Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert"

Transkript

1 R. Brnkmann Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen für de enzelnen Ergebnsse werden n ener Tabelle aufgelstet. Jedem der Zahlenpaare ( )... ( ) kann deren Augensumme zugeordnet werden. De relatven Häufgketen der Augensummen sollen mt der Wahrschenlchket hres Auftretens verglchen werden. Deser Sachverhalt soll n ener Tabelle und n enem Säulendagramm dargestellt werden. grüner Würfel blauer Würfel Tabelle: Augen summe zugehörges Ergebns abs. H rel. h P( X) ( ),7,8 ( );( ) 4,, 4 ( );( );( ),7,8 4 ( 4 );( );( );( 4 ) 4,, ( );( 4 );( );( 4 );( ) 4,,9 7 ( );( );( 4 );( 4 );( );( ) 8,4,7 8 ( ; ;4 4; ; ) ( ) ( ) ( ) ( ),7,9 9 4 ( );( 4 );( 4 );( ),, ( 4 );( );( 4) 8,9,8 ( );( ),, ( ) 8,,8 Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete von 9

2 R. Brnkmann Sete..8 Säulendagramm h, bzw p,8,,4,,,8,,4, Augensumme be Würfeln rel. Häufgket Wahrschenlchket De relatven Häufgketen für de enzelnen Augensummen wechen m Allgemenen ncht sehr stark von den berechneten Wahrschenlchketen ab. oraussetzung st natürlch ene entsprechend hohe Anzahl von ersuchen. De Zufallsvarable Werden zwe Würfel glechzetg geworfen, so st de Ergebnsmenge: E = {( );( );( );...;( ) } Ordnet man jedem Ergebns de Augensumme zu, dann erhalten wr ene Zufallsvarable n der Form: X = 4 X = 9 (( ) ) = X( ( ) ) ( ) ( ) {( ) ( ) ( )} ( ) X = 4 steht für das Ergebns: Augensumme glech 4, also für ; ; { } X = steht für das Ergebns: Augensumme glech, also für Zufallsvarable Unter ener Zufallsvarablen X enes Zufallsexpermentes versteht man ene Funkton, de jedem Ergebns e der Ergebnsmenge E deses Expermentes ene Zahl zuordnet. ( ) X:e X e n Analoge zur Funkton f mt f : x f(x) Wertetabelle ener Zufallsvarablen für den Wurf zweer Würfel, deren Augenzahl addert wrd. Ergebns ( ) ( ) ( ) ( ) ( ) ( )... ( ) ( ) ( ) X( e ) = x Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete von 9

3 R. Brnkmann Sete..8 Wahrschenlchketsvertelung Wrd bem werfen mt zwe Würfeln jedem Ergebns de Augensumme zugeordnet, so entsteht de Zufallsvarable X. Ordnet man nun jedem Wert deser Zufallsvarablen hre Wahrschenlchket zu, so entsteht ene Wahrschenlchketsvertelung (Wahrschenlchketsfunkton). De Wahrschenlchketsvertelung oder ertelung der Zufallsgröße kann man durch ene Tabelle und en Hstogramm darstellen. Tabelle: x P( X = x ) Hstogramm P(X=x),8,,4,,,8,,4, Augensumme Unter ener Wahrschenlchketsvertelung (Wahrschenlchketsfunkton) f der Zufallsvarablen X versteht man de Funkton f mt Wahrschenlchkets- vertelung f : x P( X = x ) Der Funktonswert f ( x) = P( X = ) dass X den Wert x annmmt. x gbt de Wahrschenlchket dafür an, Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete von 9

4 R. Brnkmann Sete 4..8 Funktonsdarstellung zum Bespel werfen zweer Würfel, deren Augensumme gebldet wrd. e x P( X = x ) ( ) ( ) / / ( ) / E X P( X = x ) Erwartungswert ener Wahrschenlchketsvertelung Mt Hlfe der Wahrschenlchket möchte man z. B. be lücksspelen Aussagen über den zu erwartenden ewnn bzw. erlust machen. Es stellt sch de Frage: Welchen ewnn pro Spel kann man be häufger Durchführung erwarten? Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete 4 von 9

5 R. Brnkmann Sete..8 Zur eranschaulchung betrachten wr weder de Augensumme der zwe Würfel. Man könnte en lücksspel daraus machen, ndem man folgende Regel aufstellt: Regel: De n enem Wurf errechte Augensumme wrd n ausgezahlt. Der Betreber des Spels muss sch natürlch edanken darüber machen, we hoch der Ensatz pro Spel sen muss, damt er kenen erlust erledet. Dazu muss er wssen, welchen Betrag er m Mttel pro Spel be sehr velen Spelen auszuzahlen hat. So hoch muss auch mndestens der Ensatz en. Ähnlch we be der Mttelwertbldung aus ener Häufgketsvertelung n der beschrebenden Statstk kann man durch Multplkaton der Auszahlungsbeträge mt hren Wahrschenlchketen enen Wert blden. Desen Wert nennen wr Erwartungswert. Für unser Bespel bedeutet der Wert 7, dass be ener hohen Anzahl von Spelen m Mttel 7 pro Spel auszuzahlen snd. ( = ) ( = ) x P X x x P X x = = 4 4 = 4 4 = = = = = = = = Erwartungswert E( X) = 7 Der Betreber des Spels muss also mndestens enen Ensatz von 7 pro Spel verlangen, damt er kenen erlust erledet. De Auszahlungsbeträge oder auch Ausspelungen entsprechen der Zufallsvarablen X mt den Werten:,, 4,,, 7, 8, 9,,, Nun betrachten wr das Spel aus der Scht enes Spelers, der pro Spel 7 Ensatz zahlen muss. Für hn berechnet sch der ewnn aus: ewnn = Ausspelung Ensatz. Der ewnn entsprcht nun ener Zufallsvarablen, de wr Y nennen, also Y mt den Werten: -, -4, -, -, -,,,,, 4, Damt lässt sch nun der Erwartungswert für den ewnn ermtteln. 4 4 E( Y) = = Der Erwartungswert für enen ewnn st. Das bedeutet, auf lange Scht gewnnt der Speler nchts. Aber er verlert auch nchts. De Chancen snd ausgeglchen. Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete von 9

6 R. Brnkmann Sete..8 Erwartungswert von X Merke: Hat ene Zufallsvarable X de Werte x ;x ;...;x dann heßt: ( ) = ( = ) + ( = ) + + n ( = n) = ( = x ) E X x P X x x P X x... x P X x x P X Erwartungswert von X Ist E(X) >, so nennt man das Spel günstg für den Speler. Ist E(X) =, so nennt man das Spel far. Ist E(X) <, so nennt man das Spel ungünstg (unfar) für den Speler. n n = Zuordnung endeutg, erwartungswert, mttelwert machen!!!!!! Bemerkungen zum Erwartungswert: Der Erwartungswert st der zu erwartende Mttelwert von X n ener Rehe von Zufallsversuchen. Während sch der Mttelwert ene röße aus der beschrebenden Statstk auf de ergangenhet bezeht, also auf Werte, de n ener Stchprobe tatsächlch aufgetreten snd, beschrebt der Erwartungswert ene röße, de sch auf de Zukunft bezeht, also auf ene röße, mt der auf lange Scht zu rechnen st. ( ) ( = ) Statt E X schrebt man auch μx oder kürzer μ. Statt P X x schrebt man auch p. We bem Mttelwert gehört auch der Erwartungswert n velen Fällen ncht zu den Werten de de Zufallsvarable X annehmen kann. Bespel: Auf dem Schulhof enes Berufskollegs fndet trotz erbotes hn und weder en nteressantes lücksspel statt. Spelregeln: Der Ensatz pro Spel beträgt. Der Speler setzt zuerst ene der Zahlen,,,...,. Anschleßend wrft er dremal mt enem Würfel. Fällt de gesetzte Zahl ncht, st der Ensatz verloren. Fällt de gesetzte Zahl enmal, so erhält er senen Ensatz zurück. Fällt de gesetzte Zahl zwemal, so erhält er den doppelten Ensatz. Fällt de gesetzte Zahl dremal, so erhält er den drefachen Ensatz. De wohl wchtgste Frage, de sch be desem Spel stellt, st de Frage nach den ewnnausschten. Des möchten alle Schüler und Schülernnen wssen, und zwar de, de spelen und de, de de Bank haben. Dese Frage lässt sch mt Hlfe der Wahrschenlchketsrechnung beantworten. De Zufallsvarable X st der Nettogewnn, das st der an den Speler auszuzahlende Betrag abzüglch des Ensatzes von. Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete von 9

7 R. Brnkmann Sete 7..8 Mt Hlfe des drestufgen Baumdagramms und der Pfadregel errechnet man de Wahrschenlchket für enen ewnn bzw. enen erlust. Es glt: = ewnn, = erlust. ( = ) x P X x,787 4,47,94,4 / / / / / / / / / / / / / / ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zur Berechnung der ewnnausschten multplzert man de Werte der Zufallsvarablen mt hren zugehörgen Wahrschenlchketen und addert de Ergebnsse: x P( X = x) x P( X = x) De errechnete Zahl von sagt aus, dass langfrstg, also be velen = Wederholungen des Spels en erlust von Euro pro Spel für den Speler zu erwarten st. 7 = Desen Betrag kassert natürlch de Bank. Man bezechnet das Spel aus desem = rund auch als unfar, da langfrstg ewnn und erlust ncht ausgeglchen 4 werden. 4 = ewnn und erlust wären be enem Mttelwert = Mttelwert von ausgeglchen. Das wäre dann en fares Spel. Das könnte man z.b. durch ene ewnnerhöhung errechen. Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete 7 von 9

8 R. Brnkmann Sete 8..8 Übung: Der Erwartungswert, be dem oben vorgestellten Würfelspel war E(X) = -. Das Spel st also unfar. We hoch müsste der Ensatz für en Spel sen, damt man das Spel als far bezechnen könnte? De Auszahlungen bleben vom Betrag her glech: Fällt de gesetzte Zahl ncht, st de Auszahlung. Fällt de gesetzte Zahl enmal, so st de Auszahlung. Fällt de gesetzte Zahl zwemal, so st de Auszahlung 4. Fällt de gesetzte Zahl dremal, so st de Auszahlung. Lösung: Far st das Spel dann, wenn auf lange Scht genau sovel ausgespelt wrd, we engenommen wrd. Dazu berechnen wr den Erwartungswert der Auszahlungen. E(X) = bedeutet, dass über lange Scht m Mttel pro Spel ausgezahlt wrd. Be enem Ensatz von ebenfalls pro Spel, st das Spel far. ( = ) ( = ) x P X x x P X x = 7 = 4 = = Erwartungswert E( X) = Übung: Jedes Los gewnnt! Be der Ab - Abschlussfeer muss jeder der Telnehmer en Los kaufen. Der. Pres hat enen Wert von, der. von und der. von. Jeder, der kenen deser ewnne bekommt, erhält enen Trostpres n Höhe von. We teuer müsste en Los sen, damt Ennahmen und Ausgaben überen stmmen? Jedes Los wrd für verkauft. Der Erlös geht ans Fredensdorf. We groß st der Erlös? überprüfen zehen ohne zurücklegen Lösung: Der Erwartungswert wrd x P X = x x P X = x berechnet: E(X) =,4 bedeutet, dass jedes Los, kosten muss, damt de Ausgaben gedeckt werden. Be enem Lospres von und verkauften losen entsteht en ewnn von (,4) = 8 Deser Betrag geht ans Fredensdorf. ( ) ( ) Erwartungswert E( X) =,4 Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete 8 von 9

9 R. Brnkmann Sete 9..8 Übung: Ene Urne enthält ene rote, ene schwarze und ene grüne Kugel. Es wrd solange ohne zurücklegen ene Kugel gezogen, bs ene grüne Kugel erschent. Wrd de grüne Kugel m. Zug gezogen, so st de Ausspelung. Wrd de grüne Kugel m. Zug gezogen, so st de Ausspelung. Wrd de grüne Kugel m. Zug gezogen, so st de Ausspelung We hoch muss der Ensatz sen, damt es sch um en fares Spel handelt? Lösung: Mt Hlfe des drestufgen Baumdagramms und der Pfadregel errechnet man de Wahrschenlchketen dafür ene grüne Kugel zu zehen. / Ausspelung Zug Ergebnsse P X / / ( g) / / ( sg );( rg) + = / / ( srg );( rsg) + = E( X) = + + =. Zug. Zug. Zug Der Erwartungswert der Ausspelung st E(X) =. Wenn es sch um en fares Spel handeln soll, muss der Ensatz ebenfalls betragen. Erstellt von R. Brnkmann p9_w_rechnung_.doc 7.8. :4 Sete 9 von 9

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

BA_T3Classic_IPO_v1.0 (Draft_B)_050719

BA_T3Classic_IPO_v1.0 (Draft_B)_050719 BA_T3Classc_IPO_v1.0 (Draft_B)_050719 Inhalt Inhalt...2 Machen Se sch mt Ihrem Telefon vertraut Wchtge Hnwese... 3 Ihr T3 Classc auf enen Blck... 6 T3 IP Telefon n Betreb nehmen (I5)... 7 Grundregeln für

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

BA_T3Compact_IPO_v1.0 (Draft_B)_050719

BA_T3Compact_IPO_v1.0 (Draft_B)_050719 BA_T3Compact_IPO_v1.0 (Draft_B)_050719 Inhalt Inhalt...2 Machen Se sch mt Ihrem Telefon vertraut Wchtge Hnwese... 3 Ihr T3 Compact auf enen Blck... 6 T3 IP Telefon n Betreb nehmen (I5)... 7 Grundregeln

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken!

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken! SEMINARPROGRAMME Abenteuer Führung Der Survval Gude für den ersten Führungsjob De erste Führungsaufgabe st ken Zuckerschlecken! Junge Hgh Potentals erkennen das schnell. Her taucht ene unangenehme Überraschung

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes Statstk Defnton: Entwcklung und Anwendung von Methoden zur Erhebung, Aufberetung, Analyse und Interpretaton von Daten. Telgebete der Statstk: - Beschrebende (deskrptve) Statstk - Wahrschenlchketsrechnung

Mehr

Messtechnik/Qualitätssicherung

Messtechnik/Qualitätssicherung Name, Vorname Matrkel-Nr. Studenzentrum Studengang Wrtschaftsngeneurwesen Fach Messtechnk/Qualtätsscherung Art der Lestung Prüfungslestung Klausur-Knz. WI-MQS-P 08053 Datum 3.05.008 Hnwes zur Rückgabe

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

Mathematik der Lebensversicherung ( Spezialwissen ) Klausur vom 24.10.2009

Mathematik der Lebensversicherung ( Spezialwissen ) Klausur vom 24.10.2009 DEUTSCHE AKTUARVEREINIGUNG e.v. Mathematk der Lebensverscherung ( Spezalwssen ) Klausur vom 4.0.009 De Klausur besteht aus 3 Aufgaben, de mt nsgesamt 80 Punkten bewertet werden. Um dese maxmale Punktzahl

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten.

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten. Faktorwerte Da es das Zel der Faktorenanalyse st, de Zahl der Kennwerte zu reduzeren (aus velen Items sollen deutlch wenger Faktoren resulteren, st es nötg, Kennwerte für de Ausprägungen der Personen n

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Diplomprüfung für Kaufleute 2001/I

Diplomprüfung für Kaufleute 2001/I Dplomprüfung für Kaufleute 00/I Prüfungsfach: Unternehmensfnanzerung und Betrebswrtschaftslehre der Banken Thema : a) Warum st es trotz Rskoaverson der Markttelnehmer möglch, be der Bewertung von Optonen

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

?? RUBRIK?? / 1 / Spezial

?? RUBRIK?? / 1 / Spezial ?? RUBRIK?? / 1 / Spezal carrere & more Semnarprogramm für Dozentnnen und Dozenten / 2 /?? RUBRIK?? Nveau st kene Handcreme! carrere & more Semnarprogramm für Dozentnnen und Dozenten S. 3 Vorwort S. 4

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten?

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten? Prof. Dr. Fredel Bolle 1 Prof. Dr. Fredel Bolle Vorlesung 1 Defnton: Kooperatves Spel En ooperatves Spel Γ st en Tupel (N,V), wobe der N = {1,...,m} mt m > 1 de Menge der Speler bezechnet und Was erwarten

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service.

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service. smart Center Esslngen Compact-Car GmbH & Co. KG Plochnger Straße 108, 73730 Esslngen Tel. 0711 31008-0, Fax 0711 31008-111 www.smart-esslngen.de nfo@smart-esslngen.de Wr nehmen Ihren smart nach velen Klometern

Mehr

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen - 99 BetrVG Enstellung Engrupperung Umgrupperung Versetzung 95 Abs. 3 BetrVG G 4 G 4 G 3 G 2 G 1 G 3 G 2 G 1 neue Arbetsverhältnsse Verlängerung befrsteter AV Umwandlung n unbefrstete AV Beschäftgung von

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft Fakultät für Wrtschaftswssenschaft Lehrstuhl für Volkswrtschaftslehre, nsb. Makroökonomk Unv.-Prof. Dr. Helmut Wagner Klausur: Termn: Prüfer: Makroökonome 2.03.20, 8.00-20.00 Uhr Unv.-Prof. Dr. Helmut

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Agentur für Arbeit Kompetenter Partner und Dienstleister

Agentur für Arbeit Kompetenter Partner und Dienstleister Workshop: Lebenswelten verstehen Stärken erkennen Unterstützung koordneren - Übergang Schule - Beruf M.Wagner, Agentur für Arbet Deggendorf 16. Ma 2013 BldrahmenBld enfügen: Menüreter: Bld/Logo enfügen

Mehr

Akademischer Lehrgang Video-Journalismus

Akademischer Lehrgang Video-Journalismus Akademscher Lehrgang Vdeo-Journalsmus www.wfwen.at WIFI Wen 200910 b www.wf.atwen l. e h r g a n g z u r w e t e r Fotograf: http:foto.frtz.st t g s f h 4 a 1. e m g l d u n g Das Fernsehen erlebt ene

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Abschlussprüfung Sommer 2011

Abschlussprüfung Sommer 2011 Termn: Mttwoch, 4. Ma 2011 Abschlussprüfung Sommer 2011 Fach nfo rm at ker/fach nform atker n Anwend ungsentwckl ung 1196 Wrtschaftsund Sozalkunde 26 Aufgaben 60 Mnuten Prüfungszet 100 Punkte Bearbetungshnwese

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr