Lokale Frequenzanalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lokale Frequenzanalyse"

Transkript

1 Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten in natürlichen Datzensätzen mittelfristig schwanken => wünschenswert wäre ein Verfahren für lokale Frequenzanalysen möglicher Ansatz: Die fensterweise Durchführung einer Fourieranalyse. Dies ist allerdings ungenau: Aliasing von hoch- und niederfrequenten Anteilen, die nicht im Fenster enthalten sind ineffizient: Duchführung der Analysen separat für verschiedene Frequenzen und verschiedene Fensterlängen Fourier- vs. Wavelet-Analyse Wavelet-Transformation um 98 von Jean Morlet und Alex Grossmann entwickelt Fourier Wavelet Bestimmung der Korrelation mit "Wellen" "Wellchen" (sin, cos) Charakterisierung global lokal zusammengesetzt aus orthogonalen "Mutter-Wavelets" Basisfunktionen (Basis-Wavelets)

2 Bestimmung der Koeffizienten: Faltung Faltung zweier Funktionen: h = ( τ ) f ( g( τ dt zum Vergleich: Bestimmung der Kovarianz: orthogonale Funktionen: cov N x, y = ) N i= cov x, y = ( ( xi x) ( yi y ) Bestimmung der Fourierkoeffizienten: a k = N N i= xi sin(π k N ti ) Fourier- Analyse P = /f = (Periodenlänge) Faltungsintegral = Zeitreihe Sinus Produkt

3 Fourier- Analyse P = /f = (Periodenlänge) Faltungsintegral = Zeitreihe Sinus Produkt Wavelet- Analyse Dilatation: a = /f = Translation: b = 9 Faltungsintegral = Zeitreihe Wavelet Produkt ( t b) Ψ( = a ( t b).5 a e - -

4 Wavelet- Analyse Dilatation: a = /f = Translation: b = 9 Faltungsintegral = Zeitreihe Wavelet Produkt Wavelet- Analyse Dilatation: a = /f = Translation: b = 5 Faltungsintegral = Zeitreihe Wavelet Produkt

5 Wavelet-Transformation Wavelettransformation Multiplikation mit der Wavelet-Funktion: T ( a, b) x( Ψa, b ( Zwei Variablen: = dt a: Skalenparameter (Stauchung/Streckung entlang der Zeitachse = Dilatation): zugehörige Frequenz f =/a b: Verschiebeparameter (entlang der Zeitachse; = Translation) Skalierungseigenschaft: T ( a, b) x( Ψ, a t b = dt a Kontinuierliche vs. Diskrete Wavelet-Transformation Kontinuierliche Wavelet-Transformation: Diskrete Wavelet-Transformation: - Bestimmung der Wavelets für diskrete a und b, wobei: m m a = a b = k b a a > ; b -meist: a = und b = (Kompromiss zwischen Auflösung und Redundanz) => CWT + ( a, b) x( Ψa, b ( = dt t b DWT ( a, b) = x( Ψ a a t m m a = b = k für m =,,,... 5

6 Kontinuierliche vs. Diskrete Wavelet-Transformation kontinuierlich diskret Überlappung stark gering - keine Redundanz hoch gering - keine Mutter-Wavelet nicht orthogonal orthogonal möglich (Basis-Wavele Rechenaufwand hoch gering Eigenschaften von (Mutter-)Wavelets Integrierbar und normiert: Mittelwert = : Ψ( = + Ψ( dt = lokal in der Zeitdomäne (begrenzter Träger = Suppor lokal in der Frequenzdomäne Normalisierung jeweils auf Energie = Ψˆ ( sϖ k ) = πs Ψˆ ( sϖ δt k ) Basis-Wavelets: = orthogonale Mutter-Wavelets nur für diskrete Wavelet-Transformationen 6

7 Morlet Mutter-Wavelet (http://paos.colorado.edu/research/wavelets/wavelet.html) Ψ ( = π / e iϖ t e t / ω : Wavenumber = Anzahl der Oszillationen im Wavelet Verschiedene Mutter-Wavelets Zeitdomäne Frequenzdomäne ψ (t/s) ψ f (s ω) Zeitdomäne Frequenzdomäne ψ (t/s) ψ f (s ω) Real-Teil Imaginär-Teil (Torrence und Compo 998) DOG = "Derivative of a Gaussian" = m-te Ableitung der Normalverteilungskurve = "Mexican Hat" für m = 7

8 Wahl der Mutter-Wavelets Kriterien:. Orthogonale oder nicht-orthogonale Funktionen Orthogonal: Anzahl der Faltungen für jede Skalierung proportional zur Weite der Wavelet-Funktion => sinnvoll für diskrete Wavelet-Analyse (Basis-Wavele Nicht-orthogonale Funktionen sind besser geeignet für nicht streng periodische Zeitreihen (kontinuierliche Wavelet-Analyse), aber hochgradig redundant für große Skalen. Komplexe oder reellwertige Funktionen Reellwertige Funktionen liefert keine Informationen über die Phase (z.b. DOG). Skalierung (Dilatation) Geringe Weite in der Zeitdomäne ergibt eine hohe Auflösung in der Zeitdomäne, aber eine schlechte Auflösung in der Frequenzdomäne, und umgekehrt.. Form Prinzipiell entsprechend der "Form" der Zeitreihe (Sprungstellen) zu wählen. Zeit- vs. Frequenzauflösung Haar-Wavelet: gute Zeitauflösung Ψ( =,5 t < Ψ( = t <,5 Ψ( = sonst Mexikanischer Hut: Kompromiss zwischen Zeit- und Frequenz-Auflösung Ψ( = t ( t ) e Morlet: gute Frequenzauflösung Ψ( = π π e iω t e t 8

9 Vergleich Wavelets vs. Fourieranalyse Zwei Funktionen: f = sin(π + sin(π f sin(π für t < = sin(π für t >... mit sehr ähnlicher Spektraler Dichte, Zeit [s] Spektrale Dichte Periodenlänge [s] Vergleich Wavelets vs. Fourieranalyse... aber deutlich unterschiedlichen Wavelet-Powerspektren: 9

10 Ablauf der Wavelet-Transformation. Wahl des Mutter-Wavelets. Fourier-Transformation des Mutter-Wavelets. Fourier-Transformation der Zeitreihe. Festlegung der Frequenz- und Zeitauflösung 5. Für jede Stauchung und jedes Intervall der Zeitreihe: Bestimmung des Tochter-Wavelets Normalisierung des Tochter-Wavelets Multiplizieren mit der Fouriertransformation der Zeitreihe Rücktransformation 6. Grafische Darstellung Padding Problem: Periodizität als implizite Annahme der Wavelet-Transformation im Fourier-Raum => Signale am Ende der Zeitreihe der Wavelet- Transformation werden bei der Wavelet-Transformation auch dem Beginn der Zeitreihe zugeordnet umgekehrt besonders ausgeprägt im niederfrequenten Bereich Gegenmaßnahme: Padding = Ende der Zeitreihe mit Nullen auffüllen bis zur Länge n = p (s. FFT)

11 Sea Surface Temperature (Pazifik) Gelber Bereich: Mittelwert ± Standardabweichung für ein 5-Jahres-Fenster Wavelet Power Spectrum (Morlet wavele Schwarze Linien: Regionen der %-Signifikanz (Test gegen rotes Rauschen) (http://paos.colorado.edu/research/wavelets/w avelet.html) Fourier- und Wavelet-Powerspektrum 95%-Konfidenzintervall mittlere Spektrum für Rotes Rauschen (Torrence und Compo 998,

12 Wavelet: Niederschlag Wavelet: Abfluss

13 Wavelet: Multiagentensimulationen Wavelets in Südecuador El Niño im Holozän (Moy et al., Nature.. )

14 Weitere Anwendungen der Wavelets Intelligentes Filtern von Datensätzen Beispiele: Komprimierung und Glättung von Spektren (Ionenchromatografie, Fernerkundung) Datenkompression Beispiele: Fotos, Audiodateien, Fingerabdrücke (FBI), Biometrie (Iris) u.v.m. Bildkompression mittels Wavelets Kompressionsrate 78: (Diskrete Cosinus-Transformation jeweils für einzelne Bildblöcke) (C. Rauch, TU München 999, zitiert in:

15 Zeitreihenanalyse im Web Allgemein: (Numerical Recipes) Wavelets: Aufgabe. Generieren Sie eine künstliche Zeitreihe als Kombination einzelner sinoder cos-fuktionen und führen Sie damit eine Waveletanalyse durch. Benutzen Sie dazu das Online-Tool unter Führen Sie eine Wavelet-Analyse mit den -Tages-Werten von Niederschlag, Temperatur und Abfluss mit und ohne Padding durch.. Vergleichen Sie den Effekt verschiedener Parametrisierungen und Mutterwavelets.. Welche der bekannten Eigenschaften lassen sich in der Waveletanalyse wiedererkennen? Welche zusätzlichen Informationen liefert die Wavelet- Analyse? 5

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Kap. 7: Wavelets. 2. Diskrete Wavelet-Transformation (DWT) 4. JPEG2000. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

Kap. 7: Wavelets. 2. Diskrete Wavelet-Transformation (DWT) 4. JPEG2000. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 Kap. 7: Wavelets. Die kontinuierliche Wavelet-Transformation (WT). Diskrete Wavelet-Transformation (DWT) 3. Sh Schnelle Wavelet-Transformation ltt ti (FWT) 4. JPEG000 H. Burkhardt, Institut für Informatik,

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Signalverarbeitung - Filterung, PSD, Korrelationen

Signalverarbeitung - Filterung, PSD, Korrelationen 9. Dezember 2010 1 Signalverarbeitung - Filterung, PSD, Korrelationen Messtechnik Vorlesung 9. Dezember 2010 9. Dezember 2010 2 Zurück zur Schnellen Fourier-Transformation (FFT) Ein FFT-Beispiel mit zwei

Mehr

Fourier-Zerlegung, Fourier-Synthese

Fourier-Zerlegung, Fourier-Synthese Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

3 Zeit-Frequenz-Signalanalyse

3 Zeit-Frequenz-Signalanalyse 3 Zeit-Frequenz-Signalanalyse Für die Untersuchung ereigniskorrelierter Oszillationen in ihrer zeitlichen Dynamik müssen die EEG-Signale mit Hilfe geeigneter Signalanalyseverfahren 1 in eine so genannte

Mehr

Korrektur: Lineare Regression in Excel

Korrektur: Lineare Regression in Excel Korrektur: Lineare Regression in Excel Doppelsummenkurve 1 8 kum. Abfluss 6 4 2 Juni 1987 5 1 15 2 kum. Niederschlag 1 PDFA Abfluss Lange Bramke 4 kum. Stabw. 3 2 1 Feb. 1981 1.8 1.82 1.84 1.86 1.88 1.9

Mehr

7 Fourier-Transformation

7 Fourier-Transformation 7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Wave-Datei-Analyse via FFT

Wave-Datei-Analyse via FFT Wave-Datei-Analyse via FFT Wave-Dateien enthalten gesampelte Daten, die in bestimmten Zeitabständen gespeichert wurden. Eine Fourier-Transformation über diesen Daten verrät das Frequenz-Spektrum der zugrunde

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

Strategien der Schwingungsanalyse

Strategien der Schwingungsanalyse 1 Strategien der Schwingungsanalyse (Grundlagen) 1. Prolog Approximation einer Zeitfunktion Zur Einführung in das Thema soll die Approximation einer Zeitfunktion x( durch einen Satz von Basisfunktionen

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Praktikum 3: Zeitreihenanalyse

Praktikum 3: Zeitreihenanalyse Vorlesung Astronomische Datenanalyse Praktikum 3: Zeitreihenanalyse Version vom 11. Juli 00 AIT Das Praktikum findet im Institut für Astronomie und Astrophysik, Abt. Astronomie im Gebäude Sand 1 statt.

Mehr

Formelsammlung für Automatisierungstechnik 1 & 2

Formelsammlung für Automatisierungstechnik 1 & 2 Formelsammlung für Automatisierungstechnik & 2 Aus Gründen der Vereinheitlichung, der gleichen Chancen bw. um etwaigen Diskussionen vorubeugen, sind als Prüfungsunterlagen für die Vorlesungsklausuren aus

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Hauptkomponentenanalyse. Principal Component Analysis (PCA)

Hauptkomponentenanalyse. Principal Component Analysis (PCA) Hauptkomponentenanalyse Principal Component Analysis (PCA) Principal Component Analysis (PCA) Welche Ziele verfolgt man bei der Verwendung einer PCA? Repräsentation multidimensionaler Daten mit einer geringeren

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

HTL 1, Innsbruck Amplitudenmodulation Seite 1 von 16

HTL 1, Innsbruck Amplitudenmodulation Seite 1 von 16 HTL, Innsbruck Amplitudenmodulation Seite von 6 Robert Salvador salvador@htlinn.ac.at Amplitudenmodulation Mathematische / Fachliche Inhalte in Stichworten: Modulation, trigonometrische Summensätze, Spektralanalyse,

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Bioimaging. Vorlesung und Übung im Sommersemester 2011 Volker Schmid und Julia Kärcher

Bioimaging. Vorlesung und Übung im Sommersemester 2011 Volker Schmid und Julia Kärcher Bioimaging Vorlesung und Übung im Sommersemester 2011 Volker Schmid und Julia Kärcher Kapitel 1: Einführung Was ist Bioimaging? Und was hat das mit Statistik zu tun? Seite 2 Seite 5 Pixel Seite 6 Bildgebung

Mehr

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann

StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha. Vorgetragen von Matthias Altmann StatStream : Statistical Monitoring of Thousands of Data Streams in Real Time Yunyue Zhu,Dennis Sasha Vorgetragen von Matthias Altmann Mehrfache Datenströme Beispiel Luft und Raumfahrttechnik: Space Shuttle

Mehr

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren Fourier-Spektroskopie Vortrag am 22.07.03 Elektrische und optische Sensoren Inhaltsverzeichnis 1. Einführung 2. Benötigte Grundlagen der Optik 3. Das Michelson-Interferometer 4. Probleme der Realisierung

Mehr

VAD - Voice Activity Detection -

VAD - Voice Activity Detection - VAD - - erstellt: Robert Schaar s63012 erstellt: Robert Schaar s63012 Mensch-Maschine-Robotik 1. Einleitung 2. Aufbau des Algorithmus 2.1. allgemeiner Aufbau 2.2. Fourier-Transformation 2.3. Short-Time

Mehr

Die Fourier Transformation und ihre Anwendungen in der Nachrichtentechnik

Die Fourier Transformation und ihre Anwendungen in der Nachrichtentechnik A FT I Anwendungen der Fourier-Transformation Die Fourier Transformation und ihre Anwendungen in der Nachrichtentechnik Die Fourier Transformation und damit der Zusammenhang zwischen Zeit und Frequenzbereich

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen PSPICE: Fourier-Analyse 12. Vorlesung Einführung 1. Vorlesung 8. Vorlesung: Inverter-Verstärker, einige Differenzverstärker, Miller-Verstärker 9. Vorlesung: Miller-Verstärker als

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB]

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] Schnelle diskrete Fourier-Transformation (Fast Fourier Transform FFT) Darstellung der Methode: Skriptum Kap. 3.3 und 3.4. Die Berechnungen

Mehr

Hauptseminar im Sommersemester 2012 Mathematische Bildverarbeitung (Vorbesprechung)

Hauptseminar im Sommersemester 2012 Mathematische Bildverarbeitung (Vorbesprechung) Hauptseminar im Sommersemester 2012 Mathematische Bildverarbeitung (Vorbesprechung) Juniorprof. Dr. Thorsten Raasch Johannes Gutenberg-Universität Mainz 21.02.2012 Inhalt der Vorbesprechung: Terminplanung

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, wie lineare

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

9 Verfahren der Zeit-Frequenz-Analyse. 9.1 Einführung und Grundlagen 9.1.1 Einführung

9 Verfahren der Zeit-Frequenz-Analyse. 9.1 Einführung und Grundlagen 9.1.1 Einführung 9 Verfahren der Zeit-Frequenz-Analyse 9.1 Einführung und Grundlagen 9.1.1 Einführung Für die Spektralanalyse mittels DFT war die Stationarität des Signals eine wichtige Voraussetzung. Dies führte dazu,

Mehr

Lab3 - Fourieranalyse von Signalen

Lab3 - Fourieranalyse von Signalen 1 Einleitung Lab3 - Fourieranalyse von Signalen M. Brandner, C. Wallinger Die spektrale Analyse deterministischer und zufälliger Signale ist von zentraler Bedeutung in der Messtechnik, da sehr viele interessante

Mehr

Bachelorarbeit. Signaltrennung in akustischen Signalen

Bachelorarbeit. Signaltrennung in akustischen Signalen Universität Passau Fakultät für Informatik und Mathematik Bachelorarbeit zum Thema Signaltrennung in akustischen Signalen Verfasser: Florian Schlenker schlenke@fim.uni-passau.de Universität Passau Prüfer:

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Ordnungsanalyse

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Ordnungsanalyse Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse Definition Beispiel Drehzahlerfassung Methode FFT Methode Ordnungs-FFT Methode Filter Zusammenfassung 2 Unter versteht man die Analyse

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Einfluß von Wind bei Maximalfolgenmessungen

Einfluß von Wind bei Maximalfolgenmessungen 1 von 5 05.02.2010 11:10 Der Einfluß von Wind bei Maximalfolgenmessungen M. KOB, M. VORLÄNDER Physikalisch-Technische Bundesanstalt, Braunschweig 1 Einleitung Die Maximalfolgenmeßtechnik ist eine spezielle

Mehr

Bildrekonstruktion & Multiresolution

Bildrekonstruktion & Multiresolution Bildrekonstruktion & Multiresolution Verkleinern von Bildern? Was ist zu beachten? Es kann aliasing auftreten! Das Abtasttheorem sagt wie man es vermeidet? ===> Page 1 Verkleinern von Bildern (2) Vor dem

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Analogmultiplexer als Amplitudenmodulatoren

Analogmultiplexer als Amplitudenmodulatoren Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit

Mehr

3 Diskrete Fourier-Transformation

3 Diskrete Fourier-Transformation 33 3 Diskrete Fourier-Transformation Inhalt 3 Diskrete Fourier-Transformation... 33 3. Grundlagen... 34 3.. Diskrete Fourier-Transformation... 34 3..2 Eigenschaften der diskreten Fourier-Transformation...

Mehr

Stochastic Sampling als Messprinzip

Stochastic Sampling als Messprinzip Stochastic Sampling als Messprinzip Ehrenkolloquium Frau Prof. Dr.-Ing. habil. Erika Müller 21.09.2012, Universität Rostock Holger Nobach Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

III Verarbeitung und Analyse akustischer Signale

III Verarbeitung und Analyse akustischer Signale Verarbeitung und Analyse akustischer Signale 73 III Verarbeitung und Analyse akustischer Signale III.1 Aufnahme- und Wiedergabetechnik: Bestandteile der Übertragungskette Die Aufnahme, Analyse, Verarbeitung

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

Spektralanalyse

Spektralanalyse 4. Spektralanalyse Die Spektralanalyse ermittelt, welche Beiträge die einzelnen Frequenzen zu einem Signal liefern. Je nach Art des Zeitsignals wird der Frequenzgehalt durch die Fourier-Transformation,

Mehr

Visual Computing Filtering, Fourier Transform, Aliasing

Visual Computing Filtering, Fourier Transform, Aliasing Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Zu loesen bis: 16. Mai 2006 Prof. M. Gross Remo Ziegler / Christian Voegeli / Daniel Cotting Ziele Visual Computing

Mehr

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Zusammenfassung Mit Hilfe von 1D 1 H- und 13 C-NMR-Spektren und gegebener Summenformel wird die Primärstruktur eines unbekannten

Mehr

Innovationen in Prognoseverfahren und deren Anwendung

Innovationen in Prognoseverfahren und deren Anwendung AG Prognoseverfahren der GOR Innovationen in Prognoseverfahren und deren Anwendung Prof. em. Dr. Klaus Spicher, Iserlohn Ingoldstadt, 8./9. Juni 2015 1 Hinweis /Disclaimer Alle im Vortrag verwendeten Daten

Mehr

THz Physik: Grundlagen und Anwendungen

THz Physik: Grundlagen und Anwendungen THz Physik: Grundlagen und Anwendungen Inhalt: 1. Einleitung 2. Wechselwirkung von THz-Strahlung mit Materie 3. Erzeugung von THz-Strahlung 3.1 Elektronische Erzeugung 3.2 Photonische Erzeugung 3.3 Nachweis

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Forelsalung Inhaltsverzeichnis: hea Unterpunkt Seite Modulation allgeein Deinition 7- Frequenzultiplex 7- Zeitultiplex 7- Übersicht Modulationsverahren Aplitudenodulation (AM) 7-3 Winkelodulation (WM)

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Mathematik und Musik: Fourieranalyse

Mathematik und Musik: Fourieranalyse Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2

Mehr

Beschreibung im Frequenzbereich (1)

Beschreibung im Frequenzbereich (1) Beschreibung im Frequenzbereich (1) Wir betrachten die folgende Aufgabenstellung: Ein Nachrichtensignal q(t), dessen Spektrum Q(f) auf den Bereich ±B NF bandbegrenzt ist, soll mit Hilfe einer harmonischen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr