Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0

Größe: px
Ab Seite anzeigen:

Download "Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0"

Transkript

1 Vktohnung Vkton, sind Gößn, u dn vollständig Chktisiung sowohl in Mßhl, d Btg, ls uh in Rihtung im Rum fodlih sind. Bispil: Kft, Gshwindigkit, Bshlunigung, Winklgshwindigkit, Winklshlunigung sowi lktish und mgntish ldstäk. Ein fi Vkto ändt sin Eignshftn niht, wnn plll u sih slst vshon wid. Wnn di Eignshftn ins Vktos n inn stimmtn Anfngspunkt gundn sind, dnn spiht mn von inm gundnn Vkto. Ein gundn Vkto df nu längs sin Wikungslini vshon wdn. Bispil: di Kft ist in gundn Vkto; ds Momnt M ist in fi Vkto. Eignshftn von Vkton: Vkton könnn mit in Zhl multipliit wdn. D Vkto ht dn Btg und igt in disl Rihtung wi, wnn und in di ntggngstt Rihtung, wnn ist. Vkton könnn ußdm ddit wdn: ü di Multipliktion mit in Zhl gilt:. und Di Addition von Vkton gilt ds Kommuttivgst und ds Distiutivgst: w. Es git inn Nullvkto mit dn Eignshftn Bispil: d ( ) und Linkomintion von Vkton: Unt in Linkomintion von Vkton u, v, w, vstht mn inn Ausduk d om u v w Lin Unhängigkit von Vkton: Di Vkton u, v, w, sind lin unhängig, wnn ih Linkomintion u v w nu dnn dn Nullvkto git, wnn ll kton,,, Null sind.

2 Zlgung von Vkton: Im didimnsionln Rum git s gnu di lin unhängig Vkton. Jd vit Vkto knn dnn ls Summ dis di Vkton dgstllt wdn: Di Summndn u, v und w sind di Komponntn d Vktolgung. In d En git s nu wi lin unhängig Vkton. Ktsish Koodintn: Ktsish Koodintn hält mn, wnn mn fü di Zlgung äumlih Vkton di Vkton,, vwndt, di pwis ufinnd snkht sthn und llsmt di Läng ins hn:. ü inn liign Vkto gilt dnn uh di B- Mnhml findt mn n Stll von,, ihnung i, j, k : i j k Di di Zhln ds Vktos.,, sind di ktsishn Koodintn Si wdn uh in d om ufgshin. Wid in Vkto u sih slst plll vshon, ändn sih sin Koodintn niht.

3 Wid in Vkto mit in Zhl multipliit, multipliit sih jd Koodint mit dis Zhl: Wdn wi Vkton ddit, ddin sih di Koodintn: Vktopodukt Vktoill phsiklish Gößn wdn niht nu ddit. Mhnish Ait und Momnt sind Bispil fü nd Atn d Vknüpfung von Vkton: von Kft und Vshiung im stn ll, von Kft und ih Lg ltiv u inm Dhpunkt im witn ll. Mhnish Ait: Ait W ist ds Podukt us Kft os in Wgihtung und Vshiung s : os s W. Di gignt Dfinition ins Sklpodukts gstttt s dis Ait ls s W u shin. Momnt: Ds Dhmomnt M ist ds Podukt von Kft ml Nomlstnd d Kft vom Dhpunkt P. Ands ls di Ait, di in skl Göß ist, ist ds Momnt slst wid in Vkto, d in d Dhhs ligt und dssn Btg di Göß ds Momnts ngit. Mittls ds noh u dfinindn Vktopodukts gilt fü ds Momnt M. Sklpodukt von Vkton: Dfinition: os Ds Sklpodukt ist ds Podukt ds Btgs ds stn Vktos mit d Pojktion ds witn Vktos uf dn stn. Ds Egnis ist in Skl. Eignshftn ds Sklpodukts:.. 3.

4 Dis folgt dus, dss di Pojktion von uf ist glih d Summ d Pojktionn von und uf. 4. Btg ins Vktos: 4. ü dn Winkl wishn wi Vkton und gilt os 5. Sind di Vkton und othogonl, gilt. 6. w. Ds Vktopodukt: Ds Vktopodukt wi Vkton und soll othogonl u disn idn Vkton sin. Ds ist di Vousstung dfü, dss sih ds Momnt in Kft ls Vktopodukt d Kft und ihs Hlsms shin lässt. D gsuht Poduktvkto muss dh folgndn idn Glihungn gnügn:. Di llgmin Lösung dis Glihung lutt. Di Zhl lit di unstimmt, ws niht üsht, hndlt s sih doh um di Lösung ins Sstms von wi Glihungn fü di Unknnt. Um Üinstimmung mit d ülihn Dfinition ds Momnts u hltn ist u wähln. D Rihtungssinn ds Momnts folgt dnn d Rhtsshungl: dht mn dn Vkto in Rihtung uf dn Vkto wgt sih in Rhtsshu in di Rihtung ds Vktopodukts. Dfinition: Eignshftn:. ist othogonl u und Bwis duh Bhnung d idn Sklpodukt und. Dis Rhnung igt, dss id Sklpodukt glih Null sind, ws di Bhuptung wist.

5 sin

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1. Einfühung 1 Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1.1 Phsiklisch Gößn 1.1.1 Dfinition 1.1. Skl und vktoill Gößn 1.1.3 SI Einhitssstm

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer.

Ohne Sparkasse fehlt was: * Ihr Immobilienpartner. Für Verkäufer. Ohn Spakass fht was: * Ih Immobiinpatn. Fü Vkäuf. Bid MASSGESCHNEIDERT: UNSER SERVICE FÜR IMMOBILIEN-VERKÄUFER! In dn vgangnn fünf Jahn habn wi und 900 Immobiin vmittt. Di Spakass Zonab ist damit d gößt

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party)

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party) QM9(3) Systmuitor nh ISO 9001 (1 st,2 n prty) Allgmin Hinwis: Es wir von n Tilnhmrn rwrtt, ss usrihn Knntniss vorhnn sin, um i Frgn 1.1 is 1.10 untr Vrwnung r ISO 9001 innrhl von 20 Minutn zu ntwortn (Slsttst).

Mehr

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Bispil: Niht X jr j js jn jm Arzt möht Notrzt sin. Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j js jn jm Angymnsium gut ist? Wir kommn

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 4 Rgulär Aurük Automtn un forml Sprhn Notizn zu n Folin Präznz r Oprtorn (Folin 108) Dr -Oprtor ht i höht Präznz, nh r Konktntionoprtor, un r - Oprtor ht i niriht Präznz. D hißt: (() (( ))) Bipil von rgulärn

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Lektion 14 Test Lösungen

Lektion 14 Test Lösungen Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Lösungn X Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j X js jn jm Angymnsium gut ist? Wir kommn jr j js X jn jm Mont pünktlih unsr

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

FRIEDRICH SCHILLER UNIVERSITÄT JENA Fakultät für Mathematik und Informatik

FRIEDRICH SCHILLER UNIVERSITÄT JENA Fakultät für Mathematik und Informatik FRIEDRICH CHILLER UNIVERIÄ JEN Fkultät für Mthmtik und Informtik INIU für INFORMIK VORLEUNG IM WINEREMEER OCHICHE GRMMIKMODELLE Ernst Güntr hukt-lmzzini 05. Indxgrmmtikn 1 Indxgrmmtikn (IG) Bsis ist in

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

Lektion 10 Test. Könntet / Würdet ihr mir helfen?

Lektion 10 Test. Könntet / Würdet ihr mir helfen? Lktion 10 Tst Lktion 10 Grmmtik 1 Stigrung Komprtiv un Suprltiv: Shrin Si. Bispil: groß -> größr -> m größtn gut -> -> unkl -> -> li -> -> tur -> -> vil -> -> grn -> -> /6 Punkt 2 Vrglih mit... ls or so

Mehr

Vernetztes Laden eine Herausforderung

Vernetztes Laden eine Herausforderung Vntzts Ldn in Husfodun NTT DATA Mobilitätskonfnz 2. Oktob 2014, Win Jün Hiß, Lit Pilotiun & Klinsin EnBW Options Ws ist ds Zilbild in d E-Mobilität? Vntzts Ldn in Husfodun 2 E-Mobilität ist Til ds vntztn

Mehr

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung:

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung: 38. Polaisation 38.1. Einfühung Ggbn si in lktomagntisch Wll mit Ausbitung in z-richtung und in Amplitud in x-richtung: E = E 0 i 0 i... Einhitsvkto in x-richtung Di vollständig mathmatisch Bschibung unt

Mehr

Lektion 10 Test Lösungen

Lektion 10 Test Lösungen Lktion 10 Tst Lösungn Lktion 10 Grmmtik 1 Stigrung Komprtiv un Suprltiv: Shrin Si. gut -> _ssr_ -> _m stn_ unkl -> _unklr_ -> _m unklstn_ li -> _lir -> _m listn_ tur -> _turr_ -> _m turstn_ vil -> _mhr_

Mehr

Übungsaufgaben "Vektorrechnung"

Übungsaufgaben Vektorrechnung stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an.

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an. Lktion 11 Tst Lktion 11 Grmmtik 1 Prätritum r Molvrn: Eränzn Si. Bispil: Ih immr Stätrisn (mhn wolln). Ih _wollt immr Stätrisn _mhn_. Als Kin ih Tirplr (wrn wolln). u im Zoo i Bärn (üttrn ürn)? Von 2009

Mehr

Bis zu 20 % Ra. b b. a h

Bis zu 20 % Ra. b b. a h btt! Bis zu 20 % R www.gvb.ch h? ic s b b d d u W s s d ich t lück lo s s u H Ih h ic s W i v Mit us kö Si Ih Hus udum vsich Mit us Zustzvsichug ist Ih Vsichugsschutz i ud Sch W glichzitig i Lück i d Gbäudvsichug

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Aufgabe 4: 7-Segmentanzeige

Aufgabe 4: 7-Segmentanzeige Au : 7-Smntnzi G. Kmnitz, C. Gismnn, TU Clusthl, Institut ür Inormtik 7. Juni 25 Di Vrsuhsurupp ht in -stlli 7-Smnt-Anzi mit vrunnn Kthonsinln un minsmr Ano j Zir, so ss zu jm Zitpunkt nur in Zir nzit

Mehr

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de Ein hzlichs Güß Gott in Mmmlsdof! www.di-konn.d Güß Gott! In Fankn stht das bst Witshaus imm ggnüb d Kich. So wi auch uns Bauigasthof: Di Di Konn bfindn sich sit mh als 555 Jahn ggnüb dm Mmmlsdof Gottshaus.

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

I. Haushaltslage der NRW-Kommunen

I. Haushaltslage der NRW-Kommunen P s s g sp äc hmi t s p a n, u m n mi t u KaiAb uszat Sp chf ükommunal s m i al b Li ag Landt Kommunal f i nanz n f dpf akt i onn w. d I. Haushaltslag d NRW-Kommunn Haushaltslag d NRW-Kommunn damatisch.

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T f(,) ( kommt nicht vo) wid

Mehr

Auslegeschrift 23 20 751

Auslegeschrift 23 20 751 Int. CI.2: 09) BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT G 0 1 K 7 / 0 0 G 01 K 7/30 G 01 K 7/02 f fi \ 1 c r Auslgschrift 23 20 751 Aktnzichn: P23 20 751.4-52 Anmldtag: 25. 4.73 Offnlgungstag: 14.

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

Modul 10: Autokonfiguration

Modul 10: Autokonfiguration Hohshul BoRhiSig Pof. D. Mati Lish Ntzwksstm ud TK Lzil: Modul 1: Autokofiguatio Nah Duhait diss Tilkapitls soll Si di Aufgastllug Autokofiguatio läut ud di id Kozpt SLAAC ud DHCPv6 zu automatish Kofiguatio

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Kunstdrucke im Linolschnitt

Kunstdrucke im Linolschnitt Kunstduck im Linolschnitt Di Malschul auf dn Innnsitn und vil wit kativ Idn findn Si in Min Kativ-Atli (Ausgab KT 55). www.shop.oz-vlag.d. Vil wit Idn unt www.fco.d hobbygoss El GmbH Goß Ahlmühl 10 76865

Mehr

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens

Kontaktlinsen Sehminare Visualtraining. Die neue Dimension des Sehens Kontaktlinsn Shminar Visualtraining Di nu Dimnsion ds Shns Willkommn in dn Shräumn Erlbn Si in nu Dimnsion ds Shns. Mit dn Shräumn rwitrn wir unsr Angbot rund um das Aug bträchtlich. Wir bitn anspruchsvolln

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

1 Ergänzen Sie. der Zug das Taxi der Bus die U-Bahn das Flugzeug die Straßenbahn das Auto das Fahrrad ... ... das Taxi das Fahrrad das Auto

1 Ergänzen Sie. der Zug das Taxi der Bus die U-Bahn das Flugzeug die Straßenbahn das Auto das Fahrrad ... ... das Taxi das Fahrrad das Auto Lktion 11: In r Stt untrwgs 11 A Si müssn mit r U-Bhn hrn. A2 1 Ergänzn Si. r Zug s Txi r Bus i U-Bhn s Flugzug i Strßnhn s Auto s Fhrr r Bus........................ A2 2 Ergänzn Si. r Zug mit m Zug r

Mehr

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen Pof. D. n. Post tz und Btibsitt Gundn d Enitchnik tz und Btibsitt tzfon EEG. Sp. 7 unächst so noch in duf hinwisn wdn, dß Vsounsntz Dhstontz (Ausnh HGÜ) sind. Di Ausnhn sind in. Aus nitchnisch Sicht intssit

Mehr

e n e a Chancenzuschaf

e n e a Chancenzuschaf s p a n, um n uch Sp a n, u m n u Chancnzuschaf f n m i al b Li ag Landt Konsol i di ungsst at gi dfdplandt agsf akt i on 2013bi s2017 f dpf akt i onn w. d 2013 2014 2015 2016 2017 in Mio. Euo 1. Mhinnahmn

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

2.2 Multiplizieren von Brüchen

2.2 Multiplizieren von Brüchen ! 2.2 Multiplizin von Büchn Ein Rzpt fü Hftig fodt 1 Lit Milch. Man nimmt di halb Rzptmng. Wi vil Lit Milch 1 l 1000 sind fodlich? 1 / 2 w 1 / 2 w 3 / 4 l 1 / 2 l 1 / 4 l 750 500 250 w 1 / 2 l Ein Hftigzpt

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Stand: 21. Juni 2001 Seite 4-1

Stand: 21. Juni 2001 Seite 4-1 omlsmmlung Elktotchnik Thm Bich Sit Komplx Zhln Dinition 4- Nomlom 4- tigonomtisch om 4- Eulsch om 4- Vsoom 4- Bdinungsnlitung ü T Shp E546 4-3 sio x-99wa 4-3 chnn mit komplxn Zhln Glichhit von komplxn

Mehr

Respekt, ihr Immobilien-Modernisierer, Standort-Expandierer und Nachhaltigkeits-Investierer.

Respekt, ihr Immobilien-Modernisierer, Standort-Expandierer und Nachhaltigkeits-Investierer. Rspkt, ih Immobiin-Modnisi, Stndot-Expndi und Nhhtigkits-Invsti Zukunft gsttn uf Whstum bun! t o d n t S t m Uns p n h ä F m² d 3 n u 17 m² 5 6 38 öß: g k : ü t s kth Gund m m² u 7 B 1 7 fäh s f : u k

Mehr

Quick-Guide für das Aktienregister

Quick-Guide für das Aktienregister Quick-Guid für das Aktinrgistr pord by i ag, spritnbach sitzrland.i.ch/aktinrgistr Quick-Guid Sit 2 von 7 So stign Si in Nach dm Si auf dr Hompag von.aktinrgistr.li auf das Flash-Intro gklickt habn, rschint

Mehr

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka

0.5 16 25 ka 30 ka 20 40 20 ka 20 ka 50, 63 15 ka 15 ka PLSM-B(C)...(/...) 0.5 16 25 ka 30 ka. 50, 63 15 ka 15 ka 10/106 Projktirn Litungsshutz, Bkup-Shutz NZM1, NZM2, NZM3 Mollr HPL0211-2007/2008 http://tlog.mollr.nt Listungsshltr, Lsttrnnshltr Shutz von PVC-isolirtn Litungn ggn thrmish Übrlstung bi Kurzshluss Nh

Mehr

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH

ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA OBJECTIVE SOFTWARE GMBH iv Sofwar GmH Wlnurgr Sr. 70 81677 Münhn Tl. 0 89 / 71 05 01-0 Fax -99 www.oiv.d info@oiv.d ALLGEMEINE VERKAUFS- UND LIEFERBEDINGUNGEN DER FIRMA BJECTIVE SFTWARE GMBH 1 Glungsrih, Awhrklausl Di Firma iv

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Prüfung 01 Systemauditor nach AS/EN 9100 (1st, 2nd-party) Seminar L4(3)

Prüfung 01 Systemauditor nach AS/EN 9100 (1st, 2nd-party) Seminar L4(3) VERTRAULICH BUREAU VERITAS PRÜFUNGSBLÄTTER Shrin Si itt Ihrn Vornmn, Nmn un Ihr Gurtstum in s Fl: Vornm Nm Gurtstum Shrin Si itt Prüfungstum un Prüfungsort in s Fl: Til Prüfr 1 Minimum Mximum 1 10 (50%)

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)!

2)Ein gleichschenkeliges Dreieck hat einen Flächeninhalt von 2640 mm² und eine 55 mm lange Höhe h c. Berechne den Umfang des Dreiecks (Skizze)! M4 Üung für di 1. Sulrit Nm: 1)Von inr Rut knnt mn di Läng dr igonln f und di Sitnläng. rn dn Fläninlt! f 4 m; 5 m f )Ein glisnkligs rik t inn Fläninlt von 640 mm² und in 55 mm lng Hö. rn dn Umfng ds riks

Mehr

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft

266. Die Abbildung stellt eine. Aufgaben zur Lorentzkraft Aufgabn zu Lontzkaft 46. in lktonntahl titt it in Gchwindigkit von v 0 1,96 * 10 6-1 nkcht zu dn Fldlinin in in hoogn Magntfld it d agntichn Fludicht B 1,6 * 10 - in. a) klän Si, wau ich d lktonntahl auf

Mehr

Ergänzende Kapitel. Angewandte Physik

Ergänzende Kapitel. Angewandte Physik Univsiä d Bundswh Münchn Sudingng Mchnicl Engining (B. Eng.) Pof. D. K. Uhlnn Egännd Kil Zu Volsung Angwnd Phsik ls Mnuski gduck Glidung. MATHEMATISCHE GRUNDLAGEN 3. Vkochnung 3.. Fi und gundn Vkon 3..

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z y g W i o o L c a B i o n n a I o E a f i E s l t f n v R H v I u m b M x H c x z S x T n T w Z E h V n u i C t S f p F o E R K o y a l H u C s t A V U K g K U p H q h D x G f U s q f y g L b A j w E u

Mehr

Gabelstapler III. Modul: Arbeits- bzw. Personenkörbe

Gabelstapler III. Modul: Arbeits- bzw. Personenkörbe A Mod: Ai- w. Ponnkö Thm: Ai- w. Ponnkö Knwinn mi ARAMS Si wdn f 12 Sin mi fondn nhn (. ch) m Thm infomi! Wi n vo, wm d Thm wichi i nd w Si chn hn! NHALT: Sichhihinwi Af d Aiko Ein nd Vwndnwck Ein d Aiko

Mehr

Einstiegs-Test Bin ich der Typ für die Arbeit mit Menschen?

Einstiegs-Test Bin ich der Typ für die Arbeit mit Menschen? Einstigs-Tst Bin ih r Typ ür i Arit mit Mnshn? In ism Tst ght s rum hruszuinn, ws ir im Ln wihtig ist un wi u mit nrn Mnshn umghst. Er soll ir i hln, ih slst inzushätzn. Bitt ntwort i Frgn hrlih un spontn.

Mehr

mann, Martin Krizischke, Peter Lennartz, Dr. Sebastian Muschter, Stephanie Nolte, Inger

mann, Martin Krizischke, Peter Lennartz, Dr. Sebastian Muschter, Stephanie Nolte, Inger Pkll Uhzi: O: Anwsnd: Ausschussmiglid: a n m a c h 17.00 19.00 Uh c d IHK Blin, Mndlsshn-Saal 0 2 P k Knsiuind Sizung IHK-Ausschuss Digial Wischaf am Dnnsag, 15.05.2014 Sinan Aslan, Ansga Baums, D. Ralf

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden BÜROZENTRUM FALKENBRUNNEN Chmnitz-. 48, 48a, 48b, 50 / Wüzbug. 35 01187 Dsdn OBJEKT OBJEKT INDIVIDUELLES UND GROSSZÜGIGES BÜRO- UND EINZELHANDELS-ENSEMBLE Das Büozntum Falknbunnn bitt modn und funk- nn

Mehr

Was ist der richtige Servoantrieb für die Anwendung?

Was ist der richtige Servoantrieb für die Anwendung? Ws is dr richig Srvnrib ür di Anwndung? Ws is dr richig Srvnrib ür di Anwndung? Pr. Dr.-Ing. Crsn Frägr 8.0.013 1 Ws is dr richig Srvnrib ür di Anwndung? Srvnrib in Prdukinsschinn, Aubu vn Srvnribn Lisungsuslgung,

Mehr

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der "Digitalen Kompetenzen" am Ende der Grundstufe II

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der Digitalen Kompetenzen am Ende der Grundstufe II Vorschlag ds Pädagogischn Birats für IKT Anglgnhitn im SSR für Win zur Umstzung dr "Digitaln Komptnzn" am End dr Grundstuf II Dis Komptnzlist ntstand untr Vrwndung dr "Digitaln Komptnzn für di 8. Schulstuf"

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

Rock? Passt der. Personen beschreiben

Rock? Passt der. Personen beschreiben 10 Psst der Rok? Personen eshreien Denken Sie n drei Personen. Ws ist für die Personen typish? Mhen Sie Notizen. Ws gefällt Ihnen ( )? Ws finden Sie niht so gut ( )? Wie sieht die Person us? jung / lt

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt.

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt. Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5--. Bstimmn Si Radius und Mittlpunkt ds Kümmungskiss an di Paabl y in ihm Schitlpunkt. Allgmin Glichung d Schitlpunktfom in Paabl

Mehr

NEU. für Ih. PPL 10.0 PASCHAL-Plan light. Jetzt in 3D und mit kompletter Bauhofverwaltung

NEU. für Ih. PPL 10.0 PASCHAL-Plan light. Jetzt in 3D und mit kompletter Bauhofverwaltung Jtzt t stn! 60 40 O nlin -T w w w.p stzugng u ntr pl- clo ud.co m 40 60 45 135 135 135 45 135 l r t n z Di g n u s ö L r n w t f b o S g f u l h c S r für Ih 25 25 75 40 40 75 NEU PPL 10.0 PASCHAL-Pln

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

LEISTUNGSPROFIL F.EE INFORMATIK + SYSTEME FIRMENPORTRÄT F.EE INFORMATIK + SYSTEME DAS SYSTEMHAUS DER F.EE-FIRMENGRUPPE

LEISTUNGSPROFIL F.EE INFORMATIK + SYSTEME FIRMENPORTRÄT F.EE INFORMATIK + SYSTEME DAS SYSTEMHAUS DER F.EE-FIRMENGRUPPE 04/2013 FIRMENPORTRÄT F.EE INFORMATIK + SYSTEME DAS SYSTEMHAUS DER F.EE-FIRMENGRUPPE LEISTUNGEN UND PRODUKTE ANFAHRT AUGEN UNSERER KUNDEN Clint- / Svlösungn Fax- und Mail-Systm Ka tz d o Industistaß 6

Mehr

Grundlagen Hubstapler

Grundlagen Hubstapler Thoms Wittich Grndlgn Hbstplr ch wnn ds Fhrn mit Hbstplrn inf ch rschint, mss dis Tätigkit mit großr Sorgf lt sgübt wrdn, d Fhlr grvirnd Folgn mit sich zihn kö nnn G mäß Fchknntnisnchwis-Vrordnng ist f

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels Entdckn Si Schlo Wrtnfl in Lotorf - mit inr chönn Wndrung - mit dm Auto - mit dn öffntlichn Vrkhrmittln Schlo W r tn fl Wi rrich ich d Schlo Wrtnfl pr Auto? mit Auto Von Zürich: - Autobhnufhrt Aru Ot Hunznchwil,

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 2/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Allgemeine Geschäftsbedingungen der Mobility Genossenschaft (AGB)

Allgemeine Geschäftsbedingungen der Mobility Genossenschaft (AGB) Allgmin Gshätsbdingungn dr Mobility Gnossnsht (AGB) Ein pr Rgln vil, zuridn Mobility-Kundinnn und -Kundn. Einh ir sin Lib Mobility-Kundin Libr Mobility-Kund Mobil sin mit Mobility ist inh rsrvirn, instign,

Mehr

SPRACHFERIEN KÜNZELSAU 2008

SPRACHFERIEN KÜNZELSAU 2008 SPRACHFERIEN KÜNZELSAU 2008 (Mittelstufe) CODENUMMER: I. Lesen Sie den Text. Entsheiden Sie, welhe der Antworten ( ) psst. Es git jeweils nur eine rihtige Lösung. GEMEINSAM FÚR SPRACHE UND KULTUR Ashenputtel,

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Vereinfachtes globales Klimamodell

Vereinfachtes globales Klimamodell Vrinfahts globals Klimamodll Sandra Plzr, Marik Baur, Rgina Kllr, Tim Wagnr, Patrik Gütlin, Luas Fishr mit Hilf von Anita Barthl, Eva Bittr Problm: Was hat Klimawandl mit Mathmatik zu tun? Kann man nur

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Lektion 5 Test. Lektion 5. Grammatik

Lektion 5 Test. Lektion 5. Grammatik Lktion 5 Tst Lktion 5 Grmmtik 1 Ergänzn Si i Formn von wissn. Bispil: Ih wiß niht. Ds Nvigtionsgrät, wo s Auto ist. Wrum wolln Eltrn immr lls? Du, ih mg kin Kontroll. Ih niht, wo i Apothk ist. ihr, wo

Mehr

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010

Analysen und Ergebnisse der Qualifizierungsberater im III. Quartal 2010 Analysn d Egbniss d Qualifizigsbat im III. Quatal 2 III. Quatal 2 Batgn d Analysn d Qualifizigsbat Im 3. Quatal ds Jahs 2 wudn 83 Btib bzw. Untnhmn batn. In 38 Untnhmn wud in Qualifizigsbdaf fü.3 Mitabit

Mehr

Mathematik Regelheft Klasse 6

Mathematik Regelheft Klasse 6 Mthemtik Regelheft Klsse 6 Inhltsverzeihnis I Them: Teilrkeit 6.) Teiler un Vielfhe 6.) Teilrkeitsregeln 6.) Primzhlen un Primfktorzerlegung 6.) ggt 6.) kgv II Them: Winkel 6.6) Kreissklen un ihre Einteilung

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Sie das Gerät aus und überprüfen Sie den Lieferumfang. (Für Deutschland und Österreich) (Für die Schweiz) (Für Deutschland und Österreich)

Sie das Gerät aus und überprüfen Sie den Lieferumfang. (Für Deutschland und Österreich) (Für die Schweiz) (Für Deutschland und Österreich) Instlltionsnlitung Hir ginnn MFC-8370DN MFC-8380DN Lsn Si dis Instlltionsnlitung, vor Si ds Grät vrwndn, um s richtig inzurichtn und zu instllirn. Um Ihr Grät so schnll wi möglich instzrit zu mchn, wrdn

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 1/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr