1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt.

Größe: px
Ab Seite anzeigen:

Download "1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt."

Transkript

1 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5--. Bstimmn Si Radius und Mittlpunkt ds Kümmungskiss an di Paabl y in ihm Schitlpunkt. Allgmin Glichung d Schitlpunktfom in Paabl y yo a(, y Koodinatn ds Schitlpunkts symmtisch zu Y-Achs, di Paabl ist nach obn hin göffnt. Vgl. Papula, Bd., S. 85 u.. py y p * p Koodinatnsystm im Schitlpunkt a * a p Voggbn Paabl y a a a p p Radius p Mittlpunkt Bnnpunkt F,

2 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5-- Allgmin Fom y p + p + y da bi und y Wi stzn fü und y p p p p * + + * + p p p + + p + p + p + p. Bstimmn Si all lativn Etmwt d Funktion y Ablitungn y y 6 y 6 y Nullstlln y Substitution: z z 8z + 6 PQ-Foml z ± 6 6 / z + und z Rücksubstitution und und Dopplt Nullstlln d Funktion sind bi und Etmwt y 6 und 6 / und + und

3 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5-- Gfundn Nullstlln d stn Ablitung in di zwit Ablitung instzn um Etmwt (Minima und Maima fstzustlln. Vgl. Papula, Bd., S. 65. y ( * 6 6 < Maimum y (- *( > Minimum y ( * > Minimum Nullstlln sind bi, und y( * 8 * Hochpunkt (,6 Ma. y( * 8 * + 6 Tifpunkt (, Min. y(- * Tifpunkt (-, Min. Di Funktion hat inn Hochpunkt bi HP (,6 und zwi Tifpunkt bi (, und (-,.. Wlchs d Rchtck, dn Eckpunkt all auf inm Kis mit Radius lign, hat dn gößtn Flächninhalt? Gbn Si in Foml fü di Sitnläng und dn Flächninhalt diss Rchtcks an. F Fläch F F(,y F(ϕ Radius F(ϕ sin(ϕ * cos(ϕ Ablitung nach Poduktgl F (ϕ u * v + v * u u cos(ϕ u sin(ϕ v sin(ϕ v cos(ϕ Waagcht Tangnt suchn F (ϕ sin(ϕ * sin(ϕ + cos(ϕ * cos(ϕ sin (ϕ + cos (ϕ cos (ϕ sin (ϕ cos (ϕ sin (ϕ 5 y

4 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5-- Di Sitnläng btägt cos 5 sin 5 a b * * F a * b * * *. Si sind Bsitz in Blchfabik und habn dn Auftag haltn, in Chag von zylindfömign Dosn mit inm Volumn von Lit zu poduzin. Wi müssn Si di Maß d Dosn wähln, damit Ih Blchvbauch möglichst ging wid? Ggbn Radius d Dos V * π * h h *π h Höh d Dos F Mantlfläch + Bodn + Dckl V Volumn d Dos Lit F Obfläch d Dos F * π * h + * π * Wi habn obn di Höh duch Vaiabln abhängig ist: h ausgdückt, damit F nu noch von d *π F( π * * + * π * * * π * * π +. Ablitung bildn Um in Minimum hauszufindn, müssn wi di Funktion ablitn. F + * π * An d Stll wo das Minimum auftitt muss di Tangntnstigung Null sin. Dshalb müssn wi di st Ablitung Null stzn und nach auflösn: + π * * + π * π * π π Nbnchnung y y' Ablitung nach Quotintngl u y v u u v v u'* v v'* u v * * y'

5 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5--. Ablitung bildn Wnn di zwit Ablitung am Punkt o > ist, dann π ligt in lativs Minimum vo: F + * π F + π F ( >, Minimum F (,5 * 8,85 >,5 + π Nbnchnung y y ' Ablitung nach Quotintngl u'* v v'* u y' v u - u v v y' * *( ( Kontoll,59,5,5,59 π V * π * h h, 8 * π,5 * π V,5 * π *,8, Nbnchnung,6,5 hab ich duch Pobin haltn wi folgt 8 ; 8 * *,6, wil, *,,6,6,5,5,5,55,55,66,5,5,57,5 dm 5, cm,5,59 5

6 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: Diskutin Si dn Vlauf d folgndn Funktionn: Abb. 5a Abb. 5b Aufgab 5a Dfinitionsbich D ], [ Ablitungn bildn ln y y' * *ln ln y'' * [ *( ln ] + *ln *[ + *ln ] * + ln Nullstlln d Stammfunktion ln y ln ln Di Funktion hat in Nullstll bi und y. 6

7 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5-- Polstlln d Funktion Es istit in Polstll mit snkcht Asymptot bi. Bchnung d Nullstlln d. Ablitung ln y ' * ln ln ln Nullstlln bi,78 nu bi,78 ist ln, dann ist di Glichung füllt da, ln Bchnung d Nullstlln d. Ablitung + *ln y'' + *ln + * ln ln,5, 87 * (fü Kuvndiskussion Hinwis log log a b k a k b Etmwt (Nullstlln d stn Ablitung ln y,679 Ein lativs Maimum bfindt sich bi am Punkt (,78,679. Wndpunkt (Nullstlln d zwitn Ablitung y ln Ein Wndpunkt mit chts-links Kümmung bfindt sich am Punkt (,87,7. Wtbich Asymptot im Unndlichn W ], [ Asymptot ist di -Achs (y 7

8 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5-- Aufgab 5b Dfinitionsbich D ], [ Ablitungn bildn * ( t Foml y -t y - -t [ * ] + ( t *( + ( t *( ( t * + ( t *( + ( * * *[ + ( t *+ (] *[ + + t] ( t * bzw. + ( *( t ( t * Nullstlln d Stammfunktion ( t * t t Di Funktion hat in Nullstll bi t und. Polstlln d Funktion Es istin kin Polstlln Bchnung d Nullstlln d. Ablitung ( t * t t 8

9 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5-- Bchnung d Nullstlln d. Ablitung ( t * t t Etmwt (Nullstlln d stn Ablitung ( *,5 Ein lativs Minimum bfindt sich bi am Punkt ( -,5. Wndpunkt (Nullstlln d zwitn Ablitung ( *, Ein Wndpunkt mit links-chts Kümmung bfindt sich am Punkt ( -,. Asymptot im Unndlichn Di Asymptot fü Asymptot. t ist di t-achs ( und fü t istit kin Wtbich W [, [ 9

10 Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: Bstimmn Si mit dm Nwtonschn Tangntnvfahn dn Schnittpunkt d bidn Kuvn f( + g( mit inm Fhl klin als -. Püfn Si dafü zunächst, ob d Punkt,5 als Statwt gignt ist. Rchnn Si jwils mit mindstns vi Nachkommastlln. f ( f ( Nwtonsch Nähungsfoml: f '( f '( Bim Nwtonsch Vfahn wid von inm Punkt P (, y ausggangn, d nah an d -Achs (snkcht auf -Achs, namns A ligt. Di Tangnt im Punkt P (, y schnidt di -Achs in inm zwitn Punkt B und gibt di Nähungslösung. Di Göß von wid aus inm Dick BAP mittlt, indm man di Stigung ds Winkls tan alpha bstimmt. tan alpha f ( f( /( - Einstzn in Foml und Widholung ds vfahn. Conta-Mthod zu gula falsi. Kusch, L., Mathmatik fü Schul und Buf. Til Diffntialchnung, S Umfomn d Glichungn: h( f( + g( h( h( + Übpüfn ob d Wt,5 als Statwt gignt ist mit folgnd Foml: f ( * f ''( [ f '( ] f ( + f '( f ''( f (,5,7 f '(,5,87 f ''(,5,87 Einstzn in Foml f ( * f ''( [ f '( ] (,7 *(,87 (,87,69 Daduch gbn sich duch di Nwtonsch Nähungsfoml (Itationsfoml folgnd Nähungswt: n n- f( n- f ( n- f ( n-,5 -,7 -,87,6,6 -,76 -,56,95,95 -,5 -,6,9,9, Di inzig Lösung d zusammngstztn Glichung h( + ligt an d Stll,9. Vgl. Papula, Bd., S

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

www.math-aufgabn.com Abiturprüfung Mathmatik 7 Badn-Württmbrg (ohn CAS) Pflichttil - Aufgabn Aufgab : ( VP) Bildn Si di rst Ablitung dr Funktion f mit f () + ( sin ). Aufgab : ( VP) ln Brchnn Si das Intgral

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse.

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. LÖSUNGEN dr Übungsaufgabn II zur Klausur Nr.3 (Eponntialfunktionn Aufgab

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Grubr, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Hssn Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für GTR und CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis 1 Ganzrational

Mehr

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist:

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist: Aufgab 1 Ein unkt 1 fäht in Bschlunigung ω. Zum Zitpunkt hat di Gschwindigkit 2 und bfindt sich am Ot. Ein zwit unkt fäht di Bschlunigung. Zum Zitpunkt hat di Gschwindigkit und bfindt sich am Ot. Gsucht

Mehr

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung:

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung: 38. Polaisation 38.1. Einfühung Ggbn si in lktomagntisch Wll mit Ausbitung in z-richtung und in Amplitud in x-richtung: E = E 0 i 0 i... Einhitsvkto in x-richtung Di vollständig mathmatisch Bschibung unt

Mehr

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1:

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1: Bruskollg Marinschul Lippstadt Schul dr Skundarstu II mit gymnasialr Obrstu - staatlich anrkannt - Übungsaugabn zu Eponntialunktionn Schuljahr /7 Kurs: Mathmatik AHR. Kurslhrr: Gödd / Langnbach Bruskollg

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

Rotationskörper 2. Teil 2. Lösungen zu Teil 1. Datei Nr. 48 121 LC. Juli 2001. Friedrich Buckel. Internatsgymnasium Schloß Torgelow

Rotationskörper 2. Teil 2. Lösungen zu Teil 1. Datei Nr. 48 121 LC. Juli 2001. Friedrich Buckel. Internatsgymnasium Schloß Torgelow Rotationskörpr Til Lösungn zu Til Dati Nr. 8 LC Juli Fridrich Buckl Intrnatsgymnasium Schloß Torglow Inhalt Aufgabn: Rotation um di -Achs Lösungn dazu Aufgabn: Rotation um di y-achs 7 Lösungn dazu 8 Rotationskörpr

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Badn-Württmbrg:

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T f(,) ( kommt nicht vo) wid

Mehr

9. Bewegungen geladener Teilchen im homogenen Magnetfeld

9. Bewegungen geladener Teilchen im homogenen Magnetfeld 9. wgungn gladn ilchn i hoognn Magntfld Elkton F = (allgin: = Q ) F F F F ist Zntiptalkaft, das Elkton (allgin: ilchn) bwgt sich i auf in Kisbahn! ( blibt i glich) Magntfld wgn sich Ladungn snkcht zu Magntfld,

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

Kunstdrucke im Linolschnitt

Kunstdrucke im Linolschnitt Kunstduck im Linolschnitt Di Malschul auf dn Innnsitn und vil wit kativ Idn findn Si in Min Kativ-Atli (Ausgab KT 55). www.shop.oz-vlag.d. Vil wit Idn unt www.fco.d hobbygoss El GmbH Goß Ahlmühl 10 76865

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

K b) [2P] Lösungsvorschlag 1: f '(x) 3 e 2 3x e x e 3x 5 e. (Produktregel und bei der Ableitung der e-funktion Kettenregel anwenden)

K b) [2P] Lösungsvorschlag 1: f '(x) 3 e 2 3x e x e 3x 5 e. (Produktregel und bei der Ableitung der e-funktion Kettenregel anwenden) Mathmati Lösung Klausur Nr. K1 10.1.1 Abürzungn bi dr Korrtur: S: Schribfhlr R: Rchnfhlr D: Dnfhlr Mist: Dr Lösungswg ist nicht brauchbar (falsch). Es ist dann oft sinnvoll, mit mir darübr zu rdn. Gnrll

Mehr

Blatt 6, Aufgabe 1: Beugung am Einzelspalt

Blatt 6, Aufgabe 1: Beugung am Einzelspalt Aua a, Blatt 6, Aua : Buun am Einzlspalt a Bdinunn ü Faunho-Buun: Sowohl di Lichtqull als auch d Boachtunsschim müssn lativ zum Spalt unndlich ntnt sin. s Di Intnsitätsvtilun wid duch di c-funtion schin:

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

2.2 Multiplizieren von Brüchen

2.2 Multiplizieren von Brüchen ! 2.2 Multiplizin von Büchn Ein Rzpt fü Hftig fodt 1 Lit Milch. Man nimmt di halb Rzptmng. Wi vil Lit Milch 1 l 1000 sind fodlich? 1 / 2 w 1 / 2 w 3 / 4 l 1 / 2 l 1 / 4 l 750 500 250 w 1 / 2 l Ein Hftigzpt

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Physik 12 Technik - Aufgabe III - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Physik 12 Technik - Aufgabe III - Lösung athphys-onlin Abschlusspüfung uflich Obschul 03 Physik Tchnik - Aufgab III - Lösung Tilaufgab.0 In d untn sthndn Skizz ist in Fadnstahloh dagstllt, it d d tag d spzifischn Ladung von Ektonn bstit wdn kann.

Mehr

Aufgabe 1. Magnetische Kraft (2+4)

Aufgabe 1. Magnetische Kraft (2+4) Übungn zu Physik II Elktoynaik SS 5 Lösungn zu Übungsblatt 65 Bspchung a Mi 965 ufgab Magntisch Kaft a Mssung s agntischn Fls Ein chtckig Litschlif hängt vtikal i Zntu ins goßn Magntn, so ass as agntisch

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik nalysis Listungskurs Zntral schriftlich biturprüfungn im Fach Mathmatik ufgab Prispolitik Ein Industriuntrnhmn, das nur in Produkt hrstllt, ntnimmt sinr tribsbuchhaltung (ostn- und Listungsrchnung) folgnd

Mehr

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft Aufgabn zu Lontzkaft 46. in lktonntahl titt it in Gchwindigkit von v 0 1,96 * 10 6-1 nkcht zu dn Fldlinin in in hoogn Magntfld it d agntichn Fludicht B 1,6 * 10 - in. a) klän Si, wau ich d lktonntahl auf

Mehr

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall:

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall: Übrsicht EUROWINGS VERSICHERUNGSSCHUTZ Si intrssirn sich für in HansMrkur Risvrsichrung in gut Wahl! Listungsbstandtil im Übrblick BasicPaktschutz Bstandtil Ihrr Risvrsichrung: BasicSmartRücktrittsschutz

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

e n e a Chancenzuschaf

e n e a Chancenzuschaf s p a n, um n uch Sp a n, u m n u Chancnzuschaf f n m i al b Li ag Landt Konsol i di ungsst at gi dfdplandt agsf akt i on 2013bi s2017 f dpf akt i onn w. d 2013 2014 2015 2016 2017 in Mio. Euo 1. Mhinnahmn

Mehr

Quick-Guide für das Aktienregister

Quick-Guide für das Aktienregister Quick-Guid für das Aktinrgistr pord by i ag, spritnbach sitzrland.i.ch/aktinrgistr Quick-Guid Sit 2 von 7 So stign Si in Nach dm Si auf dr Hompag von.aktinrgistr.li auf das Flash-Intro gklickt habn, rschint

Mehr

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer.

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer. Ohn Spakass fht was: * Ih Immobiinpatn. Fü Vkäuf. Bid MASSGESCHNEIDERT: UNSER SERVICE FÜR IMMOBILIEN-VERKÄUFER! In dn vgangnn fünf Jahn habn wi und 900 Immobiin vmittt. Di Spakass Zonab ist damit d gößt

Mehr

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen.

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen. Übung zu Mikro III (SS 05) Tri Vi Dang Handout zu Übung Vorbmrkung: Hinwis auf Fhlr sind willkommn. Kin Gwähr für di vollständig Richtigkit dr usführungn. Thma : Thori ds llgminn Glichgwichts Das Framwork

Mehr

Pflichtteilaufgaben zu Ableitungen. Baden-Württemberg

Pflichtteilaufgaben zu Ableitungen. Baden-Württemberg Pflichttilaufgabn zu Ablitungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 06 Übungsaufgabn: Ü: 4 f() = 8+ cos() + 4 7 Ü: f() = 5cos() + + 8 5 Ü: f()

Mehr

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011 Vorbritung Gomtrisch Optik Stfan Schirl Vrsuchsdatum: 22. Novmbr 20 Inhaltsvrzichnis Einführung 2. Wllnnatur ds Lichts................................. 2.2 Vrschidn Linsn..................................

Mehr

Symmetrie Thematisch geordnete Aufgaben mit ausführlichem Lösungsweg

Symmetrie Thematisch geordnete Aufgaben mit ausführlichem Lösungsweg Übungn zum Kurs Symmtri Übungn Symmtri Thmatisch gordnt Aufgabn mit ausführlichm Lösungswg Vorab-Tstvrsion vom 8.4.7 / 17.h Copyright by www.mathmatik.nt Übungn zum Kurs Symmtri 1.Di folgndn Funktionn

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

} Gaußsches Gesetz (eine der Maxwell-Gleichungen)

} Gaußsches Gesetz (eine der Maxwell-Gleichungen) imntalhsik II TU Dotmun SS Shaukat Khan @ TU - Dotmun. Kaitl Wiholung q F q F q F ga s P P ga,, iv ot,, Coulombschs Gst, lktischs Fl Kaft / Laung lktischs Potnial bit / Laung Gaint, Divgn, otation Gaußsch

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

Die Bindungsenergie einer DNA Wasserstoffbrückenbindung

Die Bindungsenergie einer DNA Wasserstoffbrückenbindung Di Bindungsngi in DN Wassstoffbücknbindung. Di Wassstoffbücknbindungn d DN - Basn Di Basn d DN bildn mit ihn omplmntän folgnd Wassstoffbücknbindungn: dnin N -------------O N------------- N Thymin O-------------

Mehr

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch?

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch? Kluur Ingniurhydrologi I Sptmbr 006 Aufgb 1: Auf inm Grgndch, d 7 m lng und m brit it, oll ich in.5 cm trk ichicht mit inr Dicht ρ=97 kg/m bfindn. Di ichicht oll in Tmprtur von t=0 C hbn. ) Wlch M i ligt

Mehr

1.Klausur LK Physik Sporenberg Q1 Schuljahr 2012/

1.Klausur LK Physik Sporenberg Q1 Schuljahr 2012/ .Klausu LK Phsik Spnbg Q Schuljah /3...ufgab: a) Litn Si i Bahnglichung fü n waagchtn Wuf i Plattnknnsat h. Lgn Si n Eintitt s Elktns in i Mitt s Plattnknnsats. (Vsuchsskizz!) b) Estzn Si i nfangsgschwinigkit

Mehr

EBA SERIE 1/2 INFORMATION KOMMUNIKATION IKA ADMINISTRATION SCHULISCHES QUALIFIKATIONSVERFAHREN SCHLUSSPRÜFUNG 2013 BÜROASSISTENTIN UND BÜROASSISTENT

EBA SERIE 1/2 INFORMATION KOMMUNIKATION IKA ADMINISTRATION SCHULISCHES QUALIFIKATIONSVERFAHREN SCHLUSSPRÜFUNG 2013 BÜROASSISTENTIN UND BÜROASSISTENT SCHLUSSPRÜFUNG 013 BÜROASSISTENTIN UND BÜROASSISTENT SCHULISCHES QUALIFIKATIONSVERFAHREN 1 EBA INFORMATION KOMMUNIKATION IKA ADMINISTRATION SERIE 1/ Kandidatnnummr Nam Vornam Datum dr Prüfung PUNKTE UND

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen.

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen. Klausur Makroökonomik B Prof. Dr. Klaus Adam 21.12.2009 (Hrbssmsr 2009) Wichig: (1) Erlaub Hilfsmil: Nichprogrammirbarr Taschnrchnr, ausländisch Sudirnd zusäzlich in Wörrbuch nach vorhrigr Übrprüfung durch

Mehr

Aufgabe 2 Kurvendiskussion von Exponential- und Logarithmusfunktionen

Aufgabe 2 Kurvendiskussion von Exponential- und Logarithmusfunktionen Ank Krisn Augab Kurvndiskussion von Eponnial- und Logarihmusunkionn a) Ggbn is di Funkion mi (). Gib dn Diniionsbrich von an. Unrsuch dn Graphn dr Funkion au Symmri, Schnipunk mi dn Koordinanachsn, Erm-

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen 5.5. Konkr Abiuraufgabn zu Exponnialfunkionn Aufgab : Kurvnunrsuchung, Ingraion () Übr in Vnil kann das Wassrvolumn in inm Wassrbhälr grgl wrdn. Di Särk ds Wassrsroms durch diss Vnil is ggbn durch in Funkion

Mehr

Wechselstromkreise. Eine zeitlich periodische Wechselspannung = (1) lässt sich mit der Eulerschen Beziehung (2)

Wechselstromkreise. Eine zeitlich periodische Wechselspannung = (1) lässt sich mit der Eulerschen Beziehung (2) E4 Wchslstromkris Es soll di Frqunzabhängigkit von kapazitivn und induktivn Widrständn untrsucht wrdn. Als Anwndung wrdn Übrtragungsvrhältniss und Phasnvrschibungn an Hoch-, Tif- und Bandpässn gmssn..

Mehr

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen!

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen! Wir für Eupn! WEGEN Umbau... göffnt! Wir für Eupn! Wir für Eupn! Auch mit Baustll ohn Problm in di Eupnr Innnstadt! Rnovirung ds ltztn Tilstücks dr Lib Bürgrinnn und Bürgr, wir möchtn Si informirn, dass

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 2/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-

Mehr

Makita Flash 01 APRIL - JUNI 2015 TAKE THE POWER NOW! LIMITIERTE AUFLAGE SPEZIAL JUBILÄUM 100 JAHRE! Ihr Fachhändler :

Makita Flash 01 APRIL - JUNI 2015 TAKE THE POWER NOW! LIMITIERTE AUFLAGE SPEZIAL JUBILÄUM 100 JAHRE! Ihr Fachhändler : Makita Flash 01 APRIL - JUNI 2015 TAKE THE POWER NOW! LIMIERTE AUFLAGE PEZIAL JUBILÄUM 100 JAHRE! To si p-a h n g in b n ot n! Ih Fachhändl : 1915 akita! M h a J 00 pzial 1 100 Jah im Dinst uns Kundn!

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

KVP Der kontinuierliche Verbesserungsprozess

KVP Der kontinuierliche Verbesserungsprozess KVP D kontinuilich Vbungpoz KVP Un Zil Qualitätbwutin höhn Di Qualität tändig vbn, um daüb in noch höh Kundnbindung/-zufidnhit zu ichn. Motivation tign Di Motivation und Zufidnhit un Mitabit tign, um ich

Mehr

Auerswald Box. Internet-Telefonie-Adapter. Index. Inbetriebnahme und Bedienung

Auerswald Box. Internet-Telefonie-Adapter. Index. Inbetriebnahme und Bedienung Inbtribnahm und Bdinung Intrnt-Tlfoni-Adaptr Aurswald Box Indx A H M 884261 02 02/05 Allgmin Hinwis...10 Anschluss Call Through... 7 Intrnt-Tlfoni... 3 Kopplung n...9 Auslifrzustand...11 B Bohrschablon...12

Mehr

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen.

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen. Vorbmrkungn Wachstum und Zrall (Jochn Pllatz 2013) Das Thma Eponntialunktionn ist in ignständigs Gbit in dr Mathmatik und wird in dr Schul in vrschidnn Stun untrrichtt. Einach Eponntialunktionn (Kapitl

Mehr

Labor Messtechnik Versuch 5 Operationsverstärker

Labor Messtechnik Versuch 5 Operationsverstärker HS oblnz FB Ingnirwsn F Mschinnb Prof. Dr. röbr Lbor Msstchnik rsch 5 Oprtionsvrstärkr Sit von 5 rsch 5: Oprtionsvrstärkr. rschsfb.. Umfng ds rschs Im rsch wrdn folgnd Thmnkris bhndlt: - Nichtinvrtirndr

Mehr

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z y g W i o o L c a B i o n n a I o E a f i E s l t f n v R H v I u m b M x H c x z S x T n T w Z E h V n u i C t S f p F o E R K o y a l H u C s t A V U K g K U p H q h D x G f U s q f y g L b A j w E u

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Physik 11-Profilkurs Thema: Gravitationsfeld

Physik 11-Profilkurs Thema: Gravitationsfeld Phyik -Pofilku ha: Gavitationfld Alttu Ptoläu (u 50 u.z.) gozntich Wltbild - d i Mittlpunkt - Hilköp, inchlißlich d Sonn ukin di d Kopniku (47-54) hliozntich Wltbild - Sonn i Mittlpunkt - Plantn bwgn ich

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 5 Finanzmärkt und Erwartungn Güntr W. Bck Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Kurs und Rnditn

Mehr

Inbetriebnahme und Bedienung Internet-Telefonie-Adapter

Inbetriebnahme und Bedienung Internet-Telefonie-Adapter Inbtribnahm und Bdinung Intrnt-Tlfoni-Adaptr 884261 01 08/04 Funktionn und Listungsmrkmal Intrnt-Tlfoni (Voic ovr IP) mit n (Aurswald o an Hrstllr) -> Sit 2 - mit alln intrnn Tilnhmrn kostnlos 1 übr das

Mehr

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28).

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28). 21 Si solltn nach Möglichkit immr di aktullstn Vrsionn intzn, bvor Si dn ELO-Support kontaktirn. Oft sind Prlm bi inm nun Updat schon bhn. 21.1 ELOoffic Downloads und Programmaktualisirungn Kostnlon Zugriff

Mehr

[Arbeitsblatt Trainingszonen]

[Arbeitsblatt Trainingszonen] [Arbitsblatt Trainingszonn] H r z f r q u n z 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 RHF spazirn walkn lockrs zügigs MHF Jogging Jogging Gsundhits -brich Rohdatn

Mehr

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka 10/106 Projktirn Litungsshutz, Bkup-Shutz NZM1, NZM2, NZM3 Mollr HPL0211-2007/2008 http://tlog.mollr.nt Listungsshltr, Lsttrnnshltr Shutz von PVC-isolirtn Litungn ggn thrmish Übrlstung bi Kurzshluss Nh

Mehr

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1)

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1) Dr Arnlf Schönli, Logistischs Wchstm in dr Prxis Logistischs Wchstm in dr Prxis Für Wchstmsrozss, di nch dm logistischn Wchstmsmodll lfn, gilt: ( ( t ( Drin sind (t zw di Polionn z dn Zitnktn t zw t, nd

Mehr

chemisches Fortgeschrittenenpraktikum SS 2000

chemisches Fortgeschrittenenpraktikum SS 2000 Physikalisch-chmischs chmischs Fortgschrittnnpraktikum SS Vrsuch F- 3: UV/VIS-Spktroskopi Vrsuchstag: 7.6. Svn Entrlin Grupp 3 18 97 36 174 Vrsuch F-3: UV/VIS-Spktroskopi PC-Fortgschrittnnpraktikum Glidrung:

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 1/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

A6 Weitere Funktionen: Beispiele und Aufgaben

A6 Weitere Funktionen: Beispiele und Aufgaben A6 Witr Funktionn: Bispil und Aufgabn Grundsätzlichs Währnd bishr in dn Abschnittn A bis A5 vorrangig Polynom rstn und zwitn Grads (linar bzw. quadratisch Funktionn) zurst formal und dann mit ihrn wichtign

Mehr

Übungsaufgaben "Vektorrechnung"

Übungsaufgaben Vektorrechnung stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils

Mehr

Der Downhill-Simplex-Algorithmus.

Der Downhill-Simplex-Algorithmus. 1 D Downhill-Simpl-Algoithmus www.iap.uni-jna.d Zilstllung Ggbn ist in sttig Funktion von n Vaiabln F : R n R F( ) mit,,,, 1 2 n1 Gsucht ist das (lokal) Minimum dis Funktion n F F U R m m m ( ) mit m (

Mehr

Strom und Spannung. Kondensatoren. Braunsche Röhre. Lorentzkraft

Strom und Spannung. Kondensatoren. Braunsche Röhre. Lorentzkraft Sto und Spannung 1) klä it ignn Wotn dn ntchid zwichn Sto, Stotäk und Spannung. ) in lkton hat di Ladung Q 1, -19 C. Wi il lktonn flißn bi in Sto I1-1 in 1 duch inn Litquchnitt? Kondnaton 1) in Kondnato

Mehr

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0 Vktohnung Vkton, sind Gößn, u dn vollständig Chktisiung sowohl in Mßhl, d Btg, ls uh in Rihtung im Rum fodlih sind. Bispil: Kft, Gshwindigkit, Bshlunigung, Winklgshwindigkit, Winklshlunigung sowi lktish

Mehr

Makita Flash 01 APRIL - JUNI 2015 TAKE THE POWER NOW! LIMITIERTE AUFLAGE SPEZIAL JUBILÄUM 100 JAHRE! Top-Angebote siehe innen!

Makita Flash 01 APRIL - JUNI 2015 TAKE THE POWER NOW! LIMITIERTE AUFLAGE SPEZIAL JUBILÄUM 100 JAHRE! Top-Angebote siehe innen! Makita Flash 01 APRIL - JUNI 2015 TAKE THE POWER NOW! LIMITIERTE AUFLAGE SPEZIAL JUBILÄUM 100 JAHRE! Ih Fachhändl : Top-Anbot sih innn! 1915 akita! M h a J 00 Spzial 1 100 Jah im Dinst uns Kundn! Es ist

Mehr

1.2.2 Frequenzverhalten einer Hochpass-Schaltung

1.2.2 Frequenzverhalten einer Hochpass-Schaltung Dipl.-In. G. Lblt.... Frqunzvrhaltn inr Hchpass-Schaltun Sachwrt: Frqunzan, Übrtraunsfunktin, Amplitudnan, Phasnan, RC-Hchpass Dis Aufab ist praktisch idntisch dr Aufab... Nur wird jtzt in CR- Schaltun

Mehr

Diplomhauptprüfung. "Nichtlineare Regelungssysteme" 31. Juli Aufgabenblätter

Diplomhauptprüfung. Nichtlineare Regelungssysteme 31. Juli Aufgabenblätter Diplomhaptprüfng "Nichtlinar glngssystm" 3. Jli 008 Afgabnblättr Di Lösngn sowi dr vollständig nd nachvollzihbar Lösngswg sind in di dafür vorgshnn Lösngsblättr inztragn. Nr dis wrdn bwrtt. Bitt vrwndn

Mehr

Schriftliche Addition und Subtraktion: Subtrahieren durch abziehen

Schriftliche Addition und Subtraktion: Subtrahieren durch abziehen Schriftlich Addition und Subtraktion: Subtrahirn durch abzihn 49 Auf inn Parkplatz passn 487 Fahrzug. 352 Plätz sind schon blgt. Wi vil Parkplätz sind noch fri? Ergänzn: Abzihn: 352 + = 487 487 352 = Abzihn

Mehr

Telephones JACOB JENSEN

Telephones JACOB JENSEN Tlphons JACOB JENSEN Mhr als nur in Tlfon... Das Jacob Jnsn Tlfon 80 kann wand- odr tischmontirt wrdn. Es ist in drahtloss, digitals DECT Phon mit inr Vilzahl übrragndr Funktionn wi digital Klangschärf,

Mehr

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de Ein hzlichs Güß Gott in Mmmlsdof! www.di-konn.d Güß Gott! In Fankn stht das bst Witshaus imm ggnüb d Kich. So wi auch uns Bauigasthof: Di Di Konn bfindn sich sit mh als 555 Jahn ggnüb dm Mmmlsdof Gottshaus.

Mehr

X B. Gleichrichtwert u oder i u = i = Nur bei sinusförmigem Wechselstrom! Formelsammlung Wechselstrom - Seite 1 von 10

X B. Gleichrichtwert u oder i u = i = Nur bei sinusförmigem Wechselstrom! Formelsammlung Wechselstrom - Seite 1 von 10 Formlsammlung Wchslstrom Allgmin: Komplx tromstärk i Komplxr Widrstand (mpdanz) chinwidrstand (trag dr mpdanz) odr Wirkwidrstand (sistanz) ( ) { } lindwidrstand (aktanz) sin ( ) m{ } hasnwinkl Komplxr

Mehr

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens Kontaktlinsn Shminar Visualtraining Di nu Dimnsion ds Shns Willkommn in dn Shräumn Erlbn Si in nu Dimnsion ds Shns. Mit dn Shräumn rwitrn wir unsr Angbot rund um das Aug bträchtlich. Wir bitn anspruchsvolln

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

EBA SERIE 2/2 INFORMATION KOMMUNIKATION IKA ADMINISTRATION SCHULISCHES QUALIFIKATIONSVERFAHREN SCHLUSSPRÜFUNG 2012 BÜROASSISTENTIN UND BÜROASSISTENT

EBA SERIE 2/2 INFORMATION KOMMUNIKATION IKA ADMINISTRATION SCHULISCHES QUALIFIKATIONSVERFAHREN SCHLUSSPRÜFUNG 2012 BÜROASSISTENTIN UND BÜROASSISTENT SCHLUSSPRÜFUNG 2012 BÜROASSISTENTIN UND BÜROASSISTENT SCHULISCHES QUALIFIKATIONSVERFAHREN 1 EBA INFORMATION KOMMUNIKATION IKA ADMINISTRATION SERIE 2/2 Kandidatnnummr Nam Vornam Datum dr Prüfung PUNKTE

Mehr

Finanzierung und Förderung von energetischen Maßnahmen für Wohnungseigentümergemeinschaften

Finanzierung und Förderung von energetischen Maßnahmen für Wohnungseigentümergemeinschaften Finanzirung und Fördrung von nrgtischn Maßnahmn für Wohnungsigntümrgminschaftn Rainr Hörl Litr Vrtribsmanagmnt Aktivgschäft Anton Kasak Firmnkundn Zntral Sondrfinanzirungn Sit 1 Finanzirung und Fördrung

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalischs Praktikum Wirtschaftsingniurwsn Physikalisch Tchnik und Orthopäditchnik Prof. Dr. Chlbk, MSc. M. Gilbrt E 07 Elkronn im Magntfld (Pr_EX_E07_Elktronnröhr_6, 4.09.009) Nam Matr. Nr. Grupp Tam

Mehr

MS-EXCEL -Tools Teil 2 Auswertung von Schubversuchen

MS-EXCEL -Tools Teil 2 Auswertung von Schubversuchen - 1 - MS-EXCEL -Tools Til 2 Auswrtung von Schubvrsuchn Raab, Olivr Zusammnfassung In dism zwitn Bricht wird di Auswrtung von Schubvrsuchn bi Sandwichbautiln mit Hilf ins klinn EDV-Programms auf dr Basis

Mehr

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c.

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c. Di FAIR-Mrkmal dr kbg! Bürgr-Enrgi für Schwalm-Edr! Unsr Stromtarif transparnt, günstig, fair! Di kbg ist in in dr Rgion sit 1920 vrwurzlt Gnossnschaft mit übr 1.400 Mitglidrn und in ihrm Wirkn fri von

Mehr

Absorption Emission Rotationspektren Ramanrotation & Linienformen

Absorption Emission Rotationspektren Ramanrotation & Linienformen Absoption Emission otationspktn amanotation & Lininfomn Ein Skipt zum Votag im ahmn ds Physikalisch Chmischn Fotgschittnnpaktikums an d upcht-kals-univsität zu Hidlbg Voglgt von oman Glass WS 000-001 1

Mehr

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1. Einfühung 1 Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1.1 Phsiklisch Gößn 1.1.1 Dfinition 1.1. Skl und vktoill Gößn 1.1.3 SI Einhitssstm

Mehr

96 KOMPLEXE RECHNUNG II (Potenzen, Logarithmen, Ortskurven)

96 KOMPLEXE RECHNUNG II (Potenzen, Logarithmen, Ortskurven) STR-ING ELEKTROTECHNIK 96-96 KOMPLEXE RECHNUNG II (Potnzn, Logarithmn, Ortskurvn) 96. Potnzirn mit ganzzahlig positivm Eponntn Potnzirn in kartsischr Darstllung Ein kompl Zahl si in dr Form z = a + b j

Mehr

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen Kapitl 2: Finanzmärkt und 1 /Finanzmärkt -Ausblick Anlihn Aktinmarkt 2 2.1 Anlihn I Anlih Ausfallrisiko Laufzit Staatsanlihn Untrnhmnsanlihn Risikoprämi: Zinsdiffrnz zwischn inr blibign Anlih und dr Anlih

Mehr

TI II. Sommersemester 2008 Prof. Dr. Mesut Güneş 5. Exercise with Solutions

TI II. Sommersemester 2008 Prof. Dr. Mesut Güneş 5. Exercise with Solutions Distributd mbddd 5. Exrcis with olutions Problm 1: Glitkomma-Darstllung (2+2+2+2+2+2=12) Ghn i bi dr binärn Glitkommadarstllung von 2-Byt großn Zahln aus. Dr Charaktristik sthn 4 Bit zur Vrfügung, dr Mantiss

Mehr

Mal- und Spielebuch Hämophilie

Mal- und Spielebuch Hämophilie Mal- und Spilbuch Hämophili Vrfar: Dr. Kim Chilman-Blair (BSc, MBChB) & Shawn dloach Bratnd Fachkranknpflgr: Robyn Shomark (CNC) & Stphn Matthw (CNC) Hi! Wir ind di Mdikidz! Wir lbn auf Mdiland inm Plantn,

Mehr

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte Unbhängig Btung zu Ih Hizungsnlg Di Hizungsvisit ist in gfödt Kuz-Chck fü Bm Hushlt 80 Poznt d Hizungn in Dutschlnd bitn Optimiungspotnzil. Lssn Si dh Ih Hizung jtzt bi in Hizungsvisit übpüfn od sich zu

Mehr

Körper und gesunde Ernährung 1/

Körper und gesunde Ernährung 1/ t i z r h c Fo r s rnährung E d n u s g d n u r rp Kö 1/2 931.931 Auszug Inhalt Einführung Das bin ich 3 KV 1 KV 2 Jdr ist bsondrs 4 KV 3 1 Unsr Körpr Unsr Körpr 5 6 Unsr Körprtil 7 KV 4 Unsr Skltt 8 9

Mehr

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016 An l äs s l i c h 2 5 0J a h r Wi n rpr a t r! Großr Faschingsumzugs 2016 im Winr Pratr Lib Frund ds Großn Faschingsumzugs 2016 im Winr Pratr! Es ist mir in bsondr Frud, Euch di Ausschribungsuntrlagn zum

Mehr

Die weitere Umsetzung der BaustellV

Die weitere Umsetzung der BaustellV Di witr Umstzung dr BaustllV 7. Erfahrungsaustausch dr Koordinatorn Magdburg, 17. Novmbr 2004 Michal Jägr 1. Vorsitzndr ds Zntralvrbands dr Koordinatorn nach Baustllnvrordnung Dutschlands ZVKD.V. Di witr

Mehr

SPARSETS 150 Teile! eile! 72 od. 144 T

SPARSETS 150 Teile! eile! 72 od. 144 T 62 SPARSETS v i s u l k n I s l v i s u l k n I s All Baumwolltaschn Sparst, 150-tlg. Baumwolltaschn Wrbartikl St: 150 naturfärbig Wrbtaschn inklusiv infarbigr Bdruckung auf inr Sit Maß: ca. 38 x 42 cm.

Mehr

Beispiel: Ich benutze die folgenden zwei Karten um meine Welt nach FT zu importieren:

Beispiel: Ich benutze die folgenden zwei Karten um meine Welt nach FT zu importieren: Tutorial Importirn inr CC2-Kart nach Fractal Trrains Von Ralf Schmmann (ralf.schmmann@citywb.d) mit dr Hilf von Jo Slayton und John A. Tomkins Übrstzung von Gordon Gurray (druzzil@t-onlin.d) in Zusammnarbit

Mehr