Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.)

Größe: px
Ab Seite anzeigen:

Download "Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.)"

Transkript

1 Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi. (Rottions-)Scln Scl gkümmts Fläcntgwk mit blibig Blstung Rottionsscl Midinkuv (Ezugnd) ist von Dwinkl um fst Acs unbängig Vousstzungn: sinngmäß di glicn wi bi Scibn und Plttn. Mmbnzustnd Annm: Nomlsnnungn glicmäßig üb Wndstäk vtilt, d unbängig von z-oodint (nlog zu Scib) in Scubsnnungn (bn Hutsnnungszustnd) Vousstzungn fü Mmbnzustnd: Mittlfläc vläuft sttig gkümmt Sclndick nict sungft vändlic sttig Vtilung d Fläcnlstn Rndkäft tngntil zu Mittlfläc ngifnd Rndbdingungn binflussn Fomändungn nu in tngntil Rictung Wnn mindstns in Bdingung vltzt ist, dnn ligt Bigzustnd vo (s. u.) Hi: Blstung nu duc Innnduck (Bälttoi) nu szill Gomtin (kin Hlitung d llgminn Toi).. uglscl ϑ ϕ : π + π ϑϑ (.9) Rdil Aufwitung u us: π + u π u ν ε ( ν ϑϑ ) π E E ν u E (.) 68 5 /..7

2 l. Doz. D.-Ing. bil. G. Gogi Tgwksbcnung.. Zylindscl Anwndung: Flugzugumf in goß Hö Rdil Aufwitung u ϕ us: l : l+ l : π π (.) u ν ε ( ν ) E E u ν E (.).. glscl ξ Gomti: cot ϑ sin ϑ ξ ϑ : π sinϑ + π ϑϑ ϑϑ Ø ϑϑ ϑϑ sinϑ (.) ϑϑdϕ ξ dϕ d d dξ ϑ ϑdϕ+( d ϑϑdϕ) : dξdϕsinϑ+ dϕdξ cot ϑ sin ϑ sin ϑ 5 /..7 69

3 Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi. Bigzustnd d iszylindscl Di Bigtoi ist u.. bi dm so gnnntn Rndstöoblm nzuwndn. Diss titt z. B. bi d ombintion vscidn Fläcntgwk (Scl/ Scl, Scl/Pltt, Scl/Scib) uf, z. B.: uglscl Zylindscl Unsttigkitn n dn Scnittn: Aufttn von Momnt und Qukft isltt Hlitung in Dgl. fü di dil Aufwitung w d Zylindscl Gomti: u u zw, ε u u zw, ε,, ε zz, u, z,w w u w, w, + w+ z π + z π w + z π + z + + w w z z z... Rinntwicklung fü z HOOEscs Gstz: E E w z z ( ε +νε ) u, z w, +ν +... ν ν E E w z z ε +νε + +ν ν ν u z ( )... ( u, zw, ). 7 5 /..7 w, u zw, il Vscibung d Mittlfläc vgl. Pltt

4 l. Doz. D.-Ing. bil. G. Gogi Tgwksbcnung Scnittgößn ( s. (.), S. ): z m z + dz, E w z w z u +ν z+ w, +ν z +... dz ν Tm mit z und z lifn kinn Bitg, Tm b z wdn vnclässigt: E u,, w w u, m + w w, ν ν ν mit: E Bigstifigkit (s. Pltt) (.) ν z E w z w z n + dz u w, z dz +ν + +ν +, ν Tm mit z und z lifn kinn Bitg, Tm b E w w n u +ν D u +ν n ν z,, konst. (s. u.). wdn vnclässigt: E mit: D D Dnstifigkit (.5) ν n : u, ν D w E w w nϕ dz +ν u D +νu ν,,. folgt üb di Glicgwictsbdingungn (s. u.) zu: u m w,,, 5 /..7 7

5 Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi Glicgwictsbdingungn: ϕ dϕ dϕ m n z, w d n ϕ nd ϕ ϕ n ϕ n ϕ m ϕ d m+dm n+dn m ϕ dϕd +d n ϕ Blstung nu duc Innnduck (Bält) : dn dϕ : d dϕ n ddϕ+ dϕ d ϕ : dm dϕ dϕ d. ϕ Folgungn: n n konst. nϕ, + m, nϕ m, +. Einstzn d Scnittgößn in di obig Glicgwictsbdingung lift n w D w n w ν w +ν ν + D D, Mit 7 n w und : wid dus IV w n w w D ν + Dν + IV n w D ( ν ) w ν + 5 /..7

6 l. Doz. D.-Ing. bil. G. Gogi Tgwksbcnung ν n w k w IV + vgl. Blkn: Biglini Dgl.. Odnung (.6) mit: ( ν ) E ( ν ) ( ν ) D k E k ν k k Abklingfkto (.7) Rndbdingungn: Im Allgminn gilt, dss n jdm d Ränd (ins Bics) Rndbdingungn zu Bstimmung d Intgtionskonstntn nggbn wdn könnn. ingsnnt Rnd glnkig glgt Rnd fi Rnd : w w : w m : m Lösung d Dgl.: Allgmin Lösung: w w +w Anstz fü omogn Lösung ( nlog [/] ): w A λ i i Cktistisc Glicung und dn Lösungn: λ + k i... λ ± ± i k. 5 /..7 7

7 Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi Homogn Lösung: ( + ) ( ) ( + ) ( ) w A + A + A + A ik ik ik ik A + A + A + A k ik k ik k ik k ik ( ) ( ) A + A + A + A k ik ik k ik ik ( cos sin ) ( cos sin ) ( cos sin ) + A ( cos k isin k) k A k + i k + A k i k k A k i k k ( cos sin ) ( cos sin ) k C k C k C k C k Stz von MOIVRE [/6] ( cos sin ) ( cos sin ) w C k C k C k C k kl k l Sclnläng (.8) Abklingvltn d Rndstöungn: ( cos sin ) ( cos sin ) kl w k C k + C k + C k + C k Abklingnmit wcsndml Abklingnmit wcsndm -k -k(l-) l l: ussclißlic Vwndung dstms l: ussclißlic Vwndung dstms k k( l ) Wnn ist in Scl lng? kl π: l π π k,... ( zum Vglic : ) π ( ν ) l,5 fü ν, (.9) Bisil: mm l mm mm 7 5 /..7

8 l. Doz. D.-Ing. bil. G. Gogi Tgwksbcnung Szill Ptikulälösungn: offn Bält (kin Innnduck) unt Längskft (Ringkft) F n F : n π F π n IV w A w ν F k A A w ν F ν F k E F ν F E gsclossn Bält (Innnduck ) unt Längskft (Ringkft) F n F : n π π + F π n + F IV w A w ν k A + F ν ν A F + + F k k E E ν w ν F E Anmkung: Di dil Aufwitung w in Zylindscl unt Innnduck ( F ) nc d Mmbntoi btägt ( s. (.), S. 68 ): w ν E. Di Ptikulälösung nc d Bigtoi stimmt lso mit d Lösung nc d Mmbntoi übin. 5 /..7 75

9 Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi Bisil: iszylindscl unt Rndlstn l m m Gg.: m,, l m, 9 mm, ν, Gs.: Abklingvltn d Gößn w, w, m, D l mm mm mm mm,5,5 9,5 75 l mm > 75 mm, knn di Scl ls lng btctt wdn. D wd Innnduck noc zusätzlic Ailkäft wikn, buct nu di omogn Lösung d lngn Scl bücksictigt zu wdn: k w C cos k+ C sin k. Üb di bidn Rndbdingungn: m () m w () k C () w () k ( C + C ) wdn di Intgtionskonstntn bstimmt zu: C C m + k k m. k Dmit lutn di Egbniss: k w k m ( cos k sin k) + cos k k w k k m cosk ( cosk sink) k + + w k k m ( cos k+ sin k) + sin k m k k w k m sin k+ ( sin k+ cos k) /..7

10 l. Doz. D.-Ing. bil. G. Gogi Tgwksbcnung Szill m fin Rnd (bi ) gilt dnn: w() + k ( k m ) w () + k w () m w (). ( k m ) Di llgmin Lösung wid in di zwi duc di Blstung bdingtn Antil ufgsltt: ; m : m ; : k k w cos k w m ( cos k sin k ) k k k k w ( cosk+ sink) w m cosk k k k k w sin k w m ( cos k + sin k) k k k k w ( sin k + cos k) w m sin k. Dis Bziungn wdn nomit: k k w w cos k k k w w cosk+ sin k k w w sin k ( k) k w w sin k+ cos k k k w w k k k w w cosk ( cos sin k) k w w cos k+ sin k k w w sin k. k Fü di gfisc Dstllung wdn bcnt: ( ν ),9 k, 8 m mm m 75 mm: k,. 5 /..7 77

11 Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi Blstung duc :.5 w( k) w( k) w( k) w( k) Blstung duc m :.5 wm( k) wm( k) wm( k) wm( k) k Wi us bidn Digmmn sictlic, klingn di duc di Rndstöungn vo gufnn Scnittgößn in Fom gdämft Scwingungn vom Rnd sc b. Bi 75 mm btgn si nu noc c. % /..7

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T =f(,) ( kommt nicht vo) wid

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T f(,) ( kommt nicht vo) wid

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0 Vktohnung Vkton, sind Gößn, u dn vollständig Chktisiung sowohl in Mßhl, d Btg, ls uh in Rihtung im Rum fodlih sind. Bispil: Kft, Gshwindigkit, Bshlunigung, Winklgshwindigkit, Winklshlunigung sowi lktish

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Zeitverhalten eines Hochpass-Messgliedes

Zeitverhalten eines Hochpass-Messgliedes n zur Znrlübung dr Vorlsung Grundlgn dr Msshnik von Prof. Dollingr, niv. dr Bundswhr Münhn, L2 - OHNE GEWÄH - Zivrhln ins Hohpss-Mssglids Ggbn is di Shlung us Abb. mi ) Ermiln Si di Diffrnilglihung für

Mehr

Übungen zur Atomphysik II

Übungen zur Atomphysik II U AP 3 f-pw Übug zu Atompysik II Boscs Atommodll, Piodsystm Das Bosc Atommodll Wassstoffatom 5 lktoadi ds H-Atoms Bispil: H-Atom, Aziugskaft 7 Bispil: H-Atom, Ioisiugsgi 9 Quatzal lktoscal Piodsystm 3

Mehr

Satellitengeodäsie. Bahnenergie. Torsten Mayer-Gürr

Satellitengeodäsie. Bahnenergie. Torsten Mayer-Gürr 508.535 Sllingodäsi Bhnngi Tosn My-Gü Tosn My-Gü Zusmmnfssung Kpl Tosn My-Gü 7.03.05 Bwgungsglichung ds Kplpoblms Bwgungsglichung ds Kplpoblms: Diffnilglichung. Odnung 3 Bsimm bis uf 6 Ingionskonsnn =>

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt.

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt. Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5--. Bstimmn Si Radius und Mittlpunkt ds Kümmungskiss an di Paabl y in ihm Schitlpunkt. Allgmin Glichung d Schitlpunktfom in Paabl

Mehr

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7 Pof.. Nobt pp Wintsst 9/ 7. Novb 9 nil Khlöß Übung zu Volsung PC II Quntnchisch Mollsyst, Ato un Molkülspktoskopi B.Sc. Bltt 7. i uphys Si ist in Si i Spktu s ton Wssstoffs. Si bginnt bi 6 n un nt bi,

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

9. Bewegungen geladener Teilchen im homogenen Magnetfeld

9. Bewegungen geladener Teilchen im homogenen Magnetfeld 9. wgungn gladn ilchn i hoognn Magntfld Elkton F = (allgin: = Q ) F F F F ist Zntiptalkaft, das Elkton (allgin: ilchn) bwgt sich i auf in Kisbahn! ( blibt i glich) Magntfld wgn sich Ladungn snkcht zu Magntfld,

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug www.shullv.d Bsiswissn > Gomtri im Rum > Trigonomtri in Körprn > Strknzug Strknzug Spikzttl Augn 1. Läng ds Strknzugs rhnn In disr Aug sollst du dn Strknzug ds gzihntn Hus vom Nikolus rhnn. Am inhstn ist

Mehr

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung:

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung: 38. Polaisation 38.1. Einfühung Ggbn si in lktomagntisch Wll mit Ausbitung in z-richtung und in Amplitud in x-richtung: E = E 0 i 0 i... Einhitsvkto in x-richtung Di vollständig mathmatisch Bschibung unt

Mehr

Aufgabe 1. Magnetische Kraft (2+4)

Aufgabe 1. Magnetische Kraft (2+4) Übungn zu Physik II Elktoynaik SS 5 Lösungn zu Übungsblatt 65 Bspchung a Mi 965 ufgab Magntisch Kaft a Mssung s agntischn Fls Ein chtckig Litschlif hängt vtikal i Zntu ins goßn Magntn, so ass as agntisch

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

} Gaußsches Gesetz (eine der Maxwell-Gleichungen)

} Gaußsches Gesetz (eine der Maxwell-Gleichungen) imntalhsik II TU Dotmun SS Shaukat Khan @ TU - Dotmun. Kaitl Wiholung q F q F q F ga s P P ga,, iv ot,, Coulombschs Gst, lktischs Fl Kaft / Laung lktischs Potnial bit / Laung Gaint, Divgn, otation Gaußsch

Mehr

Gabelstapler III. Modul: Arbeits- bzw. Personenkörbe

Gabelstapler III. Modul: Arbeits- bzw. Personenkörbe A Mod: Ai- w. Ponnkö Thm: Ai- w. Ponnkö Knwinn mi ARAMS Si wdn f 12 Sin mi fondn nhn (. ch) m Thm infomi! Wi n vo, wm d Thm wichi i nd w Si chn hn! NHALT: Sichhihinwi Af d Aiko Ein nd Vwndnwck Ein d Aiko

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de Ein hzlichs Güß Gott in Mmmlsdof! www.di-konn.d Güß Gott! In Fankn stht das bst Witshaus imm ggnüb d Kich. So wi auch uns Bauigasthof: Di Di Konn bfindn sich sit mh als 555 Jahn ggnüb dm Mmmlsdof Gottshaus.

Mehr

h ergibt schließlich:

h ergibt schließlich: Löungn: 007 Pflictbric r Winkl ε knn im mrkirtn rick brcnt wrdn rin gilt: in ε = rcnung dr Hö : i Hö knn im mrkirtn rick mit dm Stz d Pytgor brcnt wrdn gilt: ε = (0,5) = (0,5) Und mit = 4, cm: = 4,41 0,5

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft Aufgabn zu Lontzkaft 46. in lktonntahl titt it in Gchwindigkit von v 0 1,96 * 10 6-1 nkcht zu dn Fldlinin in in hoogn Magntfld it d agntichn Fludicht B 1,6 * 10 - in. a) klän Si, wau ich d lktonntahl auf

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Badn-Württmbrg:

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 7 Badn-Württmbrg:

Mehr

2. Dynamische Lichtstreuung (DLS)

2. Dynamische Lichtstreuung (DLS) . Dynamisch Lichsuun DLS Phoonnkolaionsspkoskopi Di molkula Bwun in d Pob füh zu zilichn Flukuaionn in d nnsiä ds Sulichs. J klin das Suvolumn, dso auspä di Flukuaionn Di Foml fü dn diffnilln Suuschni

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1)

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1) Dr Arnlf Schönli, Logistischs Wchstm in dr Prxis Logistischs Wchstm in dr Prxis Für Wchstmsrozss, di nch dm logistischn Wchstmsmodll lfn, gilt: ( ( t ( Drin sind (t zw di Polionn z dn Zitnktn t zw t, nd

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 ostn Schib 7 D Eukliisch Vktoaum wi uch i i gbilt. Dis sthn fü i i Achsn s Raums un biln in, a si um Einn aufinan sthn un um Ann i Läng ist. Wnn in Ga uch wi Punkt finit wi so hält man im Bich Vkton

Mehr

Vernetztes Laden eine Herausforderung

Vernetztes Laden eine Herausforderung Vntzts Ldn in Husfodun NTT DATA Mobilitätskonfnz 2. Oktob 2014, Win Jün Hiß, Lit Pilotiun & Klinsin EnBW Options Ws ist ds Zilbild in d E-Mobilität? Vntzts Ldn in Husfodun 2 E-Mobilität ist Til ds vntztn

Mehr

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen Pof. D. n. Post tz und Btibsitt Gundn d Enitchnik tz und Btibsitt tzfon EEG. Sp. 7 unächst so noch in duf hinwisn wdn, dß Vsounsntz Dhstontz (Ausnh HGÜ) sind. Di Ausnhn sind in. Aus nitchnisch Sicht intssit

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

HÖHERE ANALYSIS. 51 Untermannigfaltigkeiten des R n

HÖHERE ANALYSIS. 51 Untermannigfaltigkeiten des R n - 49 - HÖHERE NLYSIS 51 Untermnnigfltigkeiten des R n 51.1 Die verschiedenen Beschreibungen von Untermnnigfltigkeiten (51.1.13 Krten: Spezilfälle : Der nschuung wegen sollte mn stets die Spezilfälle für

Mehr

Für den Flächeninhalt des Dreiecks A BEG gilt: A BEG =

Für den Flächeninhalt des Dreiecks A BEG gilt: A BEG = 008 Pflichtrich Für dn Flächninhalt ds ricks EG gilt: EG = E G i Strckn E und G kann man rchnn, wnn man im rchtwinklign rick EG dn Winkl ε und di Strck EG knnt rchnung ds Winkls ε: n Winkl ε stimmt man

Mehr

Elektromagnetische Felder eines bewegten geladenen Drahtes

Elektromagnetische Felder eines bewegten geladenen Drahtes lktomagntisch Wlln Kapitl 16 lktomagntisch Wlln Figu 1. Das adial lktisch Fld, das on inm unndlich langn, gadn, positi gladnn Daht zugt wid. 16.1 Fld ins bwgtn gladnn Dahts Wi habn in Kap. 15.5.1 das lktisch

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

Beispiele. elektrisch: RC-Glied. hydraulisch: Stoßdämpfer

Beispiele. elektrisch: RC-Glied. hydraulisch: Stoßdämpfer 3..3 Zusmmngsz linr Übrrgungsglidr 3..3. Proorionlwirknd Übrrgungsglidr Vrzögrungsglid rsr Ordnung, P -Glid Funkionlbziung d d ( ) ( ) : Zikonsn, > Übrgngsfunkion ( ) ( ) / ( ) für für < P-Übrgngsfunkion

Mehr

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist:

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist: Aufgab 1 Ein unkt 1 fäht in Bschlunigung ω. Zum Zitpunkt hat di Gschwindigkit 2 und bfindt sich am Ot. Ein zwit unkt fäht di Bschlunigung. Zum Zitpunkt hat di Gschwindigkit und bfindt sich am Ot. Gsucht

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen.

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen. Übung zu Mikro III (SS 05) Tri Vi Dang Handout zu Übung Vorbmrkung: Hinwis auf Fhlr sind willkommn. Kin Gwähr für di vollständig Richtigkit dr usführungn. Thma : Thori ds llgminn Glichgwichts Das Framwork

Mehr

Blatt 6, Aufgabe 1: Beugung am Einzelspalt

Blatt 6, Aufgabe 1: Beugung am Einzelspalt Aua a, Blatt 6, Aua : Buun am Einzlspalt a Bdinunn ü Faunho-Buun: Sowohl di Lichtqull als auch d Boachtunsschim müssn lativ zum Spalt unndlich ntnt sin. s Di Intnsitätsvtilun wid duch di c-funtion schin:

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

2. Grundgleichungen der linearen FEM

2. Grundgleichungen der linearen FEM . Grundgleichungen der lineren FEM Fchbereich Prof. Dr.-Ing. Mschinenbu Abteilung Mschinenbu. Ekurs Mtrizenrechnung Zum weiteren Verständnis der FEM sind einige Grundkenntnisse in der Mtrizenlgebr erforderlich!

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Lösungen zu den Übungsaufgaben

Lösungen zu den Übungsaufgaben Lösungen zu den Übungsufgben Aufgbe A.2. Ist k L () mit k(x)dx = und ist f : beschränkt, Lebesgue-messbr und stetig in x, dnn gilt lim r r k(x y r )f(y)dy = f(x). Lösung A.2. Zunächst ist mit der Substitutionsregel

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden BÜROZENTRUM FALKENBRUNNEN Chmnitz-. 48, 48a, 48b, 50 / Wüzbug. 35 01187 Dsdn OBJEKT OBJEKT INDIVIDUELLES UND GROSSZÜGIGES BÜRO- UND EINZELHANDELS-ENSEMBLE Das Büozntum Falknbunnn bitt modn und funk- nn

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y

Felder und Wellen. Musterlösung zur 13. Übung. 30. Aufgabe WS 2016/2017. Hinlaufende Welle: E d = E d e j(ωt k d r) e y Felder und Wellen WS 6/7 Musterlösung zur 3. Übung 3. Aufgbe Hinlufende Welle: E e = E e e jωt k e r) e y ke = k cosφ e e z +sinφ e e x ) Reflektierte Welle: E r = E r e jωt k r r) e y kr = k cosφ r e

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte Unbhängig Btung zu Ih Hizungsnlg Di Hizungsvisit ist in gfödt Kuz-Chck fü Bm Hushlt 80 Poznt d Hizungn in Dutschlnd bitn Optimiungspotnzil. Lssn Si dh Ih Hizung jtzt bi in Hizungsvisit übpüfn od sich zu

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

12. Multipolstrahlung

12. Multipolstrahlung Langwlln - Nähung Zu witn Bhandlung von Gl. (.3 machn wi di Langwlln - Nähung. Multipolstahlung Wi btachtn jtzt in Ladungs- und Stomvtilung im Gbit x < d. Wi habn in Kap..5 bzw. 5.4 fstgstllt, dass di

Mehr

Aufgaben zu Kapitel 7

Aufgaben zu Kapitel 7 7.1 G W A B zu 7.1 zu 7.2 7.2 Ajznzmtrix: 000111 000111 000111 111000 111000 111000 G : W : : A : B : : A, B, A, B, A, B, G, W, G, W, G, W, s ist niht möglih, n Grphn ürshniungsfri zihnn. 7.3 Di Isomorphiilung

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z y g W i o o L c a B i o n n a I o E a f i E s l t f n v R H v I u m b M x H c x z S x T n T w Z E h V n u i C t S f p F o E R K o y a l H u C s t A V U K g K U p H q h D x G f U s q f y g L b A j w E u

Mehr

e n e a Chancenzuschaf

e n e a Chancenzuschaf s p a n, um n uch Sp a n, u m n u Chancnzuschaf f n m i al b Li ag Landt Konsol i di ungsst at gi dfdplandt agsf akt i on 2013bi s2017 f dpf akt i onn w. d 2013 2014 2015 2016 2017 in Mio. Euo 1. Mhinnahmn

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Maschinendynamik Formelsammlung Prof. Dr.- Ing. H. Bräutigam SS 2000 Seite 01. Coulombsche Reibungskraft : F R = µ * F N ( Rutschen ) c =

Maschinendynamik Formelsammlung Prof. Dr.- Ing. H. Bräutigam SS 2000 Seite 01. Coulombsche Reibungskraft : F R = µ * F N ( Rutschen ) c = Mshinendynik Foesung Pof. D.- Ing. H. Bäutig SS Seite Käftegeihungen : Couobshe Reibungskft : F R µ F N ( Rutshen ) Roen : Reibungskft R Gewihtskft : G g Seieibungskft : Fedekäfte : µ α F e F Gede Fede

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

Bis zu 20 % Ra. b b. a h

Bis zu 20 % Ra. b b. a h btt! Bis zu 20 % R www.gvb.ch h? ic s b b d d u W s s d ich t lück lo s s u H Ih h ic s W i v Mit us kö Si Ih Hus udum vsich Mit us Zustzvsichug ist Ih Vsichugsschutz i ud Sch W glichzitig i Lück i d Gbäudvsichug

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt IV. Diffrnialglichngn: z.b. y d Klassifiaion von Diffrnialglichngn 1. Gwöhnlich / Parill Dgl. y f, 1 nabhängig Variabl gwöhnlich Dgl mhr Variabln : parill Dgl. Ordnng Is di höchs vorommnd bling y, y...

Mehr

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen Übung zur Vorlesung Einführung in die Algebr Prof. Dr. J. H. Bruinier Stephn Ehlen Soerseester 2009 Lösungshinweise zu Übungsbltt 5 Aufgbe G5. Ordnungen berechnen () () Gegeben k gilt k k 0 in /n genu

Mehr

Komplexe Integration

Komplexe Integration Komplexe Integrtion Michel Hrtwig 23. April 2004 Der Unterschied zwischen reeller und komplexer Integrtion Vorbemerkung: Aus Gründen der Anschulichkeit, hbe ich weitgehend uf eine exkte mthemtische Drstellung

Mehr

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier Ds Röthnbch Su-Zipfl-Fltt-Tuni Lngwil im Jnu? Nicht mit uns! D s R ö t h Bi uns ght s dn Sun Zipfln n dn Kgn! Di Bognschützn d SSG Röthnbch ldn hzlich in zum 4. Röthnbch Su-Zipfl-Fltt-Tuni m Smstg, dn

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

Crash-Course Physik Vorlesung 1

Crash-Course Physik Vorlesung 1 Crsh-Cours Physik Vorlsung 1 Trigonomtri: Lösungn 21. Sptmbr 2016 1. Notir für di folgndn vir rhtwinklign Drik di An- und Ggnktht ds jwils ingtrgnn Winkls: b α d f β Anktht von α ist b, Ggnktht ist. Anktht

Mehr

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010 Analysn d Egbniss d Qualifizigsbat im III. Quatal 2 III. Quatal 2 Batgn d Analysn d Qualifizigsbat Im 3. Quatal ds Jahs 2 wudn 83 Btib bzw. Untnhmn batn. In 38 Untnhmn wud in Qualifizigsbdaf fü.3 Mitabit

Mehr

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c Drehung Die orthogonale n n-matrix Q i,j... Zeile i c s... Zeile j s c... mit c = cos ϕ und s = sin ϕ beschreibt eine Drehung um den Winkel ϕ in der x i x j -Ebene des R n. Drehung - Drehung Die orthogonale

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Grubr, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Hssn Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für GTR und CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis 1 Ganzrational

Mehr