highlights in Pris Montag kostnlos! ab S Informationn Tchnisch Hintrgründ und Lösungn PLAT P 54 Transparnts Priskonzpt: PLAT P 64 Rifnpris + Flgnpris = omplttradpris PLAT P 69 All Rädr fix und frtig

Mehr

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z y g W i o o L c a B i o n n a I o E a f i E s l t f n v R H v I u m b M x H c x z S x T n T w Z E h V n u i C t S f p F o E R K o y a l H u C s t A V U K g K U p H q h D x G f U s q f y g L b A j w E u

Mehr

Tagesaufgabe: Fallbeispiel MOBE GmbH, Wetzlar

Tagesaufgabe: Fallbeispiel MOBE GmbH, Wetzlar Tagsaufgab PPS / ERP Sit 1 Prof. Richard Kuttnrich Praxisbglitnd Lhrvranstaltung: Projkt- und Btribsmanagmnt Lhrmodul 3: 25.07.2012 Produktionsplanung und Sturung - PPS / ERP Tagsaufgab: Fallbispil MOBE

Mehr

Vereinheitlichte Treibhausgasberechnung bei Stromerzeugung, Heizung und Kühlung aus Biomasse. www.biograce.net

Vereinheitlichte Treibhausgasberechnung bei Stromerzeugung, Heizung und Kühlung aus Biomasse. www.biograce.net Kofinnzirt vom EU-Progrmm Intllignt Enrgy Europ Vrinhitlicht Tribhusgsbrchnung bi rzugung, Hizung und Kühlung us Biomss www.biogrc.nt Wi funktionirt di BioGrc-II Excl Rchndti? nung mss sbrch hlung us Bio

Mehr

4. Berechnung von Transistorverstärkerschaltungen

4. Berechnung von Transistorverstärkerschaltungen Prof. Dr.-ng. W.-P. Bchwald 4. Brchnng on Transistorrstärkrschaltngn 4. Arbitspnktinstllng Grndorasstzng für dn Entwrf inr Transistorrstärkrstf ist di alisirng ins Arbitspnkts, m dn hrm im Knnlininfld

Mehr

Übersicht zur Überleitung von Amtsinhabern und Amtsinhaberinnen in die neuen Ämter und zur Darstellung der konsolidierten Ämter

Übersicht zur Überleitung von Amtsinhabern und Amtsinhaberinnen in die neuen Ämter und zur Darstellung der konsolidierten Ämter BayBsG: Anlag 11 Übrsicht zur Übrlitung von Amtsinhabrn Amtsinhabrinnn in di nun Ämtr zur Darstllung dr konsolidirtn Ämtr Anlag 11 Übrsicht zur Übrlitung von Amtsinhabrn Amtsinhabrinnn in di nun Ämtr zur

Mehr

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch?

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch? Kluur Ingniurhydrologi I Sptmbr 006 Aufgb 1: Auf inm Grgndch, d 7 m lng und m brit it, oll ich in.5 cm trk ichicht mit inr Dicht ρ=97 kg/m bfindn. Di ichicht oll in Tmprtur von t=0 C hbn. ) Wlch M i ligt

Mehr

Wechselstromkreise. Eine zeitlich periodische Wechselspannung = (1) lässt sich mit der Eulerschen Beziehung (2)

Wechselstromkreise. Eine zeitlich periodische Wechselspannung = (1) lässt sich mit der Eulerschen Beziehung (2) E4 Wchslstromkris Es soll di Frqunzabhängigkit von kapazitivn und induktivn Widrständn untrsucht wrdn. Als Anwndung wrdn Übrtragungsvrhältniss und Phasnvrschibungn an Hoch-, Tif- und Bandpässn gmssn..

Mehr

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen.

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen. Vorbmrkungn Wachstum und Zrall (Jochn Pllatz 2013) Das Thma Eponntialunktionn ist in ignständigs Gbit in dr Mathmatik und wird in dr Schul in vrschidnn Stun untrrichtt. Einach Eponntialunktionn (Kapitl

Mehr

T= 1. Institut für Technische Informatik http://www.inf.tu-dresden.de/tei/ 30.01.2008 D C D C

T= 1. Institut für Technische Informatik http://www.inf.tu-dresden.de/tei/ 30.01.2008 D C D C nstitut für chnisch nformatik 30.01.2008 nhaltsvrzichnis 1. Aufgab dr iplomarbit 2. Konzpt und Grundidn 3. Entwurf inr modularn Architktur 4. st und Auswrtung 5. Zusammnfassung 6. Ausblick nstitut für

Mehr

Inhalt. Beschreibung von DNA- Sequenzen als Markov-Ketten. DNA-Sequenz. Markov-Ketten. X: Stochastische Sequenz. P(X): Wahrscheinlichkeit der Sequenz

Inhalt. Beschreibung von DNA- Sequenzen als Markov-Ketten. DNA-Sequenz. Markov-Ketten. X: Stochastische Sequenz. P(X): Wahrscheinlichkeit der Sequenz shrbung von D- Sunzn ls Mrkov-Kttn En Enführung Inhlt Mrkov-Kttn für -Islnds Hddn Mrkov Modls HMM für - Islnds usblk Uw Mnzl Rudbk bortory Usl Unvrsty D-Sunz D Rhnfolg dr sn m D -Molkül bstmmt dn uln ns

Mehr

3 Devisenmarkt und Wechselkurs

3 Devisenmarkt und Wechselkurs 3 Dvisnmarkt und Wchslkurs Litratur: Gandolfo [2003, Chaptr I,2, I.3.1 3.3, I.4, IV.21] Cavs t al. [2002, Chaptr 21.4] Krugman & Obstfld [2004, Kapitl 13, 18.4, 18.7, 20.1 2] Jarchow & Rühmann [2000, Kap.

Mehr

Fachprüfu. Betonpumpenmaschinist. Flüeliacherweg 7 4806 Wikon 062 752 55 33 Fax: 062 752 55 32 E-Mail: info@stierli-buck.ch

Fachprüfu. Betonpumpenmaschinist. Flüeliacherweg 7 4806 Wikon 062 752 55 33 Fax: 062 752 55 32 E-Mail: info@stierli-buck.ch Fachprüfung Btonpumpnmaschinist CH ist nmaschin tonpump B ton r é b rt à o Qualifizi pomps calcstruzz qualifié d p t is m o in p r ch p Ma to ca ta qualifi Macchinis 1. Mustr 2. Max 5.2018 tum: 20.0 3.

Mehr

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28).

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28). 21 Si solltn nach Möglichkit immr di aktullstn Vrsionn intzn, bvor Si dn ELO-Support kontaktirn. Oft sind Prlm bi inm nun Updat schon bhn. 21.1 ELOoffic Downloads und Programmaktualisirungn Kostnlon Zugriff

Mehr

U I R = = = X C. Wechseltromnetzwerke. Grundlagen und erforderliche Begriffe. 1. Wechselstromersatzschaltbilder: RCu. RKs X L

U I R = = = X C. Wechseltromnetzwerke. Grundlagen und erforderliche Begriffe. 1. Wechselstromersatzschaltbilder: RCu. RKs X L Wchsltromntzwrk Grundlagn und rordrlich Bgri 0.. Glichungn X π 3 4 π X hmschr Widrstand [Ω] Kapazität [F] nduktivität [H] komplxr Schinwidrstand [Ω] kapazitivr Blindwidrstand X [Ω] induktivr Blindwidrstand

Mehr

Abiturprüfung Mathematik 2004 (Baden-Württemberg) Wahlteil Analysis Aufgabe I, 3

Abiturprüfung Mathematik 2004 (Baden-Württemberg) Wahlteil Analysis Aufgabe I, 3 www.mah-aufgabn.com Abiurprüfung Mahmai 4 (Badn-Würmbrg) Wahlil Analysis Aufgab I, 3 Aufgab I 3. Für jds > is in Funion f ggbn durch Ihr Schaubild si C. f 3 () mi R a) Sizzirn Si für dri slbs gwähl Wr

Mehr

Von der Burg in Wetter über Herdecke zur Hohensyburg in Dortmund 24. Von Schwerte zum Haus Opherdicke in Holzwickede 40

Von der Burg in Wetter über Herdecke zur Hohensyburg in Dortmund 24. Von Schwerte zum Haus Opherdicke in Holzwickede 40 Inhalt 3 Etapp 01 Von Hattingn übr Blanknstin ins Muttntal und übr di Ruhr nach Wittn 6 Etapp 02 Von Wittn nach Wttr an dr Ruhr 16 Etapp 03 Von dr Burg in Wttr übr Hrdck zur Hohnsyburg in Dortmund 24 Etapp

Mehr

Selbstauskunft Herr John Doe (33)

Selbstauskunft Herr John Doe (33) Slbstuskunt Hrr John Do (33) slbststndig@myrlid.com Crpntr Slbstständig 3.500 ID: #AK6UGX 100% ţ Übrsicht Prson Arbitsvrhältnis Einkommn Allg. Angbn Mithistori Dokumnt Prsönlich Dtn gborn m 30. April 1982

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Symmetrie Thematisch geordnete Aufgaben mit ausführlichem Lösungsweg

Symmetrie Thematisch geordnete Aufgaben mit ausführlichem Lösungsweg Übungn zum Kurs Symmtri Übungn Symmtri Thmatisch gordnt Aufgabn mit ausführlichm Lösungswg Vorab-Tstvrsion vom 8.4.7 / 17.h Copyright by www.mathmatik.nt Übungn zum Kurs Symmtri 1.Di folgndn Funktionn

Mehr

Sie das Gerät aus und überprüfen Sie den Lieferumfang. (Für Deutschland und Österreich) (Für die Schweiz) (Für Deutschland und Österreich)

Sie das Gerät aus und überprüfen Sie den Lieferumfang. (Für Deutschland und Österreich) (Für die Schweiz) (Für Deutschland und Österreich) Instlltionsnlitung Hir ginnn MFC-8370DN MFC-8380DN Lsn Si dis Instlltionsnlitung, vor Si ds Grät vrwndn, um s richtig inzurichtn und zu instllirn. Um Ihr Grät so schnll wi möglich instzrit zu mchn, wrdn

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T f(,) ( kommt nicht vo) wid

Mehr