5.5.Abituraufgaben zu Logarithmusfunktionen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5.5.Abituraufgaben zu Logarithmusfunktionen"

Transkript

1 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t ; si ds Schuild von g. (ln ) ) Untrsuchn Si t uf Asymptotn, Achsnschnittpunkt, Etrm- und Wndpunkt. Zichnn Si für 0,5 0 mit LE cm. () ) Untrsuchn Si uf Asymptotn, Achsnschnittpunkt und Etrmpunkt. Zichnn Si in ds oordintnsystm us Aufg. Hinwis: Bschränkn Si sich i dr Untrsuchung dr Etrmpunkt uf di. Alitung und rgumntirn Si gomtrisch! (8) c) Bstätign Si durch Intgrtion, dss F () (ln) 8ln + 0 und G() (ln ). (6) d) Brchnn Si dn Inhlt dr Fläch, di durch di urvn und ingschlossn wird. () Lösung Til ) Asymptotn: Für 0 strt f t () ggn + snkrcht Asymptot i 0 () Achsnschnittpunkt: (ln + t) 0 dopplt Nullstll i t Brührpunkt (Minimum!) N t ( t 0) () Alitungn: f t () (ln + t) ln + t t ln t + ln, f t (), ft (), f t () () Etrmpunkt: ln + t 0 t ; f t ( t ) t Tifpunkt T t ( t 0) () Wndpunkt: t ln 0 t, f t ( t ) ( t) 0 Wndpunkt W t ( t ) () Zichnung () Til ) Asymptotn: Für 0 strt g() ggn + snkrcht Asymptot i 0 (0,5) lim g() 0 wgrcht Asymptot y 0 für +. (0,5) + Achsnschnittpunkt: (ln ) 0 dopplt Nullstll i Brührpunkt (Minimum!) N( 0) () Alitungn: (ln ) (ln ) (ln ) (ln )( ln ) g(), g t () () Etrmpunkt: (ln )( ln ) 0 und > Tifpunkt T( 0) und Hochpunkt H( 8 ) () Bgründung: D di Funktionswrt ni ngtiv wrdn, vrläuft ds Schuild usschlißlich uf und ür dr -Achs. Ein Etrmpunkt, dr uf dr -Achs ligt, muß dhr in Tifpunkt sin. Dr zwit Etrmpunkt knn nicht widr in Tifpunkt sin, d zwischn zwi Tifpunktn in Hochpunkt (odr in Pol) lign muß. Zichnung ()

2 Til c) f () d (ln )(ln )d ( ln ) d () [( ln )(ln ) ] [ (ln ) ln ] + [ ln ] () [ (ln ) 8 ln + 0] F. () [ ] (ln ) g ()d Til d) Intgrtionsgrnzn: f () g() (ln ) () ln d z dz z (ln ) ln ln ln (ln ) [ ()] (ln ) (ln ) ( )(ln ) 0 G. () und / (dopplt Nullstll > Brührpunkt dr idn Schuildr!) () A ( f () g()) d [ F ] () G() Aufg : urvnuntrsuchung mit Prmtrn, Intgrtion () (ln ) 8 ln + 0 (ln ) 9. () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln t) und g() (ln ) Ds Schuild von f t hißt t ; si ds Schuild von g. ) Untrsuchn Si t uf Asymptotn, Achsnschnittpunkt, Etrm- und Wndpunkt. Zichnn Si für 0,5 0 mit LE cm. () ) Untrsuchn Si uf Asymptotn, Achsnschnittpunkt und Etrmpunkt. Zichnn Si in ds oordintnsystm us Til ). Hinwis: Bschränkn Si sich i dr Untrsuchung dr Etrmpunkt uf di. Alitung und rgumntirn Si gomtrisch! (8) c) Bstätign Si durch Intgrtion, dss F () (ln) 8ln + 0 und G() (ln ). (6) d) Brchnn Si dn Inhlt dr Fläch, di durch di urvn und ingschlossn wird. () Lösung Til ) Asymptotn: Für 0 strt f t () ggn + snkrcht Asymptot i 0 () Achsnschnittpunkt: (ln t) 0 dopplt Nullstll i t Brührpunkt (Minimum!) N t ( t 0) () Alitungn: f t () (ln t) ln t + t ln t + ln, f t (), ft (), f t () () Etrmpunkt: ln t 0 t ; f t ( t ) t > 0 Tifpunkt T t ( t 0) () Wndpunkt: + t ln 0 +t, f t ( +t ) (+t) 0 Wndpunkt W t ( +t ) () Zichnung ()

3 Til ) Asymptotn: Für 0 strt g() ggn + snkrcht Asymptot i 0 (0,5) lim g() 0 wgrcht Asymptot y 0 für +. (0,5) + Achsnschnittpunkt: (ln ) 0 dopplt Nullstll i Brührpunkt (Minimum!) N( 0) () Alitungn: (ln ) (ln ) (ln ) (ln )( ln ) g(), g t () () Etrmpunkt: (ln )( ln ) 0 und Tifpunkt T( 0) und Hochpunkt H( 8 ) () Bgründung: D di Funktionswrt ni ngtiv wrdn, vrläuft ds Schuild usschlißlich uf und ür dr -Achs. Ein Etrmpunkt, dr uf dr -Achs ligt, muß dhr in Tifpunkt sin. Dr zwit Etrmpunkt knn nicht widr in Tifpunkt sin, d zwischn zwi Tifpunktn in Hochpunkt (odr in Pol) lign muß. Zichnung () Til c) f () d (ln )(ln )d ( ln ) d () [( ln )(ln ) ] (ln ) ln + [ ln ] [ ] [ ] () (ln ) 8 ln + 0 () [ ] () F. (ln ) g ()d Til d) Intgrtionsgrnzn: f () g() (ln ) ln d z dz z (ln ) ln ln ln (ln ) [ G ()]. () (ln ) (ln ) ( )(ln ) 0 > und / (dopplt Nullstll Brührpunkt dr idn Schuildr!) () > A f() g()) d ( [ ] () G() F (ln ) 8 ln + 0 (ln ) 9. () Aufg : urvnuntrsuchung mit Prmtr, Tngntn, Optimirungsufg (0) Ggn sind di Funktionn f n durch f n () (ln) n mit R + * und n Z. n ist ds Schuild von f n. ) Untrsuchn Si uf gminsm Punkt mit dr -Achs, Etrm- und Wndpunkt sowi Asymptotn. Zichnn Si im Intrvll ]0;] mit LE cm. (9) ) Untrsuchn Si uf Asymptotn und zichnn Si in ds Schuild us ) in. () c) Zichnn Si in ds Schuild us ) in und rchnn Si dn Inhlt dr Fläch, di von und ingschlossn wird. (6) d) Gn Si di Glichungn dr Tngntn t und t n, di n und n dr Stll nglgt wrdn könnn. () ) Di Tngntn t und t schlißn mit dr Achs in Drick in. In diss Drick soll in Rchtck mit chsnprllln Sitn und mimlm Flächninhlt inschrin wrdn. Gn Si di oordintn dr Eckpunkt diss Rchtcks n. (8)

4 Lösung ) Alitungn: f () (ln), f () ln, f () ( ln ) () Schnittpunkt mit dr Achs: (ln) 0 S ( 0) () Asymptot: positiv y Achs ist snkrcht Asymptot, d f () + für 0 +. () Tifpunkt: (f () 0 und f () > 0) T( 0) () Wndpunkt: (f () 0 mit VZW) W( ) () Schuild: () t - 5 y - C B 0 D A - 0 t

5 ) Asymptot: snkrcht Asymptot i, d f () + für ±. () wgrcht Asymptot i y 0, d () 0. + () Schuild: () c) Intgrtionsgrnzn: f () f () > ln (ln) und (Sustitution ln z) () A ln d (ln ) d () [ ln ] [ ln ( ln ) ] + ( ln ) d () [ ln ] [ ] [ ] ln ( ln ) + ln () [ ln (ln ) ] () () 0,8 FE d) Tngnt durch W( ) mit Stigung f () t () () Tngnt durch ( ) mit Stigung f () t () + (odr Symmtritrchtung) () ) Aufgrund dr Achsnsymmtri zur Snkrchtn gnügt s, di rcht Hälft ds Rchtcks zu trchtn: () A(u) g h u t ( + u) u ( ( + u) + ) u + u mit A (u) u + () soluts und rltivs Mimum im Schitlpunkt i u () oordintn A( 5 0), B( 5 ), C( ) und D( 0) () 5

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Labor Messtechnik Versuch 5 Operationsverstärker

Labor Messtechnik Versuch 5 Operationsverstärker HS oblnz FB Ingnirwsn F Mschinnb Prof. Dr. röbr Lbor Msstchnik rsch 5 Oprtionsvrstärkr Sit von 5 rsch 5: Oprtionsvrstärkr. rschsfb.. Umfng ds rschs Im rsch wrdn folgnd Thmnkris bhndlt: - Nichtinvrtirndr

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt.

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt. Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5--. Bstimmn Si Radius und Mittlpunkt ds Kümmungskiss an di Paabl y in ihm Schitlpunkt. Allgmin Glichung d Schitlpunktfom in Paabl

Mehr

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1)

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1) Dr Arnlf Schönli, Logistischs Wchstm in dr Prxis Logistischs Wchstm in dr Prxis Für Wchstmsrozss, di nch dm logistischn Wchstmsmodll lfn, gilt: ( ( t ( Drin sind (t zw di Polionn z dn Zitnktn t zw t, nd

Mehr

Rotationskörper 2. Teil 2. Lösungen zu Teil 1. Datei Nr. 48 121 LC. Juli 2001. Friedrich Buckel. Internatsgymnasium Schloß Torgelow

Rotationskörper 2. Teil 2. Lösungen zu Teil 1. Datei Nr. 48 121 LC. Juli 2001. Friedrich Buckel. Internatsgymnasium Schloß Torgelow Rotationskörpr Til Lösungn zu Til Dati Nr. 8 LC Juli Fridrich Buckl Intrnatsgymnasium Schloß Torglow Inhalt Aufgabn: Rotation um di -Achs Lösungn dazu Aufgabn: Rotation um di y-achs 7 Lösungn dazu 8 Rotationskörpr

Mehr

2. Diskutiere die Funktion und zeichne den Graphen: (b) f(x) = 2xe x2

2. Diskutiere die Funktion und zeichne den Graphen: (b) f(x) = 2xe x2 . Diskutir di Funktion f(x) = x x und zichn ihrn Graphn. Gib di Glichung dr Wndtangnt an. Brchn das Volumn, das ntstht, wnn di Fläch zwischn dr Kurv und dr x-achs im. Quadrantn um di x-achs rotirt!. Diskutir

Mehr

www.math-aufgabn.com Abiturprüfung Mathmatik 7 Badn-Württmbrg (ohn CAS) Pflichttil - Aufgabn Aufgab : ( VP) Bildn Si di rst Ablitung dr Funktion f mit f () + ( sin ). Aufgab : ( VP) ln Brchnn Si das Intgral

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

5.5. Prüfungsaufgaben zur Integralrechnung

5.5. Prüfungsaufgaben zur Integralrechnung .. Prüfunsufen zur Interlrechnun Aufe : Beriffe zur Interlrechnun () Erklären Sie die folenden Beriffe: Änderunsrte, Interl, Interlfunktion und Stmmfunktion. Lösun Die Änderunsrte n der Stelle ist leich

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse.

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. LÖSUNGEN dr Übungsaufgabn II zur Klausur Nr.3 (Eponntialfunktionn Aufgab

Mehr

Musterlösung Aufgabe 1:

Musterlösung Aufgabe 1: rlin Üung Anlog- und Digillkronik W 9/ lcronics nd mdicl signl procssing Üung 8: Oszillorn i /9 Musrlösung Aug :. Brchnung dr Ürrgungsunkion 4 4 mi ω j s C C j C ω ω ω rlin Üung Anlog- und Digillkronik

Mehr

5 Grenzwertregel von Bernoulli

5 Grenzwertregel von Bernoulli Grnzwrtrgl von Brnoulli und d L Hospital Sit 5-5 Grnzwrtrgl von Brnoulli und d L Hospital Oft muss man dn Grnzwrt inr Funktion brchnn Ist di Funktion in Quotint zwir Funktionn, so kann di Grnzwrtbildung

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug www.shullv.d Bsiswissn > Gomtri im Rum > Trigonomtri in Körprn > Strknzug Strknzug Spikzttl Augn 1. Läng ds Strknzugs rhnn In disr Aug sollst du dn Strknzug ds gzihntn Hus vom Nikolus rhnn. Am inhstn ist

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

Grundlagen Hubstapler

Grundlagen Hubstapler Thoms Wittich Grndlgn Hbstplr ch wnn ds Fhrn mit Hbstplrn inf ch rschint, mss dis Tätigkit mit großr Sorgf lt sgübt wrdn, d Fhlr grvirnd Folgn mit sich zihn kö nnn G mäß Fchknntnisnchwis-Vrordnng ist f

Mehr

Lösungen zu Übungsblatt 5

Lösungen zu Übungsblatt 5 Lösungn u Übungsblatt 5 Zu Aufgab Stlln Si folgnd komplxn Zahln als Zigr im kartsischn Koordinatnsystm dar! Gbn Si Raltil, Imaginärtil und dn Btrag an! a + b 5 c Grafisch Darstllung als komplx Zigr: Raltil,

Mehr

Umfassende Aufgaben zu. Exponentialfunktionen. Funktionsterme mit Brüchen, Wurzeln und Ln. Lösungen auch mit CAS. Alle Methoden ganz ausführlich

Umfassende Aufgaben zu. Exponentialfunktionen. Funktionsterme mit Brüchen, Wurzeln und Ln. Lösungen auch mit CAS. Alle Methoden ganz ausführlich ANALYSIS Funktionntraining Umfassnd Aufgabn zu Eponntialfunktionn Funktionstrm mit Brüchn, Wurzln und Ln Lösungn auch mit CAS All Mthodn ganz ausführlich Dati Nr. 45130 Stand 6. Oktobr 016 FRIEDRICH W.

Mehr

Exponentialfunktionen Musteraufgaben

Exponentialfunktionen Musteraufgaben Eponntialfunktionn Mustaufgabn Typ u() f = k± AUFGABEN bis 5 mit alln Lösungn D Aiusduck ist nu von d Mathmatik-CD aus möglich Kuvndiskussionn auf Gundkusnivau mit Intgationsaufgabn Dati N. 45 Apil Fidich

Mehr

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1:

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1: Bruskollg Marinschul Lippstadt Schul dr Skundarstu II mit gymnasialr Obrstu - staatlich anrkannt - Übungsaugabn zu Eponntialunktionn Schuljahr /7 Kurs: Mathmatik AHR. Kurslhrr: Gödd / Langnbach Bruskollg

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Finanzierung und Förderung von energetischen Maßnahmen für Wohnungseigentümergemeinschaften

Finanzierung und Förderung von energetischen Maßnahmen für Wohnungseigentümergemeinschaften Finanzirung und Fördrung von nrgtischn Maßnahmn für Wohnungsigntümrgminschaftn Rainr Hörl Litr Vrtribsmanagmnt Aktivgschäft Anton Kasak Firmnkundn Zntral Sondrfinanzirungn Sit 1 Finanzirung und Fördrung

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Badn-Württmbrg:

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 7 Badn-Württmbrg:

Mehr

REIECKE ALS BAUSTEINE

REIECKE ALS BAUSTEINE LU 09 DREIEKE LS REIEKE LS USTEINE Ich kann... ok. 1 in Drickn Sitn, Eckn und Höhn bschritn Rchtwinklig, spitz- und stumpwinklig Drick sowi glichschnklig, glichsitig und unglichsitig Drick bnnnn. Grundanordrungn

Mehr

5.5. Prüfungsaufgaben zu Integrationsmethoden

5.5. Prüfungsaufgaben zu Integrationsmethoden Aufgab a: Substitutionsrgl () Gbn Si für di Funktion f in Stammfunktion an. f().. Prüfungsaufgabn zu Intgrationsmthodn f() f(t) t d) f(t) t n F() F() 9 () () F c (t) t + c () d) F c (t) t + c () Qustion

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Grubr, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Hssn Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für GTR und CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis 1 Ganzrational

Mehr

b) Weisen Sie nach, dass g und f im selben Punkt ein Minimum besitzen.

b) Weisen Sie nach, dass g und f im selben Punkt ein Minimum besitzen. Znral schriflich Abiurprüfungn im Fach Mahmaik Analysis Lisungskurs Aufgab 3 ln-funkion und Vrknüpfungn In dr Anlag sind di Graphn zwir Funkionn g und f dargsll. Ggbn sind wirhin zwi Funkionn h und h,

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen H. Grubr, G. Kowalski, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Nordrhin-Wstfaln Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis

Mehr

K b) [2P] Lösungsvorschlag 1: f '(x) 3 e 2 3x e x e 3x 5 e. (Produktregel und bei der Ableitung der e-funktion Kettenregel anwenden)

K b) [2P] Lösungsvorschlag 1: f '(x) 3 e 2 3x e x e 3x 5 e. (Produktregel und bei der Ableitung der e-funktion Kettenregel anwenden) Mathmati Lösung Klausur Nr. K1 10.1.1 Abürzungn bi dr Korrtur: S: Schribfhlr R: Rchnfhlr D: Dnfhlr Mist: Dr Lösungswg ist nicht brauchbar (falsch). Es ist dann oft sinnvoll, mit mir darübr zu rdn. Gnrll

Mehr

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011 Vorbritung Gomtrisch Optik Stfan Schirl Vrsuchsdatum: 22. Novmbr 20 Inhaltsvrzichnis Einführung 2. Wllnnatur ds Lichts................................. 2.2 Vrschidn Linsn..................................

Mehr

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen 5.5. Konkr Abiuraufgabn zu Exponnialfunkionn Aufgab : Kurvnunrsuchung, Ingraion () Übr in Vnil kann das Wassrvolumn in inm Wassrbhälr grgl wrdn. Di Särk ds Wassrsroms durch diss Vnil is ggbn durch in Funkion

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

Aufgabe 2 Kurvendiskussion von Exponential- und Logarithmusfunktionen

Aufgabe 2 Kurvendiskussion von Exponential- und Logarithmusfunktionen Ank Krisn Augab Kurvndiskussion von Eponnial- und Logarihmusunkionn a) Ggbn is di Funkion mi (). Gib dn Diniionsbrich von an. Unrsuch dn Graphn dr Funkion au Symmri, Schnipunk mi dn Koordinanachsn, Erm-

Mehr

SPARSETS 150 Teile! eile! 72 od. 144 T

SPARSETS 150 Teile! eile! 72 od. 144 T 62 SPARSETS v i s u l k n I s l v i s u l k n I s All Baumwolltaschn Sparst, 150-tlg. Baumwolltaschn Wrbartikl St: 150 naturfärbig Wrbtaschn inklusiv infarbigr Bdruckung auf inr Sit Maß: ca. 38 x 42 cm.

Mehr

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016 An l äs s l i c h 2 5 0J a h r Wi n rpr a t r! Großr Faschingsumzugs 2016 im Winr Pratr Lib Frund ds Großn Faschingsumzugs 2016 im Winr Pratr! Es ist mir in bsondr Frud, Euch di Ausschribungsuntrlagn zum

Mehr

2.6! Sicherheit, Zuverlässigkeit, Verfügbarkeit

2.6! Sicherheit, Zuverlässigkeit, Verfügbarkeit .6! Sihrhi, Zuvrlässigki, Vrfügbarki Sihrhi! EN ISO 9:5! Sihrhi safy is in Zusand, in dm das Risiko ins Prsonn- odr Sahshadns auf inn annhmbarn Wr bgrnz is. Sihrhi is nih bwsnhi von Risiko Wi hoh is in

Mehr

Zeitverhalten eines Hochpass-Messgliedes

Zeitverhalten eines Hochpass-Messgliedes n zur Znrlübung dr Vorlsung Grundlgn dr Msshnik von Prof. Dollingr, niv. dr Bundswhr Münhn, L2 - OHNE GEWÄH - Zivrhln ins Hohpss-Mssglids Ggbn is di Shlung us Abb. mi ) Ermiln Si di Diffrnilglihung für

Mehr

Logarithmusfunktion - Differenzieren & Integrieren

Logarithmusfunktion - Differenzieren & Integrieren Logarithmusfunktion - Diffrnzirn & Intgrirn 8. Klass. Ggbn ist di Funktion f() ln( 2 + 4). Diskutir di Funktion und zichn si. In wlchm Punkt ist di Tangnt paralll zur Gradn 2y 0? Di Fläch zwischn -, y-achs,

Mehr

Anpassung einer Funktion an Messwerte

Anpassung einer Funktion an Messwerte Anpssung inr Funktion n Msswrt Di Mthod dr klinstn Fhlrqudrt Crl Fridrich Guß (777-855 Brnd Hitznn Msswrt inr Größ wurdn bstit! 8 6 4 8 6 4 3 4 5 6 7 Zit [in] Msswrt t t t 3 3 t 4 4 t n n Funktion zur

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 5 Finanzmärkt und Erwartungn Güntr W. Bck Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Kurs und Rnditn

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Frequenzverhalten eines Hochpass Messgliedes

Frequenzverhalten eines Hochpass Messgliedes n zur Zntrlübun dr Vorlsun rundln dr Msstchnik von Prof. Dollinr, niv. dr Bundswhr Münchn, LRT OHNE EWÄHR Frqunzvrhltn ins Hochpss Msslids Abbildun : Schltbild ins Hochpss Msslids ) Frqunzn i. Brchnn Si

Mehr

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH iv Sofwar GmH Wlnurgr Sr. 70 81677 Münhn Tl. 0 89 / 71 05 01-0 Fax -99 www.oiv.d info@oiv.d ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA BJECTIVE SFTWARE GMBH 1 Glungsrih, Awhrklausl Di Firma iv

Mehr

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)!

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)! M4 Üung für di 1. Sulrit Nm: 1)Von inr Rut knnt mn di Läng dr igonln f und di Sitnläng. rn dn Fläninlt! f 4 m; 5 m f )Ein glisnkligs rik t inn Fläninlt von 640 mm² und in 55 mm lng Hö. rn dn Umfng ds riks

Mehr

46.1 Integration durch Substitution Es sei zunächst F eine differenzierbare Funktion mit der Variablen t und der Ableitung f.

46.1 Integration durch Substitution Es sei zunächst F eine differenzierbare Funktion mit der Variablen t und der Ableitung f. 6 Intgrtionsvrfhrn Bishr konntn Intgrl rchnt wrdn, di sich us Grundintgrln zusmmnstztn. Ligt r in komplizirtrs Intgrl vor, so muss mn uf stimmt Intgrtionsvrfhrn zurückgrifn, di diss komplizirtr Intgrl

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c.

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c. Di FAIR-Mrkmal dr kbg! Bürgr-Enrgi für Schwalm-Edr! Unsr Stromtarif transparnt, günstig, fair! Di kbg ist in in dr Rgion sit 1920 vrwurzlt Gnossnschaft mit übr 1.400 Mitglidrn und in ihrm Wirkn fri von

Mehr

Feldliste Einmeldung Steuerdaten

Feldliste Einmeldung Steuerdaten Fldlist inmldung Sturdatn Fldnam Anlag 3a Ausschüttungn Datnsatz Rfrnz Fld (**) Wrt Ausschüttung (vor Abzug KSt), di dr Fonds für das Gschäftsjahr, auf das sich dis Mldung bziht, ausschüttt; im Fld Ausschuttung_nichtgmldt_

Mehr

chemisches Fortgeschrittenenpraktikum SS 2000

chemisches Fortgeschrittenenpraktikum SS 2000 Physikalisch-chmischs chmischs Fortgschrittnnpraktikum SS Vrsuch F- 3: UV/VIS-Spktroskopi Vrsuchstag: 7.6. Svn Entrlin Grupp 3 18 97 36 174 Vrsuch F-3: UV/VIS-Spktroskopi PC-Fortgschrittnnpraktikum Glidrung:

Mehr

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen!

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen! Wir für Eupn! WEGEN Umbau... göffnt! Wir für Eupn! Wir für Eupn! Auch mit Baustll ohn Problm in di Eupnr Innnstadt! Rnovirung ds ltztn Tilstücks dr Lib Bürgrinnn und Bürgr, wir möchtn Si informirn, dass

Mehr

Gabelstapler IV. 28 Regeln kurz und knapp

Gabelstapler IV. 28 Regeln kurz und knapp V I g r z l p t A l b G Gbltplr IV 28 Rgln krz nd knpp Thm: Gbltplr IV V I g r z l p t A l b G INHALT: Si wrdn f 15 Sitn mit folgndn Inhltn (. rcht) zm Thm informirt! Wrm it d Thm o wichtig? Di 28 Rgln

Mehr

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka 10/106 Projktirn Litungsshutz, Bkup-Shutz NZM1, NZM2, NZM3 Mollr HPL0211-2007/2008 http://tlog.mollr.nt Listungsshltr, Lsttrnnshltr Shutz von PVC-isolirtn Litungn ggn thrmish Übrlstung bi Kurzshluss Nh

Mehr

Wanderführer + Karte Chiemgauer Alpen. 60 Touren. - Tourenkarte zum Mitnehmen - GPX-Daten zum Download. von Walter Theil.

Wanderführer + Karte Chiemgauer Alpen. 60 Touren. - Tourenkarte zum Mitnehmen - GPX-Daten zum Download. von Walter Theil. Wndrführr + Krt 5436 Chimgur Alpn 60 Tourn von Wltr Thil - Tournkrt zum Mitnhmn - GPX-Dtn zum Downlod www.kompss.d h4 h5 17 1 Hochris 1568 m Licht Abstigswndrung ls Einstigrtour 5 km 2:00 h 0 hm 854 hm

Mehr

Kunstdrucke im Linolschnitt

Kunstdrucke im Linolschnitt Kunstduck im Linolschnitt Di Malschul auf dn Innnsitn und vil wit kativ Idn findn Si in Min Kativ-Atli (Ausgab KT 55). www.shop.oz-vlag.d. Vil wit Idn unt www.fco.d hobbygoss El GmbH Goß Ahlmühl 10 76865

Mehr

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall:

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall: Übrsicht EUROWINGS VERSICHERUNGSSCHUTZ Si intrssirn sich für in HansMrkur Risvrsichrung in gut Wahl! Listungsbstandtil im Übrblick BasicPaktschutz Bstandtil Ihrr Risvrsichrung: BasicSmartRücktrittsschutz

Mehr

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g

1 9 5 2-2 0 1 2. 6 0 J a h r e E r f a h r u n g 1 9 5 2-2 0 1 2 6 0 J h r E r f h r u n g 60 Jhr innoviv Tchnik... und wir gbn wir Gs! 60 Jhr Dibod Firmngründr Hmu & Id Dibod 195 2 Fir Firmngr M m H ündu sä chni mu ng sch WDibo rk d - 1965 Di dmig Frigung

Mehr

Metrische Probleme und das Skalarprodukt

Metrische Probleme und das Skalarprodukt V Mtrisch Prolm und ds Sklrprodukt Bishr: Prolm wi Schnittgrd, usw. könnn glöst wrdn. Jtzt: Winkl, Astnd von Grdn und zwir Punkt, usw. durch Einführung ds: Astnd zwir Punkt - Btrg ins Vktors Sinnvoll Fordrungn

Mehr

Telephones JACOB JENSEN

Telephones JACOB JENSEN Tlphons JACOB JENSEN Mhr als nur in Tlfon... Das Jacob Jnsn Tlfon 80 kann wand- odr tischmontirt wrdn. Es ist in drahtloss, digitals DECT Phon mit inr Vilzahl übrragndr Funktionn wi digital Klangschärf,

Mehr

Crash-Course Physik Vorlesung 1

Crash-Course Physik Vorlesung 1 Crsh-Cours Physik Vorlsung 1 Trigonomtri: Lösungn 21. Sptmbr 2016 1. Notir für di folgndn vir rhtwinklign Drik di An- und Ggnktht ds jwils ingtrgnn Winkls: b α d f β Anktht von α ist b, Ggnktht ist. Anktht

Mehr

L Hospital - Lösungen der Aufgaben B1

L Hospital - Lösungen der Aufgaben B1 L Hospital - Lösug dr Aufgab B Gsucht: = Übrprüf ob di Rgl vo L'Hospital agwdt wrd darf Für ght dr Zählr gg L'Hospital darf agwdt wrd, Für ght dr Nr gg = da Zählr ud Nr gg gh Zählr ud Nr diffrzir: ' =

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 1/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

Die weitere Umsetzung der BaustellV

Die weitere Umsetzung der BaustellV Di witr Umstzung dr BaustllV 7. Erfahrungsaustausch dr Koordinatorn Magdburg, 17. Novmbr 2004 Michal Jägr 1. Vorsitzndr ds Zntralvrbands dr Koordinatorn nach Baustllnvrordnung Dutschlands ZVKD.V. Di witr

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

BMF Winkelverbinder 90 mit Rippe

BMF Winkelverbinder 90 mit Rippe BM Winklvrbindr 0 mit ipp BM Winklvrbindr 0 mit ipp Z-.-33 Allgmin bauausichtlich Zulassung Nr. Z.-33 BM Winklvrbindr 0 mit ipp wrdn aus urvrzinktm Stahlblch hrgstllt. Si rrichn augrund dr ausgormtn ipp

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2 Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen

Mehr

7.3. Prüfungsaufgaben zu Ebenen

7.3. Prüfungsaufgaben zu Ebenen 7.. Prüfungsufgben zu Ebenen Aufgbe : Prmeterform () Gegeben sind die Gerden g und h mit g: x und h: x ) Zeigen Sie, dss g und h prllel, ber nicht identisch sind. b) Geben Sie eine Gleichung der Ebene

Mehr

Gute Gründe für Französisch!

Gute Gründe für Französisch! Gut Gründ für Französisch! Willkommn in dr Wlt ds Lrnns Französisch zum Grifn nah! Blgiqu Luxmbourg Suiss Franc Europ Vil unsrr uropäischn Nachbarn sprchn Tunisi Liban französisch! Ob in dr Schwiz, in

Mehr

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der "Digitalen Kompetenzen" am Ende der Grundstufe II

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der Digitalen Kompetenzen am Ende der Grundstufe II Vorschlag ds Pädagogischn Birats für IKT Anglgnhitn im SSR für Win zur Umstzung dr "Digitaln Komptnzn" am End dr Grundstuf II Dis Komptnzlist ntstand untr Vrwndung dr "Digitaln Komptnzn für di 8. Schulstuf"

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Bedienungsanleitung. DSLT (Vorabversion vom 29.01.2001)

Bedienungsanleitung. DSLT (Vorabversion vom 29.01.2001) Bdinungsnlitung für DSLT (Vorbvrsion vom 29.01.2001) Inhlt pprtnsichtn...2 llgmins Löschn von Funktionn...3 nrufumlitung / nrufwitrlitung...3 nruf Bntwortn (xtrn)...4 nruf Bntwortn (intrn)...5 Extrn Gspräch

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen Kapitl 2: Finanzmärkt und 1 /Finanzmärkt -Ausblick Anlihn Aktinmarkt 2 2.1 Anlihn I Anlih Ausfallrisiko Laufzit Staatsanlihn Untrnhmnsanlihn Risikoprämi: Zinsdiffrnz zwischn inr blibign Anlih und dr Anlih

Mehr

Erwartungsbildung, Konsum und Investitionen

Erwartungsbildung, Konsum und Investitionen K A P I T E L 7 Erwarungsbildung, Konsum und Invsiionn Prof. Dr. Ansgar Blk Makroökonomik II Winrsmsr 2009/0 Foli Kapil 7: Erwarungsbildung, Konsum, und Invsiionn Erwarungsbildung, Konsum und Invsiionn

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

ENERGIETECHNISCHES PRAKTIKUM I

ENERGIETECHNISCHES PRAKTIKUM I ENERGETECHNSCHES PRAKTKM Vrsuch 8: Glichstromstllr 1 ENFÜHRNG ND ZE DES VERSCHES... 2 2 DAS PRNZP DES TEFSETZSTEERS... 5 2.1 Tifstzstllr mit idln Butiln... 5 2.1.1 Kontinuirlichr Btrib... 5 2.1.2 Stromwlligkit

Mehr

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon Entry Voic Mail für HiPath-Systm Bdinunsanlitun für Ihr Tlfon Zur vorlindn Bdinunsanlitun Zur vorlindn Bdinunsanlitun Dis Bdinunsanlitun richtt sich an di Bnutzr von Entry Voic Mail und an das Fachprsonal,

Mehr

Grundlagen Elektrotechnik I

Grundlagen Elektrotechnik I Grundlgn Elktrotchnik I borvrsuch I-30 (vorläufig Nullvrsion ) C- und C-Glidr Dipl-Ing lf Schmi, Dr Andrs Sifrt = I C C Idn, Ergänzungn, Kritik usdrücklich rwünscht Bitt n uns prsönlich odr vi E-Mil n:

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party)

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party) QM9(3) Systmuitor nh ISO 9001 (1 st,2 n prty) Allgmin Hinwis: Es wir von n Tilnhmrn rwrtt, ss usrihn Knntniss vorhnn sin, um i Frgn 1.1 is 1.10 untr Vrwnung r ISO 9001 innrhl von 20 Minutn zu ntwortn (Slsttst).

Mehr

Körper und gesunde Ernährung 1/

Körper und gesunde Ernährung 1/ t i z r h c Fo r s rnährung E d n u s g d n u r rp Kö 1/2 931.931 Auszug Inhalt Einführung Das bin ich 3 KV 1 KV 2 Jdr ist bsondrs 4 KV 3 1 Unsr Körpr Unsr Körpr 5 6 Unsr Körprtil 7 KV 4 Unsr Skltt 8 9

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

Studien- und Prüfungsordnung B. Besonderer Teil 43 Bachelor-Studiengang Software Engineering (SE-B)

Studien- und Prüfungsordnung B. Besonderer Teil 43 Bachelor-Studiengang Software Engineering (SE-B) tudin- und Prüfungsordnung B. Bsondrr Til 43 Bachlor-tudingang oftwar Enginring (E-B) () Dr Gsatufang dr für dn rfolgrichn Abschluss ds tudius rfordrlichn Lhrvranstaltungn bträgt 0 strwochnstundn. () Di

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr