Kapitel 6: Unüberwachtes Lernen. Maschinelles Lernen und Neural Computation

Größe: px
Ab Seite anzeigen:

Download "Kapitel 6: Unüberwachtes Lernen. Maschinelles Lernen und Neural Computation"

Transkript

1 Kaptel 6: Unüberwachtes Lernen 107

2 Clusterng Gegeben: ene Menge von Punkten (Bespelen), ungelabelt (.e. Klasse unbekannt) Gesucht: ene Menge von Clustern (Cluster- Zentren), de de Daten möglchst gut beschreben ( Vektorquantserung ) k mnmere 2 D = ( x ) j w = 1 j: x C (Summe der Abstände zu allen Zentren, quadratscher Quantserungsfehler) j 108

3 K-means Clusterng Gradentenverfahren D w = 0 w = x n new 1 j= 1 Neues Cluster-Zentrum st Mttelwert der Punkte m Cluster Mehrere Iteratonen notwendg n j 109

4 Clusterng als NC: Compettve Learnng Archtektur we Perceptron Setze Gewnner auf 1, alle anderen auf 0 Wähle Gewnner (am stärksten aktverte Unt) n ( ) = 2 x j f x wj = 1 f... Gauss; we RBFN wnner-take-all Gewnner lernt (Instar Regel): Δw = η( x w ) j j 110

5 Matlab>demos>neural networks>other demos>chapter 14>compettve learnng Geometrsche Interpretaton Gewchtsvektoren und Inputs snd Punkte m Raum Gewnner wählen = fnde nähesten Gewchstvektor Instar: Zehe Gewchtsvektor zu Input hn Resultat: Gruppen n den Daten werden gefunden Input stochastsche Varante von k-means! 111

6 Egenschaften Clusterng nach k-means st Gauss sches Clusterng (symmetrsche Streuung) Auftelung des Raumes: Vorono Tesselaton Möglche Probleme: Lokale Mnma (be schlechter Intalserung) Verzerrung durch Ausresser 112

7 Netlab>demgmm1.m Clusterng wrd als Dchteschätzung betrachtet p ( x ) j = Gaussan Mxtures als Clusterng ( x μ ) k 2 π j exp 2 = 1 2πσ 2σ Anschrebbar we Klassfkatonsproblem: Gaussvertelung Pror (π ) Posteror des Clusters p ( ) ( x j ω ) P( ω ) P ω x j = p( x j ) EM-Algorthmus (max. Lkelhood): μ new n k = 1 = n P k = 1 ( ω x, μ ) P ( ω x, μ ) k k x k Dchte (GMM) Gewchteter Mttelwert, analog zu k-means 113

8 Vortele der GMM Vortele: Probabltscher Rahmen Zugehörgket zu Clustern angebbar (Posteror) Ausgeprägthet von Clustern bestmmbar Modellauswahl möglch (anhand der Lkelhood) k-means: optmale Anzahl der Clusters ncht lecht bestmmbar 114

9 Netlab>demgmm3.m, demgmm4.m Erweterungen Erweterung auf belebge Gauss- Vertelungen möglch K-means: entsprcht Mahalonobs Dstanz (berückschtgt Varanzen nnerhalb der Cluster) Gewöhnlche (sphärsche) Gauss-Funktonen Belebge Gauss-Funktonen 115

10 Ncht-Gauss sches Clusterng Nur als Mxture von Gauss schen Zentren beschrebbar Wenn natürlche Cluster gefunden werden sollen: Nur parametrsch möglch (d.h. Form der Cluster bekannt) Ansonsten: Identfkatonsproblem 116

11 Andere Formen des Clusterng Andere Dstanz-(Ähnlchkets-)Maße z.b. Manhattan-Dstanz, Rankng Andere Fehler-(Krterums-)Funktonen z.b. Kohäson nnerhalb des Clusters, Entrope Herarchsches Clusterng Dendrogramme ART mt verschedenen Vglanzen 117

12 Selforganzng Maps (SOM) Kohonen (1981, 1990) Nachbarschaft defnert We CL: wnner-take-all, Instar Aber Nachbarn lernen mt Δw j = ηn ( x, x )( x w ) j wn j Nachbarschaftsfunkton, wrd m Laufe des Tranngs Klener (Stablserung) 118

13 Venet2>uebung4.exe; Matlab>demos>2dm. selforganzng map SOM: Geometrsche Interpretaton 3x3 SOM Topologsche Bezehung der Clusters blebt wetgehend bestehen Benachbarte Unts entsprechen benachbarten Clustern Datenraum wrd auf de 2-dm. Struktur abgebldet ( Karte ) Dent zur Vsualserung hochdmensonaler Daten 2-dm. Struktur wrd n den hochdmensonalen Raum engepasst - Projekton 119

14 Bespel: poltsche Konflkte Daten: Konflkte und Vermttlungsversuche set 1945 (Bercovtch & Langely 1993) 6 Dmensonen: Dauer Poltsche Macht A Poltsche Macht B Poltsche Rechte B Intator Vermttlunsgerfolg 2 dm. Vsualserung 120

15 SOM Durch schlechte Intalserung kann k-means zu sub-otpmalen Lösungen führen (lokales Mnmum) SOM: durch Mtzehen der Nachbarn wrd der Datenraum besser abgedeckt (lokale Mnma können vermeden werden) Zusätzlch: Topologsche Bezehung Mehr Zentren n Berechen hoher Dchte 121

16 Multdmensonale Skalerung Aufgabe: Blde hochdmensonale (n-d) Daten auf nedrge Dmensonaltät (k-d) ab, sodaß Abstände zwschen den Punkten annähernd glech bleben (Dmensonsredukton) Funktonert gut, wenn Daten auf k-dm. Manngfaltgket legen (z.b. gekrümmte Fläche) 122

17 SOM als MDS MDS entsprcht dem Prnzp der topologschen Erhaltung n der SOM SOM st Clusterng + MDS (mt Verzerrung abh. von Dchte)! Berech Berech 2 123

18 Topologsche Darstellung Zwschenzustände durch Gewchtung mttels Dstanz zu Zentren Ausgeprägte Grenzen darstellbar (U-Map, Ultsch) 124

19 Alternatve: Sammon Mappng Mnmere Dfferenz aller Abstände: Abstand D = ( d( x ) ( ), x j d x, x j d( x, x ) j< Orgnalpunkte Nachtel: hoher Berechnungsaufwand Lösung: zuerst Clusterng, dann Sammon Mappng (wenger Punkte); Flexer 1996 Aber: Gleche Probleme mt lokalen Mnma we k-means ~ j ~ 2 Punkte n der Map Normalserung 125

20 Probleme der SOM Kene probablstsche Beschrebung Konvergenz ncht garantert Es gbt kene Fehlerfunkton, de mnmert wrd! Clusterng und MDS beenflussen enander (bedes kann suboptmal sen) Es st schwer abschätzbar, ob SOM gut st oder ncht Empfehlung: SOM nur zur Vsualserung ensetzen! (ncht zum Clusterng oder für überwachte Probleme) Genau überlegen, was Krterum st; Alternatven suchen 126

21 Netlab>demgtm1.m, demgtm2.m Generatve Topographc Mappng (GTM) Bshop et al. (1996) Nchtlneares Mappng von ener Gtterstruktur auf ene Gaussan Mxture (z.b. durch MLP) Zentrum abh. von Gtterpunkt k π t p( t x,w) = exp = 1 2πσ GMM mt Randbedngungen Probablstsche Formulerung, umgeht vele der Probleme der SOM ( y( x, W) ) 2σ 2 2 Aus Bshop et al. (1996), Neural Computaton 10(1), Aus Netlab Demo demgtm2.m 127

22 Praktsche Aspekte Auch für unüberwachte Verfahren gelten m wesentlchen de 7 Schrtte: 1. Schtung (Ausreßer) 2. Vorverarbetung: Skalerung der Merkmale beenflusst de Dstanz Normalserung 3. Merkmalsselekton: rrelevante Merkmale können Clusterng erschweren: 128

23 Kreuzvalderung für unüberwachtes Lernen 4. Modellschätzung mttels Kreuzvalderung: be k-means problematsch be GMM: Lkelhood-Funkton als Fehlerfunkton ( Loss -Funkton) 129

24 Kombnaton von überwachtem mt unüberwachtem Lernen Unüberwachte Verfahren allene egnen sch nur für unüberwachte Probleme! Be überwachtem Problem (gelabelte Daten) kann unüberwachtes Verfahren engesetzt werden als Intalserung Vorstrukturerung Bespele: SOM oder GTM als Intalserung enes RBFN Learnng Vector Quantzaton ARTMAP 130

25 Learnng Vector Quantzaton (LVQ) Kohonen (1990) Ordne Unts Klassen zu Δw = η x w Kf c, k = η (, k ) ( x) = k ( x w ) Kf c( x) k, k hnbewegen, wenn rchtge Klasse wegbewegen, wenn falsche Klasse nearest neghbor Verfahren mt Vektorquantserung (ncht jeder Tranngspunkt gespechert) Verglechbar mt Dchteschätzung der class-condtonals 131

26 Zusammenfassung Unüberwachte neuronale Netz-Verfahren rehen sch ebenfalls nahtlos n de Statstk Compettve Learnng = k-means GMM als probablstsches Clusterngverfahren SOM als Multdmensonale Skalerung + Clusterng, aber mt Problemen 132

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation

Kapitel 2: Klassifikation. Maschinelles Lernen und Neural Computation Kaptel 2: Klassfkaton Maschnelles Lernen und Neural Computaton 28 En enfacher Fall En Feature, Hstogramme für bede Klassen (z.b. Glukosewert, Dabetes a/nen) Kene perfekte Trennung möglch Entschedung: Schwellwert

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104 Kaptel 4: Unscherhet n der Modellerung Modellerung von Unscherhet Machne Learnng n der Medzn 104 Regresson Modellerung des Datengenerators: Dchteschätzung der gesamten Vertelung, t pt p p Lkelhood: L n

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation Kaptel 4: Lernen als Optmerung 71 Lernen als Funktonsoptmerung Gegeben: Fehlerfunkton (.a. neg. log Lkelhood) n z.b.: 2 E E ( ) ( ( ) W = f x ; W t ) n = 1 ( ) ( ( ) ( = + ) ( ( W t log f x t f x ) n ;

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Zusammenfassung Pfade Zusammenfassung: en Pfad --Y-Z- st B A E Blockert be Y, wenn Dvergerende Verbndung,

Mehr

Multi-Layer Networks and Learning Algorithms

Multi-Layer Networks and Learning Algorithms Mult-Layer Networks and Learnng Algorthms 16.12.03 Referent: Alexander Perzylo Betreuer: Martn Bauer Hauptsemnar: Machne Learnng 2 Überblck Mult-Layer Perceptron und Back-Propagaton Hopfeld Netze (Hebb-Regel)

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

5.3.3 Relaxationsverfahren: das SOR-Verfahren

5.3.3 Relaxationsverfahren: das SOR-Verfahren 53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr/Paul Prasse Domnk Lahmann Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte,

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 8. Übung (08.01.2008) Agenda Agenda Verglech Rasch-Modell vs. 2-parametrsches logstsches Modell nach Brnbaum 2PL-Modelle n Mplus Verglech

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Statistik Exponentialfunktion

Statistik Exponentialfunktion ! " Statstk " Eponentalfunkton # $ % & ' $ ( )&* +, - +. / $ 00, 1 +, + ) Ensemble von radoaktven Atomkernen Zerfallskonstante λ [1/s] Lebensdauer τ 1/λ [s] Anzahl der pro Zetenhet zerfallenden Kerne:

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Strategien zur Effizienzsteigerung Robustheitsbasierter Optimierungen

Strategien zur Effizienzsteigerung Robustheitsbasierter Optimierungen Prof. Dr.-Ing. habl. Deter Bestle Engneerng Mechancs and Vehcle Dynamcs Strategen zur Effzenzstegerung Robusthetsbaserter Otmerungen Motvaton Redukton des Suchraumes aufgrund von Otmerungsnebenbedngungen

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

1.1 Beispiele zur linearen Regression

1.1 Beispiele zur linearen Regression 1.1. BEISPIELE ZUR LINEAREN REGRESSION 0 REGRESSION 1: Multple neare Regresson 1 Enführung n de statstsche Regressonsrechnung 1.1 Bespele zur lnearen Regresson b Bespel Sprengungen. Erschütterung Funkton

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Graphsche Modelle els Landwehr Überblck Graphsche Modelle: Syntax und Semantk Graphsche Modelle m Maschnellen Lernen Inferenz n Graphschen

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik

Lineare Regression Teil des Weiterbildungskurses in angewandter Statistik 0 Lneare Regresson Tel des Weterbldungskurses n angewandter Statstk der ETH Zürch Folen Werner Stahel, September 2017 1.1 Bespele zur lnearen Regresson 1 1 Enführung n de statstsche Regressonsrechnung

Mehr

2.1 Einfache lineare Regression 31

2.1 Einfache lineare Regression 31 .1 Enfache lneare Regresson 31 Regressonsanalyse De Regressonsanalyse gehört zu den am häufgsten engesetzten multvaraten statstschen Auswertungsverfahren. Besonders de multple Regressonsanalyse hat große

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren

Mehrfachregression: Einfluss mehrerer Merkmale auf ein metrisches Merkmal. Designmatrix Bestimmtheitsmaß F-Test T-Test für einzelne Regressoren Mehrfachregresson: Enfluss mehrerer Merkmale auf en metrsches Merkmal Desgnmatrx Bestmmthetsmaß F-Test T-Test für enzelne Regressoren Mehrfachregresson Bvarat: x b b y + = 0 ˆ k k x b x b x b b y + + +

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayessches Lernen Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte

Ökonomische und ökonometrische Evaluation. 1.3 Ökonometrische Grundkonzepte Ökonomsche und ökonometrsche Evaluaton 90 Emprsche Analyse des Arbetsangebots Zele: Bestmmung von Arbetsangebotselastztäten als Test der theoretschen Modelle Smulaton oder Evaluaton der Wrkungen von Insttutonen

Mehr

Bayessches Lernen (3)

Bayessches Lernen (3) Unverstät Potsdam Insttut für Informatk Lehrstuhl Maschnelles Lernen Bayessches Lernen (3) Chrstoph Sawade/Nels Landwehr Jules Rasetaharson Tobas Scheffer Überblck Wahrschenlchketen, Erwartungswerte, Varanz

Mehr

Klassifikation mit dem Perceptron von Rosenblatt. Vom Perceptron zum Multilagen-Perceptron. Error-Backpropagation Lernregel

Klassifikation mit dem Perceptron von Rosenblatt. Vom Perceptron zum Multilagen-Perceptron. Error-Backpropagation Lernregel Neuronale Verfahren zur Funktonsaromaton Klassfkaton mt em Percetron von Rosenblatt Vom Percetron zum Multlagen-Percetron Error-Backroagaton ernregel Raale Bassfunktonen-Netze PD Dr Martn Stetter, Semens

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

3 Das Lanczos Verfahren

3 Das Lanczos Verfahren Computatonal Physcs III, SS 2014, c Burkhard Bunk, HU Berln 13 3 Das Lanczos Verfahren 3.1 Idee Ausgehend von enem (normerten) Startvektor v 0 soll durch wederholtes Anwenden der (hermteschen) Matrx A

Mehr

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit BINARY CHOICE MODELS 1 mt Pr( Y = 1) = P Y = 0 mt Pr( Y = 0) = 1 P Bespele: Wahlentschedung Kauf langlebger Konsumgüter Arbetslosgket Schätzung mt OLS? Y = X β + ε Probleme: Nonsense Predctons ( < 0, >

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem 1 Problem Technsche Unverstät München Zentrum Mathematk Dskrete Optmerung: Fallstuden aus der Praxs Barbara Wlhelm Mchael Rtter Das Cuttng Stock-Problem Ene Paperfabrk produzert Paperrollen der Brete B.

Mehr

Entscheidungstheorie Teil 3. Thomas Kämpke

Entscheidungstheorie Teil 3. Thomas Kämpke Entschedngstheore Tel 3 Thomas Kämpke Sete Entschedngstheore Tel 3 Inhalt St. Petersbrg Paradoon (Bernoll 73) Präferenzfnktonen ttelpnktsmethode zr Bestmmng von Wertfnktonen über Intervallen (endmensonal)

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheore Wntersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabrele Helga Franke Deskrptve Statstk 4-1 bs 4-2 1 GHF m WSe 2008 / 2009 an der HS MD-SDL(FH) m

Mehr

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt:

(Theoretische) Konfidenzintervalle für die beobachteten Werte: Die Standardabweichung des Messfehlers wird Standardmessfehler genannt: (Theoretsche Konfdenzntervalle für de beobachteten Werte: De Standardabwechung des Messfehlers wrd Standardmessfehler genannt: ( ε ( 1- REL( Mt Hlfe der Tschebyscheff schen Unglechung lassen sch be bekanntem

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesun. nführun. Bldverarbetun 3. Morpholosche Operatonen 4. Bldsementerun 5. Merkmale von Obekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Beweunsanalyse aus Bldfolen 9. PCA Hauptkomponentenanalyse.ICA

Mehr

Automotive Auswertung der Betriebserfahrung zum Zuverlässigkeitsnachweis sicherheitskritischer Softwaresysteme. S. Söhnlein, F.

Automotive Auswertung der Betriebserfahrung zum Zuverlässigkeitsnachweis sicherheitskritischer Softwaresysteme. S. Söhnlein, F. Auswertung der Betrebserfahrung zum Zuverlässgketsnachwes scherhetskrtscher Softwaresysteme Unverstät Erlangen-Nürnberg Unverstät Erlangen-Nürnberg Sete 1 Glederung Motvaton Grundlagen des statstschen

Mehr

Vorlesung: Multivariate Statistik für Psychologen

Vorlesung: Multivariate Statistik für Psychologen Vorlesung: Multvarate Statstk für Psychologen 3. Vorlesung: 14.04.2003 Agenda 1. Organsatorsches 2. Enfache Regresson. Grundlagen.. Grunddee und Zele der enfachen Regresson Bespele Statstsches Modell Modell

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Temperaturabhängigkeit der Beweglichkeit

Temperaturabhängigkeit der Beweglichkeit Temperaturabhänggket der Beweglchket De Beweglchket nmmt mt zunehmender Temperatur ab! Streuung mt dem Gtter! Feldabhänggket der Beweglchket Für sehr hohe Feldstärken nmmt de Beweglchket n GaAs ab! Feldabhänggket

Mehr

Beschreibung von Vorgängen durch Funktionen

Beschreibung von Vorgängen durch Funktionen Beschrebung von Vorgängen durch Funktonen.. Splnes (Sete 6) a +b c Zechenerklärung: [ ] - Drücken Se de entsprechende Taste des Graphkrechners! [ ] S - Drücken Se erst de Taste [SHIFT] und dann de entsprechende

Mehr

Numerische Methoden II

Numerische Methoden II umersche Methoden II Tm Hoffmann 23. Januar 27 umersche Bespele umersche Methoden zur Approxmaton von Dervatpresen: - Trnomsche Gttermethode - Implzte Fnte Dfferenzen - Explzte Fnte Dfferenzen - Crank-colson

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2 Übungen zur Vorlesung Physkalsche Chee 1 B. Sc.) Lösungsorschlag zu Blatt Prof. Dr. Norbert Happ Jens Träger Soerseester 7. 4. 7 Aufgabe 1 a) Aus den tabellerten Werten ergbt sch folgendes Dagra. Btte

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr

Vorlesung Programmieren II

Vorlesung Programmieren II Hashng Vorlesung Prograeren II Mchael Bergau Fortsetzung der Stoffenhet Hashng Hashng 2 Was st Hashng? Hashng st ene Methode zur dynaschen Verwaltung von Daten, wobe de Daten durch enen Schlüssel (key)

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Wahl auf Bäumen: FireWire

Wahl auf Bäumen: FireWire Wahl auf Bäumen: FreWre IEEE 94 Hgh Performance Seral Bus (FreWre) Internatonaler Standard Hochgeschwndgketsbus Transport von dgtalen Audo- und Vdeo-Daten 400 Mbps (94b: 800 MBps... 3200 Mbps) Hot-pluggable

Mehr

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung)

Sind die nachfolgenden Aussagen richtig oder falsch? (1 Punkt pro korrekter Beantwortung) LÖSUNG KLAUSUR STATISTIK I Berufsbegletender Studengang Betrebswrtschaftslehre Sommersemester 016 Aufgabentel I: Theore (10 Punkte) Snd de nachfolgenden Aussagen rchtg oder falsch? (1 Punkt pro korrekter

Mehr

Hocheffiziente Antwortflächenverfahren für die probabilistische Simulation und Optimierung unter Anwendung des Gauss-Prozesses

Hocheffiziente Antwortflächenverfahren für die probabilistische Simulation und Optimierung unter Anwendung des Gauss-Prozesses In1 Hocheffzente Antwortflächenverfahren für de probablstsche mulaton und Optmerung unter Anwendung des Gauss-Prozesses Dr.-Ing. The-Quan Pham OptY e.k. Aschaffenburg Dr.-Ing. Alfred Kamusella Insttut

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Einführung in die Methode der Finiten Elemente

Einführung in die Methode der Finiten Elemente Enührung n de Methode der Fnten Elemente Hrro Schmelng Geophys. Semnr 11. 5. 04 Hstore - Ingeneurwssenschten, Strukturmechnk - Mthemtk/Physk: llg. Theore, nwendbr u belebge prtelle Derentlglechungen PDG

Mehr

14 Exakte Statistik nichtwechselwirkender Teilchen

14 Exakte Statistik nichtwechselwirkender Teilchen Woche 4 Exakte Statstk nchtwechselwrkender Telchen 4 Bose-Ensten Statstk Engeführt von Satyendra ath Bose 924) für Photonen von A Ensten für massve Telchen 925) Voraussetzung: Bosonen Telchen mt ganzzahlgen

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

Computergestützte Gruppenarbeit

Computergestützte Gruppenarbeit Computergestützte Gruppenarbet 8. Undo von Operatonen Dr. Jürgen Vogel European Meda Laboratory (EML) Hedelberg SS 2006 0 CSCW SS 2006 Jürgen Vogel Inhalt der Vorlesung 1. Enführung 2. Grundlagen von CSCW

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesung. Enführung. Bldverarbetung 3. Morphologsche Operatonen 4. Bldsegmenterung 5. Merkmale von Objekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Bewegungsanalyse aus Bldfolgen

Mehr

HUMBOLDT-UNIVERSITÄT ZU BERLIN. Institut für Informatik Lehrstuhl Wissensmanagement. Cluster-Analyse. Tobias Scheffer Ulf Brefeld

HUMBOLDT-UNIVERSITÄT ZU BERLIN. Institut für Informatik Lehrstuhl Wissensmanagement. Cluster-Analyse. Tobias Scheffer Ulf Brefeld HUMBOLDT-UNIVRSITÄT ZU BRLIN Insttut für Inforatk Lehrstuhl Wssensanageent Cluster-Analyse Tobas Scheffer Ulf Brefeld Cluster-Analyse ntdecken von Gruppen enander ähnlcher Tete, enander ähnlcher Wörter.

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Collaboratve Flterng Lteratur Benjamn Marln: Collaboratve Flterng A Machne Learnng Perspectve. Thomas Hofmann: Collaboratve Flterng wth P Prvacy va Factor Analyss. Robert

Mehr

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper Raometrsche Kalbrerung Tratoneller Ansatz Kalbrerung aus mehreren Blern Behanlung von übersteuerten Blern Zweck Das Antwortverhalten es Systems Kamera Framegrabber st ncht mmer lnear Grauwerte sn ncht

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

Verteilungen, sondern nur, wenn ein. Eignet sich nicht bei flachen. Bei starker Streuung wenig. Wert eindeutig dominiert.

Verteilungen, sondern nur, wenn ein. Eignet sich nicht bei flachen. Bei starker Streuung wenig. Wert eindeutig dominiert. Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 Kenngrössen der Statstk Für de Auswertung von Datenrehen werden verschedene Kenngrössen

Mehr

Freiformkurven und -flächen

Freiformkurven und -flächen Freformkurven und -flächen Motvaton Freformkurven- und Freformflächentechnken haen n den letzten Jahren ene große Bedeutung für de Entwcklung zw. den Ausau von CAD/CAM-Systemen gewonnen. Deses Kaptel stellt

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr