Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0

Größe: px
Ab Seite anzeigen:

Download "Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0"

Transkript

1 Vktohnung Vkton, sind Gößn, u dn vollständig Chktisiung sowohl in Mßhl, d Btg, ls uh in Rihtung im Rum fodlih sind. Bispil: Kft, Gshwindigkit, Bshlunigung, Winklgshwindigkit, Winklshlunigung sowi lktish und mgntish ldstäk. Ein fi Vkto ändt sin Eignshftn niht, wnn plll u sih slst vshon wid. Wnn di Eignshftn ins Vktos n inn stimmtn Anfngspunkt gundn sind, dnn spiht mn von inm gundnn Vkto. Ein gundn Vkto df nu längs sin Wikungslini vshon wdn. Bispil: di Kft ist in gundn Vkto; ds Momnt M ist in fi Vkto. Eignshftn von Vkton: Vkton könnn mit in Zhl multipliit wdn. D Vkto ht dn Btg und igt in disl Rihtung wi, wnn und in di ntggngstt Rihtung, wnn ist. Vkton könnn ußdm ddit wdn: ü di Multipliktion mit in Zhl gilt:. und Di Addition von Vkton gilt ds Kommuttivgst und ds Distiutivgst: w. Es git inn Nullvkto mit dn Eignshftn Bispil: d ( ) und Linkomintion von Vkton: Unt in Linkomintion von Vkton u, v, w, vstht mn inn Ausduk d om u v w Lin Unhängigkit von Vkton: Di Vkton u, v, w, sind lin unhängig, wnn ih Linkomintion u v w nu dnn dn Nullvkto git, wnn ll kton,,, Null sind.

2 Zlgung von Vkton: Im didimnsionln Rum git s gnu di lin unhängig Vkton. Jd vit Vkto knn dnn ls Summ dis di Vkton dgstllt wdn: Di Summndn u, v und w sind di Komponntn d Vktolgung. In d En git s nu wi lin unhängig Vkton. Ktsish Koodintn: Ktsish Koodintn hält mn, wnn mn fü di Zlgung äumlih Vkton di Vkton,, vwndt, di pwis ufinnd snkht sthn und llsmt di Läng ins hn:. ü inn liign Vkto gilt dnn uh di B- Mnhml findt mn n Stll von,, ihnung i, j, k : i j k Di di Zhln ds Vktos.,, sind di ktsishn Koodintn Si wdn uh in d om ufgshin. Wid in Vkto u sih slst plll vshon, ändn sih sin Koodintn niht.

3 Wid in Vkto mit in Zhl multipliit, multipliit sih jd Koodint mit dis Zhl: Wdn wi Vkton ddit, ddin sih di Koodintn: Vktopodukt Vktoill phsiklish Gößn wdn niht nu ddit. Mhnish Ait und Momnt sind Bispil fü nd Atn d Vknüpfung von Vkton: von Kft und Vshiung im stn ll, von Kft und ih Lg ltiv u inm Dhpunkt im witn ll. Mhnish Ait: Ait W ist ds Podukt us Kft os in Wgihtung und Vshiung s : os s W. Di gignt Dfinition ins Sklpodukts gstttt s dis Ait ls s W u shin. Momnt: Ds Dhmomnt M ist ds Podukt von Kft ml Nomlstnd d Kft vom Dhpunkt P. Ands ls di Ait, di in skl Göß ist, ist ds Momnt slst wid in Vkto, d in d Dhhs ligt und dssn Btg di Göß ds Momnts ngit. Mittls ds noh u dfinindn Vktopodukts gilt fü ds Momnt M. Sklpodukt von Vkton: Dfinition: os Ds Sklpodukt ist ds Podukt ds Btgs ds stn Vktos mit d Pojktion ds witn Vktos uf dn stn. Ds Egnis ist in Skl. Eignshftn ds Sklpodukts:.. 3.

4 Dis folgt dus, dss di Pojktion von uf ist glih d Summ d Pojktionn von und uf. 4. Btg ins Vktos: 4. ü dn Winkl wishn wi Vkton und gilt os 5. Sind di Vkton und othogonl, gilt. 6. w. Ds Vktopodukt: Ds Vktopodukt wi Vkton und soll othogonl u disn idn Vkton sin. Ds ist di Vousstung dfü, dss sih ds Momnt in Kft ls Vktopodukt d Kft und ihs Hlsms shin lässt. D gsuht Poduktvkto muss dh folgndn idn Glihungn gnügn:. Di llgmin Lösung dis Glihung lutt. Di Zhl lit di unstimmt, ws niht üsht, hndlt s sih doh um di Lösung ins Sstms von wi Glihungn fü di Unknnt. Um Üinstimmung mit d ülihn Dfinition ds Momnts u hltn ist u wähln. D Rihtungssinn ds Momnts folgt dnn d Rhtsshungl: dht mn dn Vkto in Rihtung uf dn Vkto wgt sih in Rhtsshu in di Rihtung ds Vktopodukts. Dfinition: Eignshftn:. ist othogonl u und Bwis duh Bhnung d idn Sklpodukt und. Dis Rhnung igt, dss id Sklpodukt glih Null sind, ws di Bhuptung wist.

5 sin

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1. Einfühung 1 Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1.1 Phsiklisch Gößn 1.1.1 Dfinition 1.1. Skl und vktoill Gößn 1.1.3 SI Einhitssstm

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer.

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer. Ohn Spakass fht was: * Ih Immobiinpatn. Fü Vkäuf. Bid MASSGESCHNEIDERT: UNSER SERVICE FÜR IMMOBILIEN-VERKÄUFER! In dn vgangnn fünf Jahn habn wi und 900 Immobiin vmittt. Di Spakass Zonab ist damit d gößt

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party)

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party) QM9(3) Systmuitor nh ISO 9001 (1 st,2 n prty) Allgmin Hinwis: Es wir von n Tilnhmrn rwrtt, ss usrihn Knntniss vorhnn sin, um i Frgn 1.1 is 1.10 untr Vrwnung r ISO 9001 innrhl von 20 Minutn zu ntwortn (Slsttst).

Mehr

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Bispil: Niht X jr j js jn jm Arzt möht Notrzt sin. Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j js jn jm Angymnsium gut ist? Wir kommn

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 4 Rgulär Aurük Automtn un forml Sprhn Notizn zu n Folin Präznz r Oprtorn (Folin 108) Dr -Oprtor ht i höht Präznz, nh r Konktntionoprtor, un r - Oprtor ht i niriht Präznz. D hißt: (() (( ))) Bipil von rgulärn

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Lektion 14 Test Lösungen

Lektion 14 Test Lösungen Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Lösungn X Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j X js jn jm Angymnsium gut ist? Wir kommn jr j js X jn jm Mont pünktlih unsr

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung:

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung: 38. Polaisation 38.1. Einfühung Ggbn si in lktomagntisch Wll mit Ausbitung in z-richtung und in Amplitud in x-richtung: E = E 0 i 0 i... Einhitsvkto in x-richtung Di vollständig mathmatisch Bschibung unt

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

Lektion 10 Test. Könntet / Würdet ihr mir helfen?

Lektion 10 Test. Könntet / Würdet ihr mir helfen? Lktion 10 Tst Lktion 10 Grmmtik 1 Stigrung Komprtiv un Suprltiv: Shrin Si. Bispil: groß -> größr -> m größtn gut -> -> unkl -> -> li -> -> tur -> -> vil -> -> grn -> -> /6 Punkt 2 Vrglih mit... ls or so

Mehr

Vernetztes Laden eine Herausforderung

Vernetztes Laden eine Herausforderung Vntzts Ldn in Husfodun NTT DATA Mobilitätskonfnz 2. Oktob 2014, Win Jün Hiß, Lit Pilotiun & Klinsin EnBW Options Ws ist ds Zilbild in d E-Mobilität? Vntzts Ldn in Husfodun 2 E-Mobilität ist Til ds vntztn

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Lektion 10 Test Lösungen

Lektion 10 Test Lösungen Lktion 10 Tst Lösungn Lktion 10 Grmmtik 1 Stigrung Komprtiv un Suprltiv: Shrin Si. gut -> _ssr_ -> _m stn_ unkl -> _unklr_ -> _m unklstn_ li -> _lir -> _m listn_ tur -> _turr_ -> _m turstn_ vil -> _mhr_

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

Übungsaufgaben "Vektorrechnung"

Übungsaufgaben Vektorrechnung stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

FRIEDRICH SCHILLER UNIVERSITÄT JENA Fakultät für Mathematik und Informatik

FRIEDRICH SCHILLER UNIVERSITÄT JENA Fakultät für Mathematik und Informatik FRIEDRICH CHILLER UNIVERIÄ JEN Fkultät für Mthmtik und Informtik INIU für INFORMIK VORLEUNG IM WINEREMEER OCHICHE GRMMIKMODELLE Ernst Güntr hukt-lmzzini 05. Indxgrmmtikn 1 Indxgrmmtikn (IG) Bsis ist in

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an.

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an. Lktion 11 Tst Lktion 11 Grmmtik 1 Prätritum r Molvrn: Eränzn Si. Bispil: Ih immr Stätrisn (mhn wolln). Ih _wollt immr Stätrisn _mhn_. Als Kin ih Tirplr (wrn wolln). u im Zoo i Bärn (üttrn ürn)? Von 2009

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Bis zu 20 % Ra. b b. a h

Bis zu 20 % Ra. b b. a h btt! Bis zu 20 % R www.gvb.ch h? ic s b b d d u W s s d ich t lück lo s s u H Ih h ic s W i v Mit us kö Si Ih Hus udum vsich Mit us Zustzvsichug ist Ih Vsichugsschutz i ud Sch W glichzitig i Lück i d Gbäudvsichug

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Aufgabe 4: 7-Segmentanzeige

Aufgabe 4: 7-Segmentanzeige Au : 7-Smntnzi G. Kmnitz, C. Gismnn, TU Clusthl, Institut ür Inormtik 7. Juni 25 Di Vrsuhsurupp ht in -stlli 7-Smnt-Anzi mit vrunnn Kthonsinln un minsmr Ano j Zir, so ss zu jm Zitpunkt nur in Zir nzit

Mehr

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de Ein hzlichs Güß Gott in Mmmlsdof! www.di-konn.d Güß Gott! In Fankn stht das bst Witshaus imm ggnüb d Kich. So wi auch uns Bauigasthof: Di Di Konn bfindn sich sit mh als 555 Jahn ggnüb dm Mmmlsdof Gottshaus.

Mehr

Metrische Probleme und das Skalarprodukt

Metrische Probleme und das Skalarprodukt V Mtrisch Prolm und ds Sklrprodukt Bishr: Prolm wi Schnittgrd, usw. könnn glöst wrdn. Jtzt: Winkl, Astnd von Grdn und zwir Punkt, usw. durch Einführung ds: Astnd zwir Punkt - Btrg ins Vktors Sinnvoll Fordrungn

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T f(,) ( kommt nicht vo) wid

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

I. Haushaltslage der NRW-Kommunen

I. Haushaltslage der NRW-Kommunen P s s g sp äc hmi t s p a n, u m n mi t u KaiAb uszat Sp chf ükommunal s m i al b Li ag Landt Kommunal f i nanz n f dpf akt i onn w. d I. Haushaltslag d NRW-Kommunn Haushaltslag d NRW-Kommunn damatisch.

Mehr

Workshop zu Trigonometrie

Workshop zu Trigonometrie Wokshop zu Tigonometie Gudun Szewiezek SS 00 Wi eshäftigen uns hie mit de eenen Tigonometie (g. tigonos = Deiek, g. meton = Mß). Dei geht es huptsählih um die geometishe Untesuhung von Deieken in de Eene.

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Modul 10: Autokonfiguration

Modul 10: Autokonfiguration Hohshul BoRhiSig Pof. D. Mati Lish Ntzwksstm ud TK Lzil: Modul 1: Autokofiguatio Nah Duhait diss Tilkapitls soll Si di Aufgastllug Autokofiguatio läut ud di id Kozpt SLAAC ud DHCPv6 zu automatish Kofiguatio

Mehr

9. Bewegungen geladener Teilchen im homogenen Magnetfeld

9. Bewegungen geladener Teilchen im homogenen Magnetfeld 9. wgungn gladn ilchn i hoognn Magntfld Elkton F = (allgin: = Q ) F F F F ist Zntiptalkaft, das Elkton (allgin: ilchn) bwgt sich i auf in Kisbahn! ( blibt i glich) Magntfld wgn sich Ladungn snkcht zu Magntfld,

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen Pof. D. n. Post tz und Btibsitt Gundn d Enitchnik tz und Btibsitt tzfon EEG. Sp. 7 unächst so noch in duf hinwisn wdn, dß Vsounsntz Dhstontz (Ausnh HGÜ) sind. Di Ausnhn sind in. Aus nitchnisch Sicht intssit

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Kunstdrucke im Linolschnitt

Kunstdrucke im Linolschnitt Kunstduck im Linolschnitt Di Malschul auf dn Innnsitn und vil wit kativ Idn findn Si in Min Kativ-Atli (Ausgab KT 55). www.shop.oz-vlag.d. Vil wit Idn unt www.fco.d hobbygoss El GmbH Goß Ahlmühl 10 76865

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens Kontaktlinsn Shminar Visualtraining Di nu Dimnsion ds Shns Willkommn in dn Shräumn Erlbn Si in nu Dimnsion ds Shns. Mit dn Shräumn rwitrn wir unsr Angbot rund um das Aug bträchtlich. Wir bitn anspruchsvolln

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Fachrichtung Energieelektroniker - Betriebstechnik

Fachrichtung Energieelektroniker - Betriebstechnik Fchrichtung Enrgilktronikr - Btribstchnik 0...0-8 Schülr Dtum:. Titl dr L.E. : Oprtionsrstärkr und stbilisirt Ntzgrät. Fch / Klss : Fchrchnn,. Ausbildungsjhr. Thmn dr ntrrichtsbschnitt :. Dimnsionirung

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

1 Ergänzen Sie. der Zug das Taxi der Bus die U-Bahn das Flugzeug die Straßenbahn das Auto das Fahrrad ... ... das Taxi das Fahrrad das Auto

1 Ergänzen Sie. der Zug das Taxi der Bus die U-Bahn das Flugzeug die Straßenbahn das Auto das Fahrrad ... ... das Taxi das Fahrrad das Auto Lktion 11: In r Stt untrwgs 11 A Si müssn mit r U-Bhn hrn. A2 1 Ergänzn Si. r Zug s Txi r Bus i U-Bhn s Flugzug i Strßnhn s Auto s Fhrr r Bus........................ A2 2 Ergänzn Si. r Zug mit m Zug r

Mehr

e n e a Chancenzuschaf

e n e a Chancenzuschaf s p a n, um n uch Sp a n, u m n u Chancnzuschaf f n m i al b Li ag Landt Konsol i di ungsst at gi dfdplandt agsf akt i on 2013bi s2017 f dpf akt i onn w. d 2013 2014 2015 2016 2017 in Mio. Euo 1. Mhinnahmn

Mehr

Analytische Geometrie

Analytische Geometrie Anlytiche eometie Intention: Eeitung eine Vefhen, mit deen Hilfe mn jede geometiche Aufge duch echnung löen knn. I Vektoen und Vektoäume Pfeile und Vektoen Vektoen ind geichtete ößen. Phyik: Kft, echwindigkeit,

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

2.2 Multiplizieren von Brüchen

2.2 Multiplizieren von Brüchen ! 2.2 Multiplizin von Büchn Ein Rzpt fü Hftig fodt 1 Lit Milch. Man nimmt di halb Rzptmng. Wi vil Lit Milch 1 l 1000 sind fodlich? 1 / 2 w 1 / 2 w 3 / 4 l 1 / 2 l 1 / 4 l 750 500 250 w 1 / 2 l Ein Hftigzpt

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Ergänzende Kapitel. Angewandte Physik

Ergänzende Kapitel. Angewandte Physik Univsiä d Bundswh Münchn Sudingng Mchnicl Engining (B. Eng.) Pof. D. K. Uhlnn Egännd Kil Zu Volsung Angwnd Phsik ls Mnuski gduck Glidung. MATHEMATISCHE GRUNDLAGEN 3. Vkochnung 3.. Fi und gundn Vkon 3..

Mehr

Respekt, ihr Immobilien-Modernisierer, Standort-Expandierer und Nachhaltigkeits-Investierer.

Respekt, ihr Immobilien-Modernisierer, Standort-Expandierer und Nachhaltigkeits-Investierer. Rspkt, ih Immobiin-Modnisi, Stndot-Expndi und Nhhtigkits-Invsti Zukunft gsttn uf Whstum bun! t o d n t S t m Uns p n h ä F m² d 3 n u 17 m² 5 6 38 öß: g k : ü t s kth Gund m m² u 7 B 1 7 fäh s f : u k

Mehr

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka 10/106 Projktirn Litungsshutz, Bkup-Shutz NZM1, NZM2, NZM3 Mollr HPL0211-2007/2008 http://tlog.mollr.nt Listungsshltr, Lsttrnnshltr Shutz von PVC-isolirtn Litungn ggn thrmish Übrlstung bi Kurzshluss Nh

Mehr

Quick-Guide für das Aktienregister

Quick-Guide für das Aktienregister Quick-Guid für das Aktinrgistr pord by i ag, spritnbach sitzrland.i.ch/aktinrgistr Quick-Guid Sit 2 von 7 So stign Si in Nach dm Si auf dr Hompag von.aktinrgistr.li auf das Flash-Intro gklickt habn, rschint

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels Entdckn Si Schlo Wrtnfl in Lotorf - mit inr chönn Wndrung - mit dm Auto - mit dn öffntlichn Vrkhrmittln Schlo W r tn fl Wi rrich ich d Schlo Wrtnfl pr Auto? mit Auto Von Zürich: - Autobhnufhrt Aru Ot Hunznchwil,

Mehr

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH iv Sofwar GmH Wlnurgr Sr. 70 81677 Münhn Tl. 0 89 / 71 05 01-0 Fax -99 www.oiv.d info@oiv.d ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA BJECTIVE SFTWARE GMBH 1 Glungsrih, Awhrklausl Di Firma iv

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 1. Information

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 1. Information Pro. Dr. Brnhr Stn Dwi Koptzki Rptitorium zur Vorlsung Mthmtik ür Inormtikr 1 Sommrsmstr 2015 Proklusur Nr. 1 Inormtion Dis Augn inn ls Grunlg zur Wirholung un Vrtiung r Thmn r Vorlsung Mthmtik ür Inormtikr

Mehr

Stand: 21. Juni 2001 Seite 4-1

Stand: 21. Juni 2001 Seite 4-1 omlsmmlung Elktotchnik Thm Bich Sit Komplx Zhln Dinition 4- Nomlom 4- tigonomtisch om 4- Eulsch om 4- Vsoom 4- Bdinungsnlitung ü T Shp E546 4-3 sio x-99wa 4-3 chnn mit komplxn Zhln Glichhit von komplxn

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010 Analysn d Egbniss d Qualifizigsbat im III. Quatal 2 III. Quatal 2 Batgn d Analysn d Qualifizigsbat Im 3. Quatal ds Jahs 2 wudn 83 Btib bzw. Untnhmn batn. In 38 Untnhmn wud in Qualifizigsbdaf fü.3 Mitabit

Mehr

Prüfung 01 Systemauditor nach AS/EN 9100 (1st, 2nd-party) Seminar L4(3)

Prüfung 01 Systemauditor nach AS/EN 9100 (1st, 2nd-party) Seminar L4(3) VERTRAULICH BUREAU VERITAS PRÜFUNGSBLÄTTER Shrin Si itt Ihrn Vornmn, Nmn un Ihr Gurtstum in s Fl: Vornm Nm Gurtstum Shrin Si itt Prüfungstum un Prüfungsort in s Fl: Til Prüfr 1 Minimum Mximum 1 10 (50%)

Mehr

Lektion 4 Test. Lektion 4. Grammatik

Lektion 4 Test. Lektion 4. Grammatik Lktion 4 Grmmtik 1 Ergänzn Si i Formn von wshn, hrn un sprhn. Bispil: In spriht gut Dutsh. Min Sohn sin Hr immr m Morgn. u Dutsh? Dr Bus hut niht. ihr s By m Morgn or m An? Wir lir kin Frmsprhn. Du zu

Mehr

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)!

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)! M4 Üung für di 1. Sulrit Nm: 1)Von inr Rut knnt mn di Läng dr igonln f und di Sitnläng. rn dn Fläninlt! f 4 m; 5 m f )Ein glisnkligs rik t inn Fläninlt von 640 mm² und in 55 mm lng Hö. rn dn Umfng ds riks

Mehr

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft Aufgabn zu Lontzkaft 46. in lktonntahl titt it in Gchwindigkit von v 0 1,96 * 10 6-1 nkcht zu dn Fldlinin in in hoogn Magntfld it d agntichn Fludicht B 1,6 * 10 - in. a) klän Si, wau ich d lktonntahl auf

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z y g W i o o L c a B i o n n a I o E a f i E s l t f n v R H v I u m b M x H c x z S x T n T w Z E h V n u i C t S f p F o E R K o y a l H u C s t A V U K g K U p H q h D x G f U s q f y g L b A j w E u

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Gabelstapler III. Modul: Arbeits- bzw. Personenkörbe

Gabelstapler III. Modul: Arbeits- bzw. Personenkörbe A Mod: Ai- w. Ponnkö Thm: Ai- w. Ponnkö Knwinn mi ARAMS Si wdn f 12 Sin mi fondn nhn (. ch) m Thm infomi! Wi n vo, wm d Thm wichi i nd w Si chn hn! NHALT: Sichhihinwi Af d Aiko Ein nd Vwndnwck Ein d Aiko

Mehr