Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern"

Transkript

1 Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes 9/6/ zu. Zunächst soll be definiet weden, ws unte einem solchen Köpe zu vestehen ist. Dzu sei I = [, b] ein bgeschlossenes Intevll mit < b und sei f eine in I definiete und integiebe Funktion, die in dem Intevll nicht negtiv wid. Dnn bestimmt die Punktmenge M := {(, ) : b, f()} beknntlich eine Fläche. Läßt mn nun diese Fläche um die -Achse otieen, dnn entsteht eine Rottionsfigu ode ein Rottionsköpe (vgl. Abb. 9.3). Wi inteessieen uns nun fü die Fge, ob mn diesem Rottionsköpe in venünftige Weise ein Volumen zuscheiben knn, und wie mn gegebenenflls dieses Volumen definieen und beechnen könnte. z b f() Abb. 9.3 Auf de -Achse sei ein Intevll [, b] gegeben, und in diesem Intevll sei eine nicht-negtive Funktion f() definiet ( ist hie vedeckt). f wid in de (, )- Ebene betchtet. Läßt mn f um die -Achse otieen, dnn entsteht im IR 3 eine Rottionsfigu. Ds Poblem ist ufgewofen, wi vesuchen es zu lösen. Dzu sei z = (,..., n+ ) eine Zelegung von I. Pllele Ebenen im IR 3, die zu -Achse senkecht stehen und duch die jeweiligen Zelegungspunkte uf de -Achse gehen, schneiden us de Rottionsfigu Keisscheiben heus. Ds ngenähete Volumen de Keisscheibe, die duch die Zelegungspunkte i und i+ bestimmt wid, knn duch einen geeigneten Keiszlinde ngegeben weden. Dzu sei ξ i [ i, i+ ] beliebig. Dnn ist duch ( i+ i ) f (ξ i ) π ds Volumen des entspechenden Zlindes

2 mit de Höhe h = i+ i und dem Rdius f(ξ i ) gegeben. ξ i ist eine Zwischenstelle in [ i, i+ ] (vgl. Abb. 9.8). Entspechend diese Übelegung ist duch n Ṽ = ( i+ i ) f (ξ i ) π i= ds ngenähete Volumen de gesmten Rottionsfigu bestimmt. Diese Summe ist offensichtlich eine Zwischensumme de Funktion π f () bei de Zelegung z und dem Zwischenstellensstem τ = (ξ,..., ξ n ). Nch Voussetzung ist f in I integieb, folglich ist uch πf in I integieb. Betchtet mn jetzt eine usgezeichnete Zelegungsfolge (z ν ) von I und eine Folge (τ ν ) von zugehöigen Zwischenstellensstemen, dnn eistiet ν lim S πf (z ν, τ ν ), und de Limes ist gleich dem Integl b Dhe definiet mn ds Volumen V b V = Df ν lim S πf (z ν, τ ν ) = πf () d. de Punktmenge M wie folgt: b πf () d = π f () d. Beispiele. (). Ist f konstnt, f =, dnn ehält mn mit diese Fomel den Ruminhlt eines 9/6// Keiszlindes mit de Höhe b und dem Rdius. b V = π b f () d = π d = π (b ) = πh. (). Es sei f() = und I = [, ]. Dnn ist ds Volumen des entspechenden 9/6// Rottionsköpes gegeben duch b V = π f () d = π d = π = π. z Abb. 9.4 Die Abbildung zeigt die Funktion f() = in de (, )-Ebene, definiet im Intevll [, ] bzw. die Rottionsfigu im IR 3, die 76 duch Rottion von f um die -Achse entsteht. Die z-achse zeigt in Richtung des Betchtes. Abb. 9.4 b Diese Abbildung zeigt die gleiche Rottionsfigu wie uf de linken Seite. Diesml ist jedoch de Rottionsköpe äumlichpespektivisch dgestellt.

3 (3). Es sei jetzt I = [, ] und f, g seien in I definiete Funktionen, so dß f() = 9/6//3 und g() =. f() g() Abb. 9.5 Läßt mn die stäke umndete Deiecksfläche um die -Achse otieen, dnn entsteht ls Rottionsköpe ein Ring. Wi lssen die duch f und g bestimmte Fläche um die -Achse otieen und bestimmen ds Volumen des entspechenden Rottionsköpes. V = π (f () g ()) d = π ( ) d = π( 3 3 ) = 4π 3. Als Spezilfll ehält mn ds Volumen eines Kegels mit de Höhe h und dem Rdius. Hiefü ist nämlich f() = und I = [, h]. Also h h V = π h d = πh 3. (4). Wi beechnen jetzt ds Volumen eines Tous. 9/6//4 77

4 z f() R g() Abb. 9.6 Die von f und g eingeschlossene Fläche ezeugt bei Rottion um die -Achse einen Tous. Abb. 9.6 b Die obige Abbildung zeigt diesen Tous äumlich-pespektivisch im Rum IR 3. Dzu betchten wi die Gleichung ( R) + = eines Keises mit dem Mittelpunkt (, R) und dem Rdius. Löst mn diese Gleichung nch uf, dnn ehält mn zwei Funktionen f() = R + und g() = R ; den obeen und unteen Keisbogen des Keises. Läßt mn die Fläche des entspechenden Keises um die -Achse otieen, dnn ehält mn einen Tous. Dessen Volumen ist gegeben duch Es gilt V = und dmit gilt (f () g ()) d. f () g () = R + R + (R R + ) V = 4πR = 4R,. Wi lösen zunächst ds unbestimmte Integl, um eine Stmmfunktion zu ehlten. Es ist 78

5 d = ( ) d = t dt; (fü = t) = sin z cos z dz; (fü t = sin z) = cos z dz ( ) = (sin z cos z + sin }{{ z} = cos z dz); (ptielle Integtion) = (sin z cos z + z) cos z dz. Aus ( ) und de letzten Zeile folgt cos z dz = sin z cos z + z = sin z sin z + z. Dmit hben wi ds unbestimmte Integl lledings bezüglich z gelöst. Wi wollen be ds bestimmte Integl bezüglich in den Genzen von bis beechnen. Dzu müßten noch die Genzen entspechend de Substitutionen tnsfomiet ode die Substitutionen ückgängig gemcht weden. Folgende Substitutionen wuden vogenommen: t = sin z = z = csin t und = t = z = csin. Fü gilt und schließlich π csin π. In den betchteten Intevllen sind die Tnsfomtionen bijektiv, folglich ist ( d = sin(csin ) ( sin(csin )) ) + csin ( = ( ) ) + csin ( ) = csin csin( ) ( = π ( π )) = π Ds gleiche Egebnis ehält mn, indem die Integtionsgenzen entspechend tnsfomiet weden: ( ) d = π sin z cos z + z π ( = π ( π )) = π. 79

6 Also V = 4πR π = Rπ. Allgemeine gilt die. Guldinsche Regel: 9/6/ Ds Volumen eines Rottionsköpes ist gleich dem Flächeninhlt de otieenden Fläche, multipliziet mit dem Umfng des Keises, de duch den Mittelpunkt (ode Schwepunkt) de otieenden Fläche beschieben wid. 8

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen Mthemtik in eigenen Woten Abeitsblätte und Kopievolgen Abeitsblätte und Kopievolgen stehen unte www.klett.ch/spektumschule kostenlos ls Downlod zu Vefügung. Ihe Vewendung fü den eigenen Unteicht wid vom

Mehr

Kreis und Kreisteile. - Aufgaben Teil 2 -

Kreis und Kreisteile. - Aufgaben Teil 2 - - Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

TE- und TM-Moden im Wellenleiter. Bachelorarbeit

TE- und TM-Moden im Wellenleiter. Bachelorarbeit TE- und TM-Moden im Wellenleiter Sebstin Rubitzek 30. September 2014 in Grz Bchelorrbeit betreut von Ao.Univ.-Prof. Mg. Dr.rer.nt. Ulrich Hohenester 1 Inhltsverzeichnis 1 Einleitung 3 1.1 Ws ist ein Wellenleiter?......................

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Leitfden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Stnd: 20.01.2012 Gültig b: 01.01.2012 Inhltsverzeichnis 1 Benötigte Dten... 3 2 Netzentgelte... 4 2.1 Entgelt für Entnhme

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

4. Chemische Bindung

4. Chemische Bindung 4. Chemische Bindung 4... Vlenzindungs-Modell: Oktettegel Die Bildung enegetisch egünstigte Elektonenkonfigutionen (die esondes stil sind) wid ngestet Eine esondes stile Konfigution ist die Edelgskonfigution

Mehr

Versuch 31: Bestimmung der Licht- und Signalgeschwindigkeit Seite 1

Versuch 31: Bestimmung der Licht- und Signalgeschwindigkeit Seite 1 Vesuch 31: Bestimmun de icht- und Sinleschwindikeit Seite 1 Teil 1: ichteschwindikeit Aufben: Messvefhen: Vokenntnisse: ehinhlte: itetu: Bestimmun de ichteschwindikeit im Zeit- und Fequenzbeeich. Diffeenzielle

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Transportvorgänge im Vakuum, ± kein thermodynamisches Gleichgewicht d.h. Druck-, Temperatur- und/oder Konzentrationsgradienten.

Transportvorgänge im Vakuum, ± kein thermodynamisches Gleichgewicht d.h. Druck-, Temperatur- und/oder Konzentrationsgradienten. Folie 1 Trnsortvorgänge im Vkuum Trnsortvorgänge im Vkuum, ± kein thermodynmisches Gleichgewicht d.h. Druck-, Temertur- und/oder Konzentrtionsgrdienten 1. Diffusion Diffusionsstrom entsrechend dem Diffusionsgesetz:

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

Elektrischer Widerstand und Strom-Spannungs-Kennlinien

Elektrischer Widerstand und Strom-Spannungs-Kennlinien Versuch 6 Elektrischer Widerstnd und Strom-Spnnungs-Kennlinien Versuchsziel: Durch biochemische ektionen ufgebute Potentildifferenzen (Spnnungen) bewirken elektrische Ströme im Orgnismus, die n einer Vielzhl

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

5.3 Dynamisches Sitzen und Stehen

5.3 Dynamisches Sitzen und Stehen Dynmisches Sitzen und Stehen 5.3 Dynmisches Sitzen und Stehen Test Bewegen Sie sich eim Sitzen und Stehen kontinuierlich um den Mittelpunkt der senkrechten Oerkörperhltung (S. 39) mit neutrler Wirelsäulenschwingung

Mehr

Kapitel 5: Koordination der Personalführung im Führungssystem

Kapitel 5: Koordination der Personalführung im Führungssystem Kpitel 5: Koodintion de Peonlfühung im Fühungytem 5. Beziehungen zwichen Contolling und Peonlfühung Kpitel 5 5. Koodintion de Peonlfühung mit dem Infomtionytem 5.3 Koodintion de Peonlfühung mit Plnung

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Das Coulombsche Gesetz

Das Coulombsche Gesetz . ei r = 0 befindet sich eine Ldung Q = 4,0nC und bei r = 40cm eine Ldung Q = 5,0nC ortsfest, so dss sie sich nicht bewegen können. Ds Coulombsche Gesetz Q = 4,0nC Q = 5,0nC r Lösung: Wo muss eine Ldung

Mehr

16.3 Unterrichtsmaterialien

16.3 Unterrichtsmaterialien 16.3 Unterrichtsmterilien Vness D.l. Pfeiffer, Christine Glöggler, Stephnie Hhn und Sven Gembll Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Für eine Verwndtschftsnlyse vergleicht

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Technische Mechanik 2 Festigkeitslehre

Technische Mechanik 2 Festigkeitslehre Russell C. Hibbeler echnische Mechnik Festigkeitslehre ehr- und Übungsbuch 8., ktulisierte uflge Übersetzung us dem meriknischen: Nicolet Rdu-Jürgens, Frnk Jürgens, Frnk ngenu Fchliche Betreuung und Erweiterungen:

Mehr

Sport Club (SC) Swiss Re München e.v.

Sport Club (SC) Swiss Re München e.v. Sport Club (SC) Swiss Re München e.v. Außerordentliche Mitgliederversmmlung Donnerstg, 20.11.2014, 16:30 Uhr Rum 1.330, Swiss Re Europe S.A., Niederlssung Deutschlnd Dieselstrße 11, Unterföhring Außerordentliche

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

-25/1- DIE RÖHRENDIODE

-25/1- DIE RÖHRENDIODE -25/1- DIE RÖHRENDIODE ufgben: Messverfhren: Vorkenntnisse: Lehrinhlt: Litertur: ufnhme der Kennlinie einer Röhrendiode und einiger rbeitskennlinien. Bestimmung des Exponenten der Schottky-Lngmuirschen

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Abenteuer Naturwissenschaften

Abenteuer Naturwissenschaften Abenteue Ntuwissenschften Bilgie, Chemie, Physik fü schlue Kids Heike Achmus Steinbeg 37 benteue-ntuwissenschften@t-nline.de D. Pet Böhme-Binks 31832 Spinge www.benteue-ntuwissenschften.de Ab ent eue Ntuwissensc

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Exportmodul Artikel-Nr.: 20208

Exportmodul Artikel-Nr.: 20208 Seite 1 / 5 V5.32 Exportmodul Artikel-Nr.: 20208 Erweiterungsmodul für ds ELV-TimeMster Komplettsystem Hndbuch und Beschreibungen Ab der Version 5 befinden sich die Kurznleitung und ds gesmte Hndbuch ls

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Industrielle Messtechnik. Prüfkörper Überwachung von Messgeräten für die Sicherheit Ihrer Messergebnisse

Industrielle Messtechnik. Prüfkörper Überwachung von Messgeräten für die Sicherheit Ihrer Messergebnisse Industrielle Messtechnik Prüfkörper Überwchung von Messgeräten für die Sicherheit Ihrer Messergebnisse Prüfkörper und Softwre......für die Zwischenprüfung von Koordintenmessgeräten (KMG) Konturenmessgeräten...für

Mehr

Ohne Anspruch auf Vollständigkeit!!!

Ohne Anspruch auf Vollständigkeit!!! Mhemik Veuch eine Zummenfung de Abiu-Soffe Ohne Anpuch uf Volländigkei!!! ANALYSIS: Funkionuneuchung Funkionen: gnzionle Funkionen b e-funkionen c igonomeiche Funkionen Tngenen- und Nomlenbeimmung Okuven

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Version 3. Installation. Konfiguration. Bedienung. Referenz. SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing.

Version 3. Installation. Konfiguration. Bedienung. Referenz. SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing. Rev. 03 SNT 000.2547 Version 3 Instlltion Konfigurtion Bedienung Referenz SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing.net Inhltsverzeichnis Inhltsverzeichnis Einleitung 5

Mehr