Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Größe: px
Ab Seite anzeigen:

Download "Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007"

Transkript

1 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen Zufallsvarablen ncht angemessen, wel so de Zusammenhänge zwschen den Varablen verloren gehen Häufg: glechzetge Betrachtung mehrerer Zufallsvarablen Bsp: - Körpergröße und Gewcht ener zufällg aus der Populaton herausgegrffenen Person - Konsumausgaben, Haushaltsenkommen und Sparguthaben enes zufällg ausgewählten Haushaltes - mehrere Aktenndzes (z B Dax, Dow Jones) - Augensumme und Augenprodukt bem Werfen zweer Würfel usw De Varablen werden dabe ncht nur als n Zufallsvarablen angesehen, sondern auch als ene n-dmensonale Zufallsvarable 1

2 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Defnton: X = (X 1, X,, X n ) heßt n-dmensonale Zufallsvarable oder n-dmensonaler Zufallsvektor - Bvarate Vertelung: gemensame Wahrschenlchketsvertelung von zwe Zufallsvarablen oder de Vertelung ener zwedmensonalen Zufallsvarablen - Multvarate Vertelung: gemensame Wahrschenlchketsvertelung von dre und mehr Zufallsvarablen oder de Vertelung ener dre- und mehrdmensonalen Zufallsvarablen

3 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Mehrdmensonale dskrete Zufallsvarablen - Gemensame Wahrschenlchketsfunkton von X und Y: f ( x, y ) = P( X = x Y = Se gbt de Wahrschenlchketen an, mt der de Zufallsvarable X den Wert x und glechzetg Y den Wert y annmmt - Egenschaften der gemensamen Wahrschenlchketsfunkton: 0 f ( x, y ) 1 ( x, y ) = f 1 für alle und 3

4 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Gemensame Vertelung n Matrxform: y 1 y y y l x 1 x x x k p 11 p 1 p 1 p 1l p 1 p p p l p 1 p p p l p k1 p k p k p kl p 1 p p p k p 1 p p p l p = f ( x,, Randverte lungen f ( x ) = p = : p und f ( y ) = p = p 4

5 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Gemensame Vertelungsfunkton: F(x, = P(X x Y Se gbt an, mt welcher Wahrschenlchket de Zufallsvarable X Werte klener oder glech x und glechzetg de Zufallsvarable Y Werte klener oder glech y annmmt F berechnet man durch de Addton der gemensamen Wahrschenlchketsfunkton: F ( x, = f ( x, y ) x x y y F st ene Treppenfunkton, de von F(-, -) = 0 bs F(, ) = 1 stegt 5

6 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Multdmensonale stetge Zufallsvarablen Gemensame Dchtefunkton von X und Y: b f ( x, dydx = P( a < X b c < Y d) für a < b, c a d c Egenschaften der Dchtefunkton f: (1) f ( x, 0 < d () f ( x, dydx = 1 6

7 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Gemensame Vertelungsfunkton: Im stetgen Fall fndet man F durch de Integraton der gemensamen Dchtefunkton x F ( x, = f ( u, v) dvdu y F st stetg dfferenzerbar und stetg monoton von F (, ) = 0 bs (, ) = 1 Randvertelungen be stetgen Zufallsvarablen: De Randvertelung von X erhält man durch de Integraton über y f ( x) = f ( x, dy De Randvertelung von Y erhält man durch de Integraton über x f ( x) = f ( x, dx F 7

8 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Wahrschenlchketsntervall ener stetgen zwedmensonalen Zufallsvarablen: Gegeben se ene stetge zwedmensonale Zufallsvarable (X; Y) mt der Dchtefunkton f(x, Für de Wahrschenlchket, dass (X; Y) n das Intervall (a<x b und c<y d) fällt, glt: P ( a < X b, c < Y d) f ( x, dxdy d = c b a 8

9 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Bedngte Zufallsvertelungen und stochastsche Unabhänggket Bedngte Vertelungen geben de Auskunft über de Vertelung der enen Varablen unter der Bedngung, dass de ewels andere enen bestmmten Wert annmmt Der Stchprobenraum wrd durch de Angabe der Bedngung reduzert De Konstrukton der bedngten Vertelung st analog zur Konstrukton der bedngten Wahrschenlchketen für Eregnsse: Bedngte Wahrschenlchket: P( X P( X = x Y = y ) = x Y = y ) = P( Y = y ) für P ( Y = y ) > 0 9

10 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Bedngte Vertelung von X unter der Bedngung Y = y : f ( x, y ) f ( x, f ( x y ) = f ( y ) (dskreter Fall) f ( x = f ( (stetger Fall) Bedngte Vertelung von Y unter der Bedngung X = x : f ( x, y ) f ( y x ) = f ( x ) (dskreter Fall) f ( x, y ) f ( y x) = f ( x) (stetger Fall) Im dskreten Fall exstert für ede Ausprägung y ene bedngte Vertelung für X, entsprechend erhält man n bedngte Vertelungen für Y (n: Anzahl der Ausprägungen der Varablen X) Im stetgen Fall können de Zufallsvarablen X und Y unendlch vele Werte n enem Intervall annehmen, dementsprechend gbt es unendlch vele Möglchketen, enen x- bzw y-wert vorzugeben 10

11 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Stochastsche Unabhänggket De Unabhänggket von Zufallsvarablen lässt sch auf das Konzept der stochastschen Unabhänggket von Eregnssen zurückführen Wederholung: Zwe Eregnsse A und B snd stochastsch unabhängg, wenn das Entreten von A kenerle Enfluss auf das Entreten von B hat und umgekehrt formal: P(B A) = P(B) bzw P(A B) = P(A) oder: P(A B)=P(A) P(B) (Multplkatonssatz für unabhängge Eregnsse) Unabhänggket von Zufallsvarablen: De Zufallsvarablen X und Y heßen stochastsch unabhängg, wenn de gemensame Wahrschenlchkets- bzw Dchtefunkton gerade glech dem Produkt der beden Randvertelungen st: f x, y ) = f( x) f( y ) (dskreter Fall) f ( x, f ( x) f ( ( = (stetger Fall) 11

12 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Parameter von mehrdmensonalen Zufallsvarablen 1 Erwartungswerte Der Erwartungswert ener zwedmensonalen Vertelung wrd angegeben durch das Paar der Erwartungswerte der beden Randvertelungen E(X) und E(Y): k E ( X ) = μ x f ( x, y ) x E( Y) = μ = y = x p = = 1 l y p = = 1 E( X ) = μx = xf ( x) dx E( Y) = μy = yf ( dy y f ( x, y ) m dskreten Fall m stetgen Fall 1

13 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Varanzen De Streuung entlang der x-achse wrd durch de Varanz der Randvertelung von X gemessen: k σ x = ( x x ) p m dskreten Fall = 1 V ( X ) = μ V ( X ) x = ( x μ x ) f ( x) = σ dx m stetgen Fall Entsprechend wrd de Streuung entlang der y-achse durch de Streuung der Randvertelung Y gemessen: l σ y = ( y y ) p m dskreten Fall = 1 V ( X ) = μ V ( X ) y = ( y μ y ) f ( = σ dy m stetgen Fall 13

14 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Kovaranz Obge Erwartungswerte und Varanzen charakterseren nur de enzelnen Komponenten ener Vertelung für sch genommen, denn se rekurreren nur auf de Randvertelungen Se geben kene Informaton über den Zusammenhang zwschen X und Y Man benötgt en Maß, das de Tendenz angbt, mt der de Werte der ZV Y sch verändern, wenn de Werte der ZV X sch ändern und umgekehrt Ene Maßzahl für den stochastschen Zusammenhang st de Kovaranz: Cov ( X, Y ) = ( x μ )( y μ ) f ( x, y ) Cov( X, Y ) = ( x μ )( y μ ) f ( x, y dxdy x x y ) y m dskreten Fall m stetgen Fall Aus der Unabhänggket von Zufallsvarablen folgt das Verschwnden der Kovaranz (Cov(X,Y) = 0), Umkehrschluss st ncht möglch 14

15 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Korrelatonskoeffzent Korrelatonskoeffzent zwschen X und Y gbt Rchtung und Stärke des lnearen stochastschen Zusammenhangs zwschen X und Y an Korrelatonskoeffzent st defnert als der Quotent aus der Kovaranz und den beden Standardabwechungen von X und Y: ρ ( X, Y ) = Cov ( X, Y ) V ( X ) V ( Y ) = σ σ x xy σ y Korrelatonskoeffzent st en normertes Maß und legt stets zwschen -1 und +1 15

16 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS Regressonsanalyse Regressonsrechnung der deskrptven Statstk st von der Regressonsanalyse der schleßenden Statstk sorgfältg zu unterscheden In der deskrptven Statstk sollte de Regressonsgerade y = a + bx ren statstsch beschrebend nterpretert werden und sch nur auf den aktuell vorlegenden Datensatz bezehen Ene Aussage über enen fachwssenschaftlch begründeten Zusammenhang zwschen zwe Varablen X und Y, der auch ene allgemene Gültgket bestzen würde, sollte damt ncht verbunden werden Des blebt der Regressonsanalyse als Instrument der schleßenden Statstk vorbehalten Se betrachtet de Beobachtungswerte (x ; y ) als ene Stchprobe aus ener Grundgesamthet De Aufgabe der Regressonsanalyse st es, anhand von deser Stchprobe enen eventuellen Zusammenhang aufzuspüren, zu quantfzeren (dh zu schätzen) oder zu verwerfen (dh zu testen) 16

17 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Das enfache lneare Regressonsmodell 1 Schrtt: Spezfkaton der Varablen, de mtenander n ursächlcher Bezehung stehen Y = f(x) (dh ene Varable X beenflusst ene andere Varable Y) Schrtt: Festlegung der Funktonsform De enfachste Form st de lneare, ausgedrückt durch folgende Geradenglechung: Y(X) = α + βx (ökonomsche Glechung) Bespele: (1) Konsumfunkton von Keynes: C = α + βy verf (Der Gesamtwrtschaftlche Konsum C se ene Funkton des verfügbaren Enkommens Y verf ) () Kostenfunkton: K(X) = α + βx (De Produktonskosten K enes bestmmten Gutes seen ene lneare Funkton der Ausbrngungsmenge X) 17

18 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Um auch den anderen Enflüssen auf de Varable Y Rechnung zu tragen, modfzert der ökonometrsche Modellansatz den ökonomschen und fügt ene Störvarable U hnzu: Y(X) = α + βx + U (ökonometrsche Glechung) Für de Stchprobe schrebt man: y = α + βx + u für = 1,,, n y : endogene Varable (Regressand) x : exogene Varable (Regressor) u : latente Varable (Störvarable), u st ene Zufallsvarable, dadurch erhält das Modell sene stochastsche Komponente: de strenge Abhänggket Y von X wrd durch ene stochastsche Störung überlagert α und β snd Modellparameter oder Koeffzenten Das snd de wahren Werte, de unbekannt snd und unbekannt bleben Ihre Zahlenwerte können nur geschätzt werden, was de Hauptaufgabe der Regressonsanalyse darstellt ˆ α und ˆ β nennt man Schätzer oder Schätzparameter 18

19 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Schätzmethode der klensten Quadrate Das Zel der Schätzung besteht darn, ene Schätzgerade zu fnden, de der wahren (unbekannten) Regressonsgeraden möglchst nahe kommt Dre verschedene y-werte snd dabe zu unterscheden: Beobachtungswerte: y = α + βx + u Theoretsche Werte: ~ y = α + βx (legen auf der unbekannten Modellgeraden) Schätzwerte: yˆ = αˆ + ˆ βx (legen auf der geschätzten Geraden) Abwechungen der Schätzwerte von den Beobachtungswerten heßen Resduen: e = y yˆ 19

20 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Mt der Methode der klensten Quadrate wrd de Schätzgerade so bestmmt, dass de Summe der quadrerten Resduen mnmal wrd: SQR= T e = y yˆ ) = t= 1 ( ( y ˆ α ˆ βx ) Man bldet de partellen Abletungen von SQR und setzt se glech Null: SQR( ˆ, α ˆ) β = ˆ α SQR( ˆ, α ˆ) β = ˆ β ( y ( y ˆ α ˆ βx )( 1) = 0 ˆ α ˆ βx )( x ) = 0 Mt desem Glechungssystem (Normalglechungen) können de beden Schätzparameter bestmmt werden 0

21 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 Für de unbekannten Schätzparameter erhält man de Schätzformeln: ˆ β = Cov ( X, Y Var ( X ) ) αˆ = y ˆ β x Konfdenzntervalle Oft wrd man sch edoch n der Regressonsanalyse ncht mt Punktschätzungen der Parameter zufreden geben Man berechnet de Konfdenzntervalle für β : KONF ( ˆ β t ˆ σ β ˆ β + t ˆ σ ) = 1 α σˆ = Vˆ ( ˆ β ), t st aus der Tafel der t-vertelung mt n-k-1 Frehetsgraden zu entnehmen, mt α = Irrtumswahrschenlchket 1

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Statistische Datenanalyse und Optimierung

Statistische Datenanalyse und Optimierung Statstsche Datenanalyse und Optmerung.0.00 Glederung Vertelungsfunktonen Normalvertelung Normalvertelung mehrerer Vayrablen Abgeletete Vertelungen: χ -Vertelung, Student-t-Vertelung Statstsche ests Fehlerfortpflanzung

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Physikalisches Praktikum PAP 1 für Physiker (B.Sc.) September 2010

Physikalisches Praktikum PAP 1 für Physiker (B.Sc.) September 2010 Physkalsches Praktkum PAP 1 für Physker (B.Sc.) September 010 (Kurze) Enführung n de Grundlagen der Fehlerrechnung oder besser: Bestmmung von Messunscherheten Step nsde, lades & gentlemen, sad the museum

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007 Übung/Tutorate Statstk II: Schleßende Statstk SS 7 Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

F A C H H O C H S C H U L E W E D E L. Seminararbeit Informatik

F A C H H O C H S C H U L E W E D E L. Seminararbeit Informatik F A C H H O C H S C H U L E W E D E L Semnararbet Informatk n der Fachrchtung Wrtschaftsnformatk Themenberech Künstlche Intellgenz Thema Nr. 3 Dskrmnanzanalyse Engerecht von: Erarbetet m: Patrck Wolf Wedeler

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Lineare Regressionsanalyse mit SPSS

Lineare Regressionsanalyse mit SPSS Unverstät Trer Zentrum für Informatons-, Medenund Kommunkatonstechnologe (ZIMK) Bernhard Baltes-Götz Lneare Regressonsanalyse mt SPSS 850 800 750 Y 0 700 5 5 X 0 0 X 0 5 5 04 (Rev. 40804) Herausgeber:

Mehr

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3)

P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3) Kaptel 5: Inferenz m multplen Modell 5 Inferenz m multplen Modell 5. Intervallschätzung m multplen Regressonsmodell Analog zum enfachen Regressonsmodell glt: Dem Intervallschätzer der Parameter legt zugrunde,

Mehr

Kapitel 8: Graph-Strukturierte Daten

Kapitel 8: Graph-Strukturierte Daten Ludwg Maxmlans Unerstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscoery n Dtb Databases II m Wntersemester 2011/2012 Kaptel 8: Graph-Strukturerte

Mehr

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell

-2 Das einfache Regressionsmodell 2.1 Ein ökonomisches Modell Kaptel : Das enfache Regressonsmodell - Das enfache Regressonsmodell. En ökonomsches Modell Bespel: De Bezehung zwschen Haushaltsenkommen und Leensmttelausgaen Befragung zufällg ausgewählter Haushalte

Mehr

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik und hre Datenstrukturen 9-9....2 9. Zetplanung...2 9.. CPM... 3 9..2 PERT... 9..3 MPM... 5 9..4 Verglech zwschen CPM und MPM... 22 9.2 Ausblck: Kosten- und Kapaztätsplanung...23 9.3 Entschedungsnetzpläne...24

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

(Essentiell) τ-äquivalente Tests:

(Essentiell) τ-äquivalente Tests: (Essentell) τ-äquvalente Tests: τ-äquvalenz: Essentelle τ-äquvalenz: τ τ τ τ +λ Repräsentatonstheore (Exstenzsatz): De Tests,..., snd genau dann τ-äquvalent, wenn ene reelle Zufallsvarable η sowereellekonstantenλ,...,

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Kreditrisikomodelle und Diversifikation erschienen in: Zeitschrift für Bankrecht und Bankwirtschaft (ZBB), 14. Jahrgang, 2002, S.9-17.

Kreditrisikomodelle und Diversifikation erschienen in: Zeitschrift für Bankrecht und Bankwirtschaft (ZBB), 14. Jahrgang, 2002, S.9-17. 1 Kredtrskomodelle und Dversfkaton erschenen n: Zetschrft für Bankrecht und Bankwrtschaft (ZBB), 14. Jahrgang, 2002, S.9-17. Dr. oec. publ. Hans Rau-Bredow, Prvatdozent an der Unverstät Würzburg Kontakt:

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

Fähigkeitsuntersuchungen beim Lotpastendruck

Fähigkeitsuntersuchungen beim Lotpastendruck Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009 Qualtätsmerkmale

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Teil E: Qualitative abhängige Variable in Regressionsmodellen

Teil E: Qualitative abhängige Variable in Regressionsmodellen Tel E: Qualtatve abhängge Varable n Regressonsmodellen 1. Qualtatve abhängge Varable Grundlegendes Problem: In velen Fällen st de abhängge Varable nur über enen bestmmten Werteberech beobachtbar. Bsp.

Mehr

Lagrangesche Mechanik

Lagrangesche Mechanik Kaptel Lagrangesche Mechank De Newtonsche Mechank hat enge Nachtele. 1) De Bewegungsglechungen snd ncht kovarant, d.h. se haben n verschedenen Koordnatensystemen verschedene Form. Z.B., zwedmensonale Bewegungsglechungen

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Theoretische Grundlagen. Anhang: Softwareprofil, Modellbildungen und Aufbau der ASCII- Datendatei

Theoretische Grundlagen. Anhang: Softwareprofil, Modellbildungen und Aufbau der ASCII- Datendatei NEZD Verson 4. Programm zur Ausglechung und Analyse (Planung) zwedmensonaler terrestrscher Netze, relatver und absoluter GPS-Netze und zur GPS-Integraton heoretsche Grundlagen Anhang: Softwareprofl, Modellbldungen

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes Statstk Defnton: Entwcklung und Anwendung von Methoden zur Erhebung, Aufberetung, Analyse und Interpretaton von Daten. Telgebete der Statstk: - Beschrebende (deskrptve) Statstk - Wahrschenlchketsrechnung

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Statistische Regressionsmodelle

Statistische Regressionsmodelle Statstsche Regressonsmodelle Tel II: Verallgemenerte Lneare Modelle Werner Stahel Semnar für Statstk, ETH Zürch März 2005 / Ma 2008 Zweter Tel der Unterlagen zu enem Kurs über Regressonsmodelle, gehalten

Mehr

Ordered Response Models (ORM)

Ordered Response Models (ORM) Handout: Mkroökonometre Ordered Response Models Domnk Hanglberger - SS 28 Ordered Response Models (ORM) Ist de abhängge Varable ordnal skalert (d.h. hre Kategoren lassen sch n ene Rangrehenfolge brngen,

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 =

P(mindestens zwei gleiche Augenzahlen) = = 0.4 = = 120. den 5 vorbereiteten Gebieten drei auszuwählen: = 10. Deshalb ist 120 = Hochschule Harz Fachberech Automatserung und Informatk Prof. Dr. T. Schade Ft for Ab & Study - Aprl 2014 Lösungen zu den Aufgaben zu elementarer Wahrschenlchketsrechnung 1. a 12 11 10 9 = 33 = 0.102 20

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen. IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung

Mehr

Diplomprüfung für Kaufleute 2001/I

Diplomprüfung für Kaufleute 2001/I Dplomprüfung für Kaufleute 00/I Prüfungsfach: Unternehmensfnanzerung und Betrebswrtschaftslehre der Banken Thema : a) Warum st es trotz Rskoaverson der Markttelnehmer möglch, be der Bewertung von Optonen

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

Kapitel 3: Interpretation und Vergleich von Regressionsmodellen

Kapitel 3: Interpretation und Vergleich von Regressionsmodellen Kaptel 3: Interpretaton und Verglech von Regressonsmodellen 3. Interpretaton des lnearen Modells 3. Auswahl der unabhänggen Varablen 3.3 Fehlspezfkaton der funktonalen Form 3.4 Illustraton: De Erklärung

Mehr

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen.

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen. - 14.1 - Antrebstechnk Der technsche Stand der Antrebstechnk ener Volkswrtschaft läßt sch an hrem Exportantel am Gesamtexportvolumen aller Industreländer messen. Mt 27,7 % des gesamten Weltexportvolumens

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die "Schuldverschreibungen") unter dem

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die Schuldverschreibungen) unter dem Kondtonenblatt Erste Group Bank AG 24.04.2012 Daueremsson Erste Group Reale Werte Express II (Sere 211) (de "Schuldverschrebungen") unter dem Programm zur Begebung von Schuldverschrebungen an Prvatkunden

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Datenaufbereitung und Darstellung

Datenaufbereitung und Darstellung Datenaufberetung und Darstellung 1 Glederung: Zel der Datenaufberetung und Darstellung Datenverdchtung Tabellen und grafsche Darstellungen Darstellung unvarater Datenmengen Darstellung multvarater Daten

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten.

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten. Faktorwerte Da es das Zel der Faktorenanalyse st, de Zahl der Kennwerte zu reduzeren (aus velen Items sollen deutlch wenger Faktoren resulteren, st es nötg, Kennwerte für de Ausprägungen der Personen n

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr