Beispiele. elektrisch: RC-Glied. hydraulisch: Stoßdämpfer

Größe: px
Ab Seite anzeigen:

Download "Beispiele. elektrisch: RC-Glied. hydraulisch: Stoßdämpfer"

Transkript

1 3..3 Zusmmngsz linr Übrrgungsglidr Proorionlwirknd Übrrgungsglidr Vrzögrungsglid rsr Ordnung, P -Glid Funkionlbziung d d ( ) ( ) : Zikonsn, > Übrgngsfunkion ( ) ( ) / ( ) für für < P-Übrgngsfunkion Symbol Rlisirungsmöglicki

2 Bisil lkrisc: R-Glid ydrulisc: Soßdämfr

3 Vrzögrungsglid zwir Ordnung, P -Glid Funkionlbziung ( ) d ( ) d d d ( ) ( ) Übrgngsfunkion : siscr Übrrgungsfkor : Zikonsn, > : ämfung, > d Anfngswr : d ( ) ( ) i Lösung dr GL rfolg wi bknn übr dn Ansz von sionärm und flücigm Lösungsnil. ( ) ( ) ( ) s fl Si für zur crkrisiscn Glicung: mi dn Wurzln:, ± Wgn ds Vorzicns ds Rdiknn sind dri Fäll zu unrscidn: Fll >, rll, ngiv, d >, > ( ± ) / ( ) für < für

4 mi dn Anfngsbdi Vrglic von P u P : d d Wurz dr mi ingungn rgib sic wi bknn: und P (für ) ( ; ; für ; l ) >

5 P : P folg us P für Üblic is uc di no (ng τ ; r dn Grnzfll ormir rsllung für () mi (ngiv) und iv) > ( α ; α τ τ α α α < ) < α

6 Bc: s P -Glid bsiz nur inn Wndunk bi d d ( ) w Übrrgungsfunkion P-Glid nic scwingnd,., vribl: Übrrgungsfunkion P-Glid nic scwingnd, 3., vribl Übrrgungsfunkion P-Glid nic scwingnd, vribl,.: Übrrgungsfunkion P-Glid nic scwingnd, vribl, 3.: Gwicsfunkion P-Glid nic scwingnd, vribl: Gwicsfunkion P-Glid nic scwingnd, -vribl: grfisc Animionn si: : ://

7 Fll olwurzl, und mi dn Anfngsbdingungn ( ) ( ) d d ( ) ( ) ( ) für Fll < <, ± wgn < koml ± j δ ± j ω, mi δ < und ω somi folg ( δ jω ) ( δ jω ) ( ) und mi dr Umformung nc Eulr ± j cos ± j sin mi dn Anfngsbdingungn δ δ ( ) cosω sinω bzw. δ ( ) cos( ω ϕ ) für ω

8 ϕ ϕ ω δ sin n mi und dm Mimum b ω π k ( m m : k ω δ sin cos bi d d ) π π

9 Übrrgungsfunkion P-Glid scwingnd, -vribl: Übrrgungsfunkion P-Glid scwingnd, -vribl: Gwicsfunkion P-Glid scwingnd, -vribl: Gwicsfunkion P-Glid scwingnd, -vribl: grfisc Animionn si: : :// Symbol bzw. Rlisirungsmöglicki

10 Bisil scwingnd Übrgngsfunkion ins mikromcniscn isigls Vrzögrungsglidr örr Ordnung, z.b. P n -Glid Funkionlbziung (Normlform, d.. ): n n d n L d d d : siscr Übrrgungsfkor... n : konsn offizinn Symbol

11 3..3. ngrirnd Übrrgungsglidr ngrlglid mi Vrzögrung rsr Ordnung, -Glid Funkionlbziung d d ( τ ) dτ odr d ( ) ( ) d d d ( ) d d A B A d d ( ) für > s fl ( ) ( ) ( ) A A i ; ; Übrgngsfunkion. Brcnungswg mils Ansz (wi üblic) ( ) ( ) ( ) s fl übr crkrisisc Glicung mi Anfngswrn folg: ( ) für. Brcnungswg übr di Rdukion uf in P -Glid (dssn Lösung is bknn) d d d d ( ) mi ( ) σ( )

12 übr Erszvribl v d d dv v d ( ) Lösung bknn v ( ) mi ( ) odr ( ) ( ) v ( τ ) dτ ( ) für Symbol

13 iffrnzirnd Übrrgungsglidr iffrnzirglid mi Vrzögrung rsr Ordnung, -Glid Funkionlbziung d d d d für > : Übrrgungsfkor : Zikonsn, > Übrgngsfunkion ( ) σ ( ) ( ) für < d Wgn für >, folg s für > d (nsric P -Vrln mi vrändrn Anfngswrn und sionärm Endwr ) nlog zum -Glid:. Brcnungswg Bsimmung ds Anfngswrs ( ) us ε > mi ε ε d d d ( ) [ ( ε ) ] ( ) d [ ( ε ) ] ε d ε ε d d d ( ε ) ( ) für ε folg ε ( ) d, d ( ) bscränk blib ( ) ( )

14 wir Lösung wi bknn: - flücig Lösung, Ansz - crkrisisc Glicung - Anfngsbdingungn (s.o.) ( ) für. Brcnungswg übr di Rdukion uf in P -Glid d d d d mi dv d d v d dv d d d nun ngrion dv d v Lösung bknn v für bzw. ( ) dv d für ( ) ( ) ( / ) / für für <

15 Symbol Rlisirungsmöglicki Bisil Glid: R-Glid Glid: ydrulisc Glid: numisc originlly from :// did by BHP

Zeitverhalten eines Hochpass-Messgliedes

Zeitverhalten eines Hochpass-Messgliedes n zur Znrlübung dr Vorlsung Grundlgn dr Msshnik von Prof. Dollingr, niv. dr Bundswhr Münhn, L2 - OHNE GEWÄH - Zivrhln ins Hohpss-Mssglids Ggbn is di Shlung us Abb. mi ) Ermiln Si di Diffrnilglihung für

Mehr

Lösungen zu Übungsblatt 5 Fourier-Integral

Lösungen zu Übungsblatt 5 Fourier-Integral Zu Aufgab : Si f() für - < und f() sons. Zu a) Es gil: F( d d jω j j j [ ] D.h., di Spkralfunkion F ( zu inr sückwis konsann Funkion f() is in grad Funkion. Si is in gdämpf Schwingung, drn Asympon für

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

( ) Musterlösung Seite 2. Musterlösung Seite 1. 2 Homogene, ebene Wellen 8. 1 Felder an Grenzflächen 8

( ) Musterlösung Seite 2. Musterlösung Seite 1. 2 Homogene, ebene Wellen 8. 1 Felder an Grenzflächen 8 Muslösung Si Muslösung Si Fld an Gnlächn 8 Tangnialkoponnn: y- und -Koponnn Noalkoponnn: -Koponn Tangnialkoponnn sind sig: E E Fü di Noalkoponnn gil: Dn Dn εε En En εε En En ε j b) E () R { E ω } ( y)

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übungsbla Aufgabn mi Lösungn Aufgab : Zwi Drucklufbhälr mi unrschidlichn Volumina V und V sind durch in zunächs vrschlossn Rohrliung vrbundn. Vor Öffnn ds Sprrvnils zu 0 hrrschn in dn Bhälrn unrschidlich

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungn zur Kursvorlsung Physik II (Elkrodynmik) Sommrsmsr 8 Übungsbl Nr. Aufgb 9: Ldungsvrilung ) Di Gsmldung inr krisförmign Obrfläch is ggbn durch: Q= A rda= rr dr d (i) (ii) Q= r r dr d = Q= r dr d

Mehr

Lösungen Seminar PK I-IV

Lösungen Seminar PK I-IV armacuica Tcnoogy and Bioparmacuics rof. Grard Winr Lösungn Sminar K I-IV nnis Krig Sminar Bioparmazi WS17/18 K I Grundagn as Anibioikum facor wird inm ainn as i.v. Bous Gab vrabric und nac vrscidnn Zin

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

1. Berechnen Sie die folgenden unbestimmten Integrale durch geeignete Substitution: ln x. x sinh x dx f) cos 2 (4x + 7) arctan x2. 3 x = t, 3 dx = dt

1. Berechnen Sie die folgenden unbestimmten Integrale durch geeignete Substitution: ln x. x sinh x dx f) cos 2 (4x + 7) arctan x2. 3 x = t, 3 dx = dt Höhr Mahmaik für chnisch Sudingäng Vorbriungsaufgabn für di Übungn Ingralrchnung für in Vrändrlich, infach Diffrnialglichungn. Brchnn Si di folgndn unbsimmn Ingral durch gign Subsiuion: ln cos d b sin

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003 Lösung der Aufge : x x ( x ) ( x ) ) f(x) {} ( x ) ( x ) ( x ) ( x ) ( x x ) f (x) ( x ) x x ( x ) f (x) x x x ( x ) (vorgegeen) Nullsellen : x - x. urch Proieren finde mn die Nullselle x. Polynomdivision

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt IV. Diffrnialglichngn: z.b. y d Klassifiaion von Diffrnialglichngn 1. Gwöhnlich / Parill Dgl. y f, 1 nabhängig Variabl gwöhnlich Dgl mhr Variabln : parill Dgl. Ordnng Is di höchs vorommnd bling y, y...

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

Lösung der Aufgabe 1 :

Lösung der Aufgabe 1 : Lösung dr Aufgb : ) x x + y + y 3x + 4y + Fixpunktbdingung: x x, y y x x + y + y 3x + 4y + 0 4x+ y+ 0 3x+ 3y+ 0 6x - 3 3 4 b) x 6 0-6y - y 6 Fixpunkt ( 6 6 ) Fixgrdn: in dn bidn Gichungn für di Fixpunktbdingungn

Mehr

Musterlösungen zur 5. Übung

Musterlösungen zur 5. Übung . Aufg, ritt von Edurd Tsingr Mustrlösungn zur 5. Üung Wlchs dr folgndn Sstm ist zitinvrint odr nicht? Erinnrung ws in zitinvrints Sstm ist:. ] -. -n -n -n- 3. % n] n n 4. n % --> ds Sstm ist zitinvrint

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

Wir betrachten hier nur den Fall m,n N, also m>0 und n>0. Die anderen Fälle, bei denen m=0 oder n=0 ist, können leicht selbst gelöst werden.

Wir betrachten hier nur den Fall m,n N, also m>0 und n>0. Die anderen Fälle, bei denen m=0 oder n=0 ist, können leicht selbst gelöst werden. Übugsaufgab Fourirrih Mahmaik III M Prof. Dr. B. Grabowski Bla 6 grabowski@hw-saarlad.d Lösug zu Übugs-Bla 6 Zu Aufgab Wir brach hir ur d Fall m, N, also m> ud >. Di adr Fäll, bi d m odr is, kö lich slbs

Mehr

Mathe 3 MST Lösungen zu Blatt 9 Laplace-Transformation Prof.Dr.B.Grabowski

Mathe 3 MST Lösungen zu Blatt 9 Laplace-Transformation Prof.Dr.B.Grabowski Mh MST Löungn zu l 9 Lplc-Trnformion Prof.Dr..Grbowki Zu ufgb Ermiln Si di Löung d folgndn nfngwrproblm mil Lplc- Trnformion:, Trnformirn Si dzu di gm Glichung mil Diffrniionz in dn ildbrich, Lön Si di

Mehr

Korrespondenzen der FOURIER - Transformation I

Korrespondenzen der FOURIER - Transformation I Korresodee der FOURIER - rsormio I A: HEOREME s() S() F-rsormio s () jπ S( ) = s e d Iverse F- jπ rsormio s () = S e d S( ) 3 Zerlegug reeller Zeiukioe mi s () = s() + s() S( ) = Re{ S( )} + jim{ S( )}

Mehr

Musterlösung Aufgabe 1:

Musterlösung Aufgabe 1: rlin Üung Anlog- und Digillkronik W 9/ lcronics nd mdicl signl procssing Üung 8: Oszillorn i /9 Musrlösung Aug :. Brchnung dr Ürrgungsunkion 4 4 mi ω j s C C j C ω ω ω rlin Üung Anlog- und Digillkronik

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.)

Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.) Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi. (Rottions-)Scln Scl gkümmts Fläcntgwk mit blibig Blstung Rottionsscl Midinkuv (Ezugnd) ist von Dwinkl um fst Acs unbängig Vousstzungn: sinngmäß di glicn wi bi

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

v, a Aufgabe D1 H11 Geg.: a = c w v 2, c w = const, c w > 0, v 0, τ Ges.:

v, a Aufgabe D1 H11 Geg.: a = c w v 2, c w = const, c w > 0, v 0, τ Ges.: Aufgbe D1 H11 Nchdem seine Mschinen gestoppt werden, verringert ein Continerschiff seine nfängliche eschwindigkeit v 0 lleine durch Reibung im Wsser. Für die Beschleunigung soll ngenommen werden, dss diese

Mehr

Crash-Course Physik Vorlesung 1

Crash-Course Physik Vorlesung 1 Crsh-Cours Physik Vorlsung 1 Trigonomtri: Lösungn 21. Sptmbr 2016 1. Notir für di folgndn vir rhtwinklign Drik di An- und Ggnktht ds jwils ingtrgnn Winkls: b α d f β Anktht von α ist b, Ggnktht ist. Anktht

Mehr

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x)

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x) Vertikale Verschiebung a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g() = f() b) Zeichne den Graphen der Funktion h mit h() = f() ein. Oben oder unten? f() +

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

g(t) t/sek Aufgabe 1:

g(t) t/sek Aufgabe 1: Murlöung Klauur Symhori vom 4.7.4 SS 4 Aufgab : Zur Vorbriung in inr wirn Vrwndung wurd di Drhzahl g() in Moor al Rakion auf inn hr kurzn Einchalimpul gmn (Soanwor in Sym): g() 3 / - /k a) Ermiln Si unr

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Mathematik 12 Technik - Aufgabe I - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Mathematik 12 Technik - Aufgabe I - Lösung Abschlussprüfung Bruflich Obrschul 0 Mathmatik Tchnik - Aufgab I - Lösung Tilaufgab.0 x Ggbn ist di rll Funktion f( x) ln x in dr maximaln Dfinitionsmng D f. 4 Tilaufgab. (6 BE) Zign Si, dass gilt: D f

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Ptrizio Neff Christin Thiel 07.07.04 Lösungsvorschlg zu den Präsenzufgben der 3. Übung Präsenzufgbe : Wir hben die Determinnte bisher ls Kriterium zur Invertierbrkeit

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

2. Dirichlet-Reihen. Arithmetische Funktionen

2. Dirichlet-Reihen. Arithmetische Funktionen 2. Dirichlet-Reihen. Arithmetische Funktionen 2.. Eine Dirichlet-Reihe ist eine Reihe der Gestalt a n f(s = n, s wobei (a n n eine Folge komplexer Zahlen und s eine komplexe Variable ist. 2.2. σ a (f :=

Mehr

Lösungen zu Übungsblatt 5

Lösungen zu Übungsblatt 5 Lösungn u Übungsblatt 5 Zu Aufgab Stlln Si folgnd komplxn Zahln als Zigr im kartsischn Koordinatnsystm dar! Gbn Si Raltil, Imaginärtil und dn Btrag an! a + b 5 c Grafisch Darstllung als komplx Zigr: Raltil,

Mehr

Musterlösung Aufgabe 1:

Musterlösung Aufgabe 1: brlin Übung Analog- und Digiallkronik WS 0/ Musrlösung Aufgab :. Komparaorschalung: Komparaorschalung Di Angabn bzüglich ds Tmpraursnsors bzihn sich auf inn Srom von I S ma. Dahr is di ihnschalung aus

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Anlysis I 4. Übungssunde Seven Biln sevenb@suden.ehz.ch biln.uk/eching June 6, 07 Erinnerung Sz. (Prielle Inegrion) f (x) g(x)dx = [ ] b f(x)g(x) f(x) g (x)dx. Sz 6..5 (Subsiuion) Sei f : [, b] R seig,

Mehr

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential.

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential. Lösug dr Srödigr- Gliug für i aroiss Poial. Ggb is di Srödigr Gliug i saioärr For: o s soll i aroisr Oszillaor vorlig: o i Variablrasforaio wird durgfür: ( ε ) Lösug dur d Asaz a Allgi, oog, liar Diffrialgliug.

Mehr

Eigenschaften trigonometrischer Reihen. Trigonometrische Reihen. Reihenentwicklung. Reihenentwicklung. Fourierreihenentwicklung

Eigenschaften trigonometrischer Reihen. Trigonometrische Reihen. Reihenentwicklung. Reihenentwicklung. Fourierreihenentwicklung roomrsch Rh Do: Rh dr Gsal a + a cos x + b s x + a cos x + L + a cos x + b s x +L hß roomrsch Rh. D Zahl a a, b,..., a, b,..., b: prodsch Fuko sd hr Koz. Escha roomrschr Rh a + a cos x + b s x + a cos

Mehr

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen.

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen. Mathematik 2 Klausur vom 22. November 23 Zoltán Zomotor Versionsstand: 2. Dezember 23, 9:2 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view

Mehr

E4 WECHSELSTROMWIDERSTÄNDE

E4 WECHSELSTROMWIDERSTÄNDE E4 WECHSELSTROMWIDERSTÄNDE PHYSIKALISCHE RUNDLAEN rundbgriff: Ohmschr, indukivr und kaaziivr Widrsand im Wchslsromkris, Ohmschs sz, Darsllung von Widrsändn in dr komlxn Ebn, Rihnschwingkris, Rsonanz. In

Mehr

Markus Grözing and Manfred Berroth. MOS-AK Treffen. Universität Stuttgart. 07. Mai 2004

Markus Grözing and Manfred Berroth. MOS-AK Treffen. Universität Stuttgart. 07. Mai 2004 Markus Grözig ad Mafred Berroh MOS-AK reffe 7. Mai 4 7. Mai 4, 6.5. 4, Markus Grözig Oulie. Depedecy o oscillaor sage umber, MOSFE geomery ad iverer symmery. Depedacy o curre or volage impressio 7. Mai

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

5. Laplace Transformation. 5.1 Definition und Korrespondenzen

5. Laplace Transformation. 5.1 Definition und Korrespondenzen 23 5. Laplac Tranformaion 5. Dfiniion und Korrpondnzn Di Laplac Tranformaion ha für di Analy und dn Endwurf linarr ziinvarianr dynamichr Sym mi konznrirn Elmnn in groß prakich Bduung rlang. Si ghör wi

Mehr

Master E/BMT/DFHI Höhere Mathematik I

Master E/BMT/DFHI Höhere Mathematik I Mas E/BM/DFHI Höh Mahmaik I Lösungn zu Übung Vkoanalysis Pof D B Gabowski gabowski@hw-saalandd Zu Aufgab Bchnn Si fü di Bahnku cos M ins ilchns zu Zi a Gschwindigki b Bschlunigung c Glichung d angnn an

Mehr

Lösungen zu Blatt 8 Laplace-Transformation Mathematik III KI

Lösungen zu Blatt 8 Laplace-Transformation Mathematik III KI öngn z Bla 8 aplac-tranformaion Mahmaik III KI Prof.Dr.B.Grabowki Z Afgab Brchnn Si di Urbildfnkionn z folgndn Fnkionn F mil Parialbrchzrlgng! 8 a F b F 8 Z a. Schri: Nlllln d Nnnr bimmn: drch Probirn,,

Mehr

Grundlagen der Raketentechnik

Grundlagen der Raketentechnik Grundlagn dr Raktnthnik Wrnr W. Wiss Wltrauastronoi SS7 Raktnforl y d (t) V x...raktngshwind. rl zu x/y..tribgasgshwind. rl. zu Rakt β...tribgas Durhsatz - d/dt [ ] [( d)( + d) d( ) ] Gsatipuls t i d Ipuls

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

2.3.4 Integrationsverstärker

2.3.4 Integrationsverstärker Dipl.-In. G. Lbl.3.4.3.4 Inraionsvrsärkr Sachwor: Mssvrsärkr, Inraionsvrsärkr, Frqunzan, Übrraunsfunkion, Ampliudnan, -Tifpass Gbn is in Mssvrsärkr nach Bild, dr mi inm idaln Opraionsvrsärkr arbi. i u

Mehr

b) Weisen Sie nach, dass g und f im selben Punkt ein Minimum besitzen.

b) Weisen Sie nach, dass g und f im selben Punkt ein Minimum besitzen. Znral schriflich Abiurprüfungn im Fach Mahmaik Analysis Lisungskurs Aufgab 3 ln-funkion und Vrknüpfungn In dr Anlag sind di Graphn zwir Funkionn g und f dargsll. Ggbn sind wirhin zwi Funkionn h und h,

Mehr

λ + ω 0 2 = 0, Lösung: λ 1,2

λ + ω 0 2 = 0, Lösung: λ 1,2 SDOFs Der lineare Einassenschwinger Bewegungsgleichung!!x + c!x + k x = f () = p()...krafanregung!!x g ()...Weganregung!!x + ζω!x + ω x = f (), ω = k, ζ = c k... Lehr'sches Däpfungsaß AB : x( = ) = x,!x(

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2 Green-Funkion Wir berchen (z. B.) eine inhomogene linere DGL 2. Ordnung y +y = r() Die llgemeine Lösung mi y() = und y( π 2 ) = (Rndwerufgbe) sez sich us der llgemeinen Lösung der zugehörigen homogenen

Mehr

Erwartungsbildung, Konsum und Investitionen

Erwartungsbildung, Konsum und Investitionen K A P I T E L 7 Erwarungsbildung, Konsum und Invsiionn Prof. Dr. Ansgar Blk Makroökonomik II Winrsmsr 2009/0 Foli Kapil 7: Erwarungsbildung, Konsum, und Invsiionn Erwarungsbildung, Konsum und Invsiionn

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

Elementare Federberechnung

Elementare Federberechnung Dip.-Ing.(FH) Kuno Fuerknech D-87616 Wd/Osgäu Seie 1 von 8 Eemenre Federberechnung -Grundformen der Federeemene- 1. Krgräger Benennungen: F s ϕ wirksme Krf Absnd der Krf zur Einspnnung Verformung in Richung

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

5 Grenzwertregel von Bernoulli

5 Grenzwertregel von Bernoulli Grnzwrtrgl von Brnoulli und d L Hospital Sit 5-5 Grnzwrtrgl von Brnoulli und d L Hospital Oft muss man dn Grnzwrt inr Funktion brchnn Ist di Funktion in Quotint zwir Funktionn, so kann di Grnzwrtbildung

Mehr

3. Beschreibung und Analyse von Regelkreisgliedern

3. Beschreibung und Analyse von Regelkreisgliedern 3. Bschribung und nlys von glkrisglidrn Thorisch nlys Di horisch odr mhmisch nlys von Sysmn is nur bi linrn bzw. linrisirn Sysmn möglich. Exprimnll nlys Di xprimnll nlys is grundsäzlich bi lln Sysmn möglich,

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

\ Mathematik. 1. Allgemeine Grundlagen. 1.1 Rechnen mit reellen Zahlen Potenzen und Wurzeln. = = = n. a a. a b = a. b ab. a a a.

\ Mathematik. 1. Allgemeine Grundlagen. 1.1 Rechnen mit reellen Zahlen Potenzen und Wurzeln. = = = n. a a. a b = a. b ab. a a a. \ Mhmik Formlmmlug - Sf Au Slh www.auslh.com 6... Allgmi Grudlg. Rch mi rll Zhl.. Poz ud Wurzl Rchrgl für Poz m m+ = m m = m m m ( = ( = m, ;, = ( = ( ( Rchrgl für Wurzl m m m = ( = = = = = = = = = ( =

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Stationäres Betriebsverhalten der Synchronmaschine am starren Netz

Stationäres Betriebsverhalten der Synchronmaschine am starren Netz T Bergkdemie Freiberg Institut für Elektrotecnik Sttionäres Betriebsverlten der Syncronmscine m strren Netz Skritum für Nictelektrotecniker Verfsser: Prof. Dr.-Ing. bil.. Beckert Dtum: Jnur 2006 \vorlesung\reg_ntr\syn_msc_

Mehr

Elektromagnetische Felder Klausur 17. Februar 2004

Elektromagnetische Felder Klausur 17. Februar 2004 1. a I = 2 3 3 ν2 t B R U R = I R y I c F = P ν = 4 9 ν3 t 2 B 2 1R d I wird um den Faktor 3 2 e F = größer bei gleicher Spannung, entsprechend F 2. a T = E E = 2 E2 R = E E = 1 = E 2 + E 2 = (2E 2 + E

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Badn-Württmbrg:

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 7 Badn-Württmbrg:

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Fachgebiet Leistungselektronik und Elektrische Antriebstechnik Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 7.08.200 7.08.200 Musterlösung Grundlagen der Elektrotechnik B

Mehr

Serie 12 Musterlösung

Serie 12 Musterlösung Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Lösungsvorschlag Vorbereitung Nr.3 K

Lösungsvorschlag Vorbereitung Nr.3 K Mahmaik Lösungsvorschlag Vorbriung Nr. K..8 Pflichil (wa 0 min) Ohn Taschnrchnr und ohn Formlsammlung (Disr Til muss mi dn Lösungn abggbn sin, h dr GTR und di Formalsammlung vrwnd wrdn dürfn.) Aufgab :

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Aufgabe 1: Transformationen 25 Pkt. 1.1 Berechnen und skizzieren Sie die Werte der drei Signale für k = 0,...,5 und

Aufgabe 1: Transformationen 25 Pkt. 1.1 Berechnen und skizzieren Sie die Werte der drei Signale für k = 0,...,5 und Aufgab 1: Transformationn Aufgab 1: Transformationn Ggbn sin di diskrtn Signal ) k 1 v 1 k) = sin Ω 0 k) ε k), 2 v 2 k) = v 1 k 2), ) k 1 v 3 k) = sin Ω 0 k) ε k 2), Ω 0 R. 2 1.1 Brchnn und skizzirn Si

Mehr

6.Übung Schaltungstechnik SS2009

6.Übung Schaltungstechnik SS2009 6.Übung Schaltungstchnik SS29. Aufgab: mkhrvrstärkr Lrnzil Dimnsionirung ds mkhrvrstärkrs anhand ds Btragsfrqunzgangs. Brücksichtigung nicht-idalr OPV-Eignschaftn. Aufgabnstllung 2 d Ggbn si dr obn dargstllt

Mehr

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen.

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen. Klausur Makroökonomik B Prof. Dr. Klaus Adam 21.12.2009 (Hrbssmsr 2009) Wichig: (1) Erlaub Hilfsmil: Nichprogrammirbarr Taschnrchnr, ausländisch Sudirnd zusäzlich in Wörrbuch nach vorhrigr Übrprüfung durch

Mehr

Graphentheorie. Aufgabenblatt 3. Besprechung am 22. November 2018 in den Übungen

Graphentheorie. Aufgabenblatt 3. Besprechung am 22. November 2018 in den Übungen Fbri Inormti Wintrsmstr 018/19 Pro. Dr. Ptr Br Grpntori Augbnbtt 3 Bsprung m. Novmbr 018 in dn Übungn Augb 1 Anngswrtprobm) Lösn Si di ogndn Anngswrtprobm: ) n = n 1 + 3 n mit 0 = 0 und 1 = 1. b) b n =

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Autowaschanlage. Der Steuerungsablauf für eine Autowaschanlage soll mit einer speicherprogrammierbaren Steuerung realisiert werden.

Autowaschanlage. Der Steuerungsablauf für eine Autowaschanlage soll mit einer speicherprogrammierbaren Steuerung realisiert werden. Aufgab Auowaschanlag Lrninhi P-Programmbispil Auowaschanlag Inhalsübrsich Bdinn von Programmir- und urgrän Erslln von ymbolabll, Funkionsplan odr Anwisungslis urungsprogramm ingbn, in Brib nhmn und dokumnirn

Mehr

Regelungs- und Systemtechnik 1. Kapitel 2: Modellierung linearer Prozesse

Regelungs- und Systemtechnik 1. Kapitel 2: Modellierung linearer Prozesse glngs- nd Ssmcni Kapil : Modllirng linarr ross rof. Dr.-Ing. Li acgbi Simlaion nd Opimal ross SO roblmdarsllng Wi ragir di sgangsgröß, wnn di Eingangsgröß sic vrändr? Lösng drc rsc Exprimn Lösng drc Modllirng,

Mehr

1. Aufgabe: (ca. 12 % der Gesamtpunkte)

1. Aufgabe: (ca. 12 % der Gesamtpunkte) . August 07. Aufgabe: (ca. % der Gesamtunkte) a) Skizzieren Sie an den dargestellten Stäben die Knickformen der vier Euler-Knickfälle inklusive Lagerung und geben Sie zum Eulerfall mit der höchsten Knicklast

Mehr

Regelungstechnik 1 Reglersynthese 1

Regelungstechnik 1 Reglersynthese 1 Rglungstchnik 1 Rglrsynths 1 Allgmins Vorghn: 1. Wahl dr Rglkrisstruktur - inschlifigr Rglkris - vrmascht Rglung 2. Wahl dr Rglrstruktur - trckn mit Ausglich: PI-, PID-Rglr - trckn ohn Ausglich: P-, PD-Rglr

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

1 5 dx dz. dx 5. Integriere Resubstituiere 1. dx dz

1 5 dx dz. dx 5. Integriere Resubstituiere 1. dx dz ins Tiltrms (Typ ) Bispil Gsucht ist di Stmmfunktion von ( ) Substituir Diffrnir Stll um () : g() g() Substituir Intgrir Rsubstituir () F() ( ) 0 Bispil 0 Gsucht ist di Stmmfunktion von ( ) 0 Substituir

Mehr

= K. X(s) - - G 2 (s) W 1 (s) Y 1 (s) G 1 (s) Y 2 (s) W 2 (s) G 4 (s) G 3 (s) K I K S1 T S1 K S2 T S2. X S (s) X(s) ( s) X(s) ( t) x(t)

= K. X(s) - - G 2 (s) W 1 (s) Y 1 (s) G 1 (s) Y 2 (s) W 2 (s) G 4 (s) G 3 (s) K I K S1 T S1 K S2 T S2. X S (s) X(s) ( s) X(s) ( t) x(t) Fachbrich glungstchnik 4.. Sit von am: Matr. r.: ot: Punkt: Aufgab : a) Kann in glstrck bsthnd aus zwi hintrinandr gschalttn Intgratorn mit inm Pglr und Einhitsrückführung stabilisirt wrdn? b) Auf wlch

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 13. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmogr Hiko Hoffmnn WS 3/4 Höhr Mthmtik I für di Fchrichtung Informtik Lösungsvorschläg zum 3. Übungsbltt Aufgb 49 ) Untrsuchn Si,

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Was ist der richtige Servoantrieb für die Anwendung?

Was ist der richtige Servoantrieb für die Anwendung? Ws is dr richig Srvnrib ür di Anwndung? Ws is dr richig Srvnrib ür di Anwndung? Pr. Dr.-Ing. Crsn Frägr 8.0.013 1 Ws is dr richig Srvnrib ür di Anwndung? Srvnrib in Prdukinsschinn, Aubu vn Srvnribn Lisungsuslgung,

Mehr

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch Prmeterintegrle Integrle können uc von Prmetern bängen, denken wir nur n die Gmm-Funktion, die definiert ist für x > durc Γ(x) = t x e t dt Hier ist x der Prmeter, von dem der Integrnd und dmit uc ds Integrl

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 2014 Prüfungsdauer: 150 Minuten Diese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht und Kultus. ufgaben

Mehr

Zur β-ebenen Approximation

Zur β-ebenen Approximation Zr β-ebnn Approimion i primiin Glichnn dr β-ebn Hir rdn di sphärischn Koordinn (λ,ϕ) drch di Koordinn (, ) rs. s is mölich, n mn ds brch Gbi in Umbn inr Bri ϕ bschränk. r Voril is di inch orm dr Bnslichnn:

Mehr

Messen mit Oszilloskopen

Messen mit Oszilloskopen Fkulä IV - prmn Mschinnbu Mss- und Rglungschnik Mchronik Prof. r.- Ing. Olivr Nlls Msschniklbor Vrsuch 6 Mssn mi Oszilloskopn Or: Brur: PB-H 9 ZESS, UG ipl.-ing. Julin Blz r.-ing. Gri mpmnn PB-A 47 5 Tl.:

Mehr