Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0"

Transkript

1 Vktohnung Vkton, sind Gößn, u dn vollständig Chktisiung sowohl in Mßhl, d Btg, ls uh in Rihtung im Rum fodlih sind. Bispil: Kft, Gshwindigkit, Bshlunigung, Winklgshwindigkit, Winklshlunigung sowi lktish und mgntish ldstäk. Ein fi Vkto ändt sin Eignshftn niht, wnn plll u sih slst vshon wid. Wnn di Eignshftn ins Vktos n inn stimmtn Anfngspunkt gundn sind, dnn spiht mn von inm gundnn Vkto. Ein gundn Vkto df nu längs sin Wikungslini vshon wdn. Bispil: di Kft ist in gundn Vkto; ds Momnt M ist in fi Vkto. Eignshftn von Vkton: Vkton könnn mit in Zhl multipliit wdn. D Vkto ht dn Btg und igt in disl Rihtung wi, wnn und in di ntggngstt Rihtung, wnn ist. Vkton könnn ußdm ddit wdn: ü di Multipliktion mit in Zhl gilt:. und Di Addition von Vkton gilt ds Kommuttivgst und ds Distiutivgst: w. Es git inn Nullvkto mit dn Eignshftn Bispil: d ( ) und Linkomintion von Vkton: Unt in Linkomintion von Vkton u, v, w, vstht mn inn Ausduk d om u v w Lin Unhängigkit von Vkton: Di Vkton u, v, w, sind lin unhängig, wnn ih Linkomintion u v w nu dnn dn Nullvkto git, wnn ll kton,,, Null sind.

2 Zlgung von Vkton: Im didimnsionln Rum git s gnu di lin unhängig Vkton. Jd vit Vkto knn dnn ls Summ dis di Vkton dgstllt wdn: Di Summndn u, v und w sind di Komponntn d Vktolgung. In d En git s nu wi lin unhängig Vkton. Ktsish Koodintn: Ktsish Koodintn hält mn, wnn mn fü di Zlgung äumlih Vkton di Vkton,, vwndt, di pwis ufinnd snkht sthn und llsmt di Läng ins hn:. ü inn liign Vkto gilt dnn uh di B- Mnhml findt mn n Stll von,, ihnung i, j, k : i j k Di di Zhln ds Vktos.,, sind di ktsishn Koodintn Si wdn uh in d om ufgshin. Wid in Vkto u sih slst plll vshon, ändn sih sin Koodintn niht.

3 Wid in Vkto mit in Zhl multipliit, multipliit sih jd Koodint mit dis Zhl: Wdn wi Vkton ddit, ddin sih di Koodintn: Vktopodukt Vktoill phsiklish Gößn wdn niht nu ddit. Mhnish Ait und Momnt sind Bispil fü nd Atn d Vknüpfung von Vkton: von Kft und Vshiung im stn ll, von Kft und ih Lg ltiv u inm Dhpunkt im witn ll. Mhnish Ait: Ait W ist ds Podukt us Kft os in Wgihtung und Vshiung s : os s W. Di gignt Dfinition ins Sklpodukts gstttt s dis Ait ls s W u shin. Momnt: Ds Dhmomnt M ist ds Podukt von Kft ml Nomlstnd d Kft vom Dhpunkt P. Ands ls di Ait, di in skl Göß ist, ist ds Momnt slst wid in Vkto, d in d Dhhs ligt und dssn Btg di Göß ds Momnts ngit. Mittls ds noh u dfinindn Vktopodukts gilt fü ds Momnt M. Sklpodukt von Vkton: Dfinition: os Ds Sklpodukt ist ds Podukt ds Btgs ds stn Vktos mit d Pojktion ds witn Vktos uf dn stn. Ds Egnis ist in Skl. Eignshftn ds Sklpodukts:.. 3.

4 Dis folgt dus, dss di Pojktion von uf ist glih d Summ d Pojktionn von und uf. 4. Btg ins Vktos: 4. ü dn Winkl wishn wi Vkton und gilt os 5. Sind di Vkton und othogonl, gilt. 6. w. Ds Vktopodukt: Ds Vktopodukt wi Vkton und soll othogonl u disn idn Vkton sin. Ds ist di Vousstung dfü, dss sih ds Momnt in Kft ls Vktopodukt d Kft und ihs Hlsms shin lässt. D gsuht Poduktvkto muss dh folgndn idn Glihungn gnügn:. Di llgmin Lösung dis Glihung lutt. Di Zhl lit di unstimmt, ws niht üsht, hndlt s sih doh um di Lösung ins Sstms von wi Glihungn fü di Unknnt. Um Üinstimmung mit d ülihn Dfinition ds Momnts u hltn ist u wähln. D Rihtungssinn ds Momnts folgt dnn d Rhtsshungl: dht mn dn Vkto in Rihtung uf dn Vkto wgt sih in Rhtsshu in di Rihtung ds Vktopodukts. Dfinition: Eignshftn:. ist othogonl u und Bwis duh Bhnung d idn Sklpodukt und. Dis Rhnung igt, dss id Sklpodukt glih Null sind, ws di Bhuptung wist.

5 sin

Vektoralgebra. André Röthlisberger, Nuria Rothfuchs, Andrej Metlar, Patrick Reinhard D-MATL SS

Vektoralgebra. André Röthlisberger, Nuria Rothfuchs, Andrej Metlar, Patrick Reinhard D-MATL SS Vktol ndé Röthls, Nu Rothfuhs, ndj Mtl, Ptk Rnhd D-MTL SS-07 0.05.07. D ffn Vktoum und d Eukldsh Vktoum, Bss, Sklpodukt. Ws st n Vkto? Zln zw. Spltnmtzn wdn unt ndm ls Zln zw. Spltnvkton zhnt. Ds Vkton

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1. Einfühung 1 Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1.1 Phsiklisch Gößn 1.1.1 Dfinition 1.1. Skl und vktoill Gößn 1.1.3 SI Einhitssstm

Mehr

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug www.shullv.d Bsiswissn > Gomtri im Rum > Trigonomtri in Körprn > Strknzug Strknzug Spikzttl Augn 1. Läng ds Strknzugs rhnn In disr Aug sollst du dn Strknzug ds gzihntn Hus vom Nikolus rhnn. Am inhstn ist

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Aufgaben zu Kapitel 7

Aufgaben zu Kapitel 7 7.1 G W A B zu 7.1 zu 7.2 7.2 Ajznzmtrix: 000111 000111 000111 111000 111000 111000 G : W : : A : B : : A, B, A, B, A, B, G, W, G, W, G, W, s ist niht möglih, n Grphn ürshniungsfri zihnn. 7.3 Di Isomorphiilung

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

Crash-Course Physik Vorlesung 1

Crash-Course Physik Vorlesung 1 Crsh-Cours Physik Vorlsung 1 Trigonomtri: Lösungn 21. Sptmbr 2016 1. Notir für di folgndn vir rhtwinklign Drik di An- und Ggnktht ds jwils ingtrgnn Winkls: b α d f β Anktht von α ist b, Ggnktht ist. Anktht

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Kannst du ein großes A bezahlen? Spiele mit Zahlen und Buchstaben. Dr. H. Schneider, Wien. Buchstabenrätsel mit zwei Vorgaben

Kannst du ein großes A bezahlen? Spiele mit Zahlen und Buchstaben. Dr. H. Schneider, Wien. Buchstabenrätsel mit zwei Vorgaben Spil mit Zhln un Buhstn Einzlmtril 87 Klss 6 is 8 S Knnst u in großs A zhln? Spil mit Zhln un Buhstn Dr. H. Shnir, Win M Buhstnrätsl mit zwi Vorgn Brhn i Blknsumm nhn von zwi Vorgn! Di Zhln, 2,, 4 un sin

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer.

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer. Ohn Spakass fht was: * Ih Immobiinpatn. Fü Vkäuf. Bid MASSGESCHNEIDERT: UNSER SERVICE FÜR IMMOBILIEN-VERKÄUFER! In dn vgangnn fünf Jahn habn wi und 900 Immobiin vmittt. Di Spakass Zonab ist damit d gößt

Mehr

Um- und Inkugelradien am allgemeinen Tetraeder

Um- und Inkugelradien am allgemeinen Tetraeder Ano Fehinge, Gymnsillehe fü Mthemtik und Physik 1 Um- und Inkugeldien m llgemeinen Tetede Oktoe 2007 In de voliegenden Aeit sollen Um- und Inkugeldien eines llgemeinen Tetedes in Ahängigkeit von den Kntenlängen

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist:

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist: Aufgab 1 Ein unkt 1 fäht in Bschlunigung ω. Zum Zitpunkt hat di Gschwindigkit 2 und bfindt sich am Ot. Ein zwit unkt fäht di Bschlunigung. Zum Zitpunkt hat di Gschwindigkit und bfindt sich am Ot. Gsucht

Mehr

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party)

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party) QM9(3) Systmuitor nh ISO 9001 (1 st,2 n prty) Allgmin Hinwis: Es wir von n Tilnhmrn rwrtt, ss usrihn Knntniss vorhnn sin, um i Frgn 1.1 is 1.10 untr Vrwnung r ISO 9001 innrhl von 20 Minutn zu ntwortn (Slsttst).

Mehr

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Bispil: Niht X jr j js jn jm Arzt möht Notrzt sin. Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j js jn jm Angymnsium gut ist? Wir kommn

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 4 Rgulär Aurük Automtn un forml Sprhn Notizn zu n Folin Präznz r Oprtorn (Folin 108) Dr -Oprtor ht i höht Präznz, nh r Konktntionoprtor, un r - Oprtor ht i niriht Präznz. D hißt: (() (( ))) Bipil von rgulärn

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T =f(,) ( kommt nicht vo) wid

Mehr

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1)

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1) Dr Arnlf Schönli, Logistischs Wchstm in dr Prxis Logistischs Wchstm in dr Prxis Für Wchstmsrozss, di nch dm logistischn Wchstmsmodll lfn, gilt: ( ( t ( Drin sind (t zw di Polionn z dn Zitnktn t zw t, nd

Mehr

Lektion 14 Test Lösungen

Lektion 14 Test Lösungen Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Lösungn X Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j X js jn jm Angymnsium gut ist? Wir kommn jr j js X jn jm Mont pünktlih unsr

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

1.Zum Vektor soll ein Vielfaches des Vektors addiert werden, so daß die Summe von und auf dem Vektor senkrecht steht.

1.Zum Vektor soll ein Vielfaches des Vektors addiert werden, so daß die Summe von und auf dem Vektor senkrecht steht. Wtshftsfomtk Mthmtk II Smst Itm d Ädg ohlt Ügsfg L lg - Lösg m Vkto soll Vlfhs ds Vktos ddt d so dß d Smm o d f dm Vkto skht stht W mß m ) llgm ) fü d Vkto ähl? [ ] [ ] o g St o Vso om: Wtshftsfomtk Mthmtk

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kounikaionhnik I Pof. D. Sfan Winzil Mulöung. ufgabnbla. Shallpgl Ein nähungwi kuglföig abahlnd Lauph zug in in band on inn Shalldukpgl L. U wiil ing ih in d doppln Enfnung a. d Shalldukpgl b. d Shallinniäpgl.

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Zeitverhalten eines Hochpass-Messgliedes

Zeitverhalten eines Hochpass-Messgliedes n zur Znrlübung dr Vorlsung Grundlgn dr Msshnik von Prof. Dollingr, niv. dr Bundswhr Münhn, L2 - OHNE GEWÄH - Zivrhln ins Hohpss-Mssglids Ggbn is di Shlung us Abb. mi ) Ermiln Si di Diffrnilglihung für

Mehr

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung:

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung: 38. Polaisation 38.1. Einfühung Ggbn si in lktomagntisch Wll mit Ausbitung in z-richtung und in Amplitud in x-richtung: E = E 0 i 0 i... Einhitsvkto in x-richtung Di vollständig mathmatisch Bschibung unt

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

Lektion 10 Test. Könntet / Würdet ihr mir helfen?

Lektion 10 Test. Könntet / Würdet ihr mir helfen? Lktion 10 Tst Lktion 10 Grmmtik 1 Stigrung Komprtiv un Suprltiv: Shrin Si. Bispil: groß -> größr -> m größtn gut -> -> unkl -> -> li -> -> tur -> -> vil -> -> grn -> -> /6 Punkt 2 Vrglih mit... ls or so

Mehr

SHOR S ALGORITHM FAKTORISIERUNG GROßER ZAHLEN MIT EINEM QUANTENCOMPUTER INHALT:

SHOR S ALGORITHM FAKTORISIERUNG GROßER ZAHLEN MIT EINEM QUANTENCOMPUTER INHALT: SHOR S ALGORITHM FAKTORISIERUNG GROßER ZAHLEN MIT EINEM QUANTENCOMPUTER Ausbitung ins Votgs im Rhmn ds Smins Algoithmn fü Quntnomput Litung: Pof. Hlmut Alt SoS FU-Blin von Till Zopp & Chistin Pul INHALT:

Mehr

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier Ds Röthnbch Su-Zipfl-Fltt-Tuni Lngwil im Jnu? Nicht mit uns! D s R ö t h Bi uns ght s dn Sun Zipfln n dn Kgn! Di Bognschützn d SSG Röthnbch ldn hzlich in zum 4. Röthnbch Su-Zipfl-Fltt-Tuni m Smstg, dn

Mehr

4 Bäume und Minimalgerüste

4 Bäume und Minimalgerüste 4. Bäum un Wälr Charaktrisirung von Minimalgrüstn 4 Bäum un Minimalgrüst Dfinition 4.1. Es in G = (V, E) in zusammnhängnr Graph. H = (V, E ) hißt Grüst von G gw. wnn H in Baum ist un E E gilt. Bmrkung

Mehr

Vernetztes Laden eine Herausforderung

Vernetztes Laden eine Herausforderung Vntzts Ldn in Husfodun NTT DATA Mobilitätskonfnz 2. Oktob 2014, Win Jün Hiß, Lit Pilotiun & Klinsin EnBW Options Ws ist ds Zilbild in d E-Mobilität? Vntzts Ldn in Husfodun 2 E-Mobilität ist Til ds vntztn

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

Blatt 6, Aufgabe 1: Beugung am Einzelspalt

Blatt 6, Aufgabe 1: Beugung am Einzelspalt Aua a, Blatt 6, Aua : Buun am Einzlspalt a Bdinunn ü Faunho-Buun: Sowohl di Lichtqull als auch d Boachtunsschim müssn lativ zum Spalt unndlich ntnt sin. s Di Intnsitätsvtilun wid duch di c-funtion schin:

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Lektion 10 Test Lösungen

Lektion 10 Test Lösungen Lktion 10 Tst Lösungn Lktion 10 Grmmtik 1 Stigrung Komprtiv un Suprltiv: Shrin Si. gut -> _ssr_ -> _m stn_ unkl -> _unklr_ -> _m unklstn_ li -> _lir -> _m listn_ tur -> _turr_ -> _m turstn_ vil -> _mhr_

Mehr

Übungsaufgaben "Vektorrechnung"

Übungsaufgaben Vektorrechnung stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte Unbhängig Btung zu Ih Hizungsnlg Di Hizungsvisit ist in gfödt Kuz-Chck fü Bm Hushlt 80 Poznt d Hizungn in Dutschlnd bitn Optimiungspotnzil. Lssn Si dh Ih Hizung jtzt bi in Hizungsvisit übpüfn od sich zu

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

FRIEDRICH SCHILLER UNIVERSITÄT JENA Fakultät für Mathematik und Informatik

FRIEDRICH SCHILLER UNIVERSITÄT JENA Fakultät für Mathematik und Informatik FRIEDRICH CHILLER UNIVERIÄ JEN Fkultät für Mthmtik und Informtik INIU für INFORMIK VORLEUNG IM WINEREMEER OCHICHE GRMMIKMODELLE Ernst Güntr hukt-lmzzini 05. Indxgrmmtikn 1 Indxgrmmtikn (IG) Bsis ist in

Mehr

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an.

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an. Lktion 11 Tst Lktion 11 Grmmtik 1 Prätritum r Molvrn: Eränzn Si. Bispil: Ih immr Stätrisn (mhn wolln). Ih _wollt immr Stätrisn _mhn_. Als Kin ih Tirplr (wrn wolln). u im Zoo i Bärn (üttrn ürn)? Von 2009

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

3 Der Operationsverstärker

3 Der Operationsverstärker Grndlgn intgrirtr Anlogschltngn in Bipolrtchnologi 3-3 r Oprtionsrstärkr 3. Grndlgn intgrirtr Anlogschltngn in Bipolrtchnologi Mit Hilf dr monolithischn Intgrtion on ktin (Trnsistorn) nd pssin (Widrständ,

Mehr

Bis zu 20 % Ra. b b. a h

Bis zu 20 % Ra. b b. a h btt! Bis zu 20 % R www.gvb.ch h? ic s b b d d u W s s d ich t lück lo s s u H Ih h ic s W i v Mit us kö Si Ih Hus udum vsich Mit us Zustzvsichug ist Ih Vsichugsschutz i ud Sch W glichzitig i Lück i d Gbäudvsichug

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Aufgabe 4: 7-Segmentanzeige

Aufgabe 4: 7-Segmentanzeige Au : 7-Smntnzi G. Kmnitz, C. Gismnn, TU Clusthl, Institut ür Inormtik 7. Juni 25 Di Vrsuhsurupp ht in -stlli 7-Smnt-Anzi mit vrunnn Kthonsinln un minsmr Ano j Zir, so ss zu jm Zitpunkt nur in Zir nzit

Mehr

Beispiel: t = 6 s gesucht: Geschwindigkeit v, Weg s

Beispiel: t = 6 s gesucht: Geschwindigkeit v, Weg s R. Binkann hp://binkann-du.d Si 6..3 Zuangz Bwgungn Gchwindigki- Zi und Wg- Zi Diaga. Bwgung i konan Gchwindigki. konan Bipil: ggbn: / guch: Glichäßig bchlunig Bwgung. a a Bipil: ggbn: a 3 6 guch: Gchwindigki,

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Metrische Probleme und das Skalarprodukt

Metrische Probleme und das Skalarprodukt V Mtrisch Prolm und ds Sklrprodukt Bishr: Prolm wi Schnittgrd, usw. könnn glöst wrdn. Jtzt: Winkl, Astnd von Grdn und zwir Punkt, usw. durch Einführung ds: Astnd zwir Punkt - Btrg ins Vktors Sinnvoll Fordrungn

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T f(,) ( kommt nicht vo) wid

Mehr

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de Ein hzlichs Güß Gott in Mmmlsdof! www.di-konn.d Güß Gott! In Fankn stht das bst Witshaus imm ggnüb d Kich. So wi auch uns Bauigasthof: Di Di Konn bfindn sich sit mh als 555 Jahn ggnüb dm Mmmlsdof Gottshaus.

Mehr

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005 FIT IN DEUTSCH 1 Üungsstz 01 Kndidtenlätter/Prüferlätter KASTNER AG ds medienhus FIT1_ÜS01_Kndidten-/Prueferletter_Oktoer_2005 ISBN: 3-938744-76-6 Fit in Deutsh.1 Üungsstz 01 Teil 1 Du hörst drei Nhrihten

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Thema 9: Die Klassenarbeit

Thema 9: Die Klassenarbeit Thm 9: Di Klssnrit Hör ml! 1 Knnst u? shwimmn ritn Tnnis spiln Klvir spiln Dutsh sprhn Ski hrn X X X X 2 Dr ih hir? rlut rlut niht rlut rlut niht rlut 3 Ih knn niht! Ih muss Anrs, shwimmn ghn, Husugn mhn

Mehr

I. Haushaltslage der NRW-Kommunen

I. Haushaltslage der NRW-Kommunen P s s g sp äc hmi t s p a n, u m n mi t u KaiAb uszat Sp chf ükommunal s m i al b Li ag Landt Kommunal f i nanz n f dpf akt i onn w. d I. Haushaltslag d NRW-Kommunn Haushaltslag d NRW-Kommunn damatisch.

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Workshop zu Trigonometrie

Workshop zu Trigonometrie Wokshop zu Tigonometie Gudun Szewiezek SS 00 Wi eshäftigen uns hie mit de eenen Tigonometie (g. tigonos = Deiek, g. meton = Mß). Dei geht es huptsählih um die geometishe Untesuhung von Deieken in de Eene.

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

9. Bewegungen geladener Teilchen im homogenen Magnetfeld

9. Bewegungen geladener Teilchen im homogenen Magnetfeld 9. wgungn gladn ilchn i hoognn Magntfld Elkton F = (allgin: = Q ) F F F F ist Zntiptalkaft, das Elkton (allgin: ilchn) bwgt sich i auf in Kisbahn! ( blibt i glich) Magntfld wgn sich Ladungn snkcht zu Magntfld,

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Modul 10: Autokonfiguration

Modul 10: Autokonfiguration Hohshul BoRhiSig Pof. D. Mati Lish Ntzwksstm ud TK Lzil: Modul 1: Autokofiguatio Nah Duhait diss Tilkapitls soll Si di Aufgastllug Autokofiguatio läut ud di id Kozpt SLAAC ud DHCPv6 zu automatish Kofiguatio

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Musterlösung - Aufgabenblatt 4. Aufgabe 1

Musterlösung - Aufgabenblatt 4. Aufgabe 1 Murlöung - Augnl 4 Aug ) Au Üungl 3 hn wir ür n ggnn Grphn G gzig, ν(g) = 9 gil, inm wir olgn Mhing M von mximlr Krinliä nggn hn: g h i j 3 4 6 7 8 9 0 E gil lo, nh König Mhing-Thorm u r Vorlung, uh τ(g)

Mehr

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen Pof. D. n. Post tz und Btibsitt Gundn d Enitchnik tz und Btibsitt tzfon EEG. Sp. 7 unächst so noch in duf hinwisn wdn, dß Vsounsntz Dhstontz (Ausnh HGÜ) sind. Di Ausnhn sind in. Aus nitchnisch Sicht intssit

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

Fachrichtung Energieelektroniker - Betriebstechnik

Fachrichtung Energieelektroniker - Betriebstechnik Fchrichtung Enrgilktronikr - Btribstchnik 0...0-8 Schülr Dtum:. Titl dr L.E. : Oprtionsrstärkr und stbilisirt Ntzgrät. Fch / Klss : Fchrchnn,. Ausbildungsjhr. Thmn dr ntrrichtsbschnitt :. Dimnsionirung

Mehr

Kunstdrucke im Linolschnitt

Kunstdrucke im Linolschnitt Kunstduck im Linolschnitt Di Malschul auf dn Innnsitn und vil wit kativ Idn findn Si in Min Kativ-Atli (Ausgab KT 55). www.shop.oz-vlag.d. Vil wit Idn unt www.fco.d hobbygoss El GmbH Goß Ahlmühl 10 76865

Mehr

Lösungen zur Probeklausur Lineare Algebra 1

Lösungen zur Probeklausur Lineare Algebra 1 Prof. Dr. Ktrin Wendlnd Dr. Ktrin Leschke WS 2006/2007 Lösungen zur Probeklusur Linere Algebr Ausgbe: 2. Dezember 2006 Aufgbe.. Geben Sie die Definition des Begriffs Gruppe n. Eine Gruppe ist eine Menge

Mehr

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens Kontaktlinsn Shminar Visualtraining Di nu Dimnsion ds Shns Willkommn in dn Shräumn Erlbn Si in nu Dimnsion ds Shns. Mit dn Shräumn rwitrn wir unsr Angbot rund um das Aug bträchtlich. Wir bitn anspruchsvolln

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Elektromagnetische Felder eines bewegten geladenen Drahtes

Elektromagnetische Felder eines bewegten geladenen Drahtes lktomagntisch Wlln Kapitl 16 lktomagntisch Wlln Figu 1. Das adial lktisch Fld, das on inm unndlich langn, gadn, positi gladnn Daht zugt wid. 16.1 Fld ins bwgtn gladnn Dahts Wi habn in Kap. 15.5.1 das lktisch

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr