QUADRATISCHE UND KUBISCHE FUNKTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "QUADRATISCHE UND KUBISCHE FUNKTION"

Transkript

1 QUADRATISCHE UND KUBISCHE FUNKTION Quadratische Funktion 1. Bedeutung der Parameter Als quadratische Funktionen werde alle Funktionen bezeichnet, die die Form y = a*x² + b*x + c aufweisen, also alle, bei denen das x hoch 2 vorkommt. Kommt das x in einer höheren Potenz vor (also hoch 3, 4, ), liegt keine quadratische Funktion mehr vor. Grundsätzlich verläuft jede quadratische Funktion (hoch 2) in 2 Richtungen, die Parameter a, b und c bestimmen den genauen Verlauf. a = Steigung des Graphen: ist a positiv, so steigt er, ist a negativ, so fällt der Graph. Je höher die Zahl von a, desto steiler nach oben/unten verläuft der Graph. b = Verschiebung des Graphen auf der x-achse: wenn man die Funktionsgleichung in die Scheitelform (z.b. (2x-3)² statt 4x²-12x+ bringt, dann ist die alleinstehende Zahl in der Klammer (in diesem Fall 3) die Verschiebung in x-richtung. Aus der normalen Form kann man die Verschiebung ohne weitere Schritte nicht sehen. Steht in der Scheitelform ein -, bedeutet das eine Verschiebung nach rechts, ein + würde eine Verschiebung nach links bedeuten. c = Verschiebung des Graphen auf der y-achse: ist c positiv, so schneidet der Graph die y- Achse im positiven Bereich, ist c negativ, so schneidet der Graph die y-achse im negativen Bereich. Den c-wert sieht man nur direkt aus der normalen Form (nicht aus der Scheitelform). a = 5 a = 1 y = (x+2)² oder x²+4x+4 y = (x+0)² = x² a = 1 2 a a = -1,5 y = (x-1)² oder x²-2x+1 Links ist b und c bei allen Graphen 0, rechts sind b und c Werte. Man sieht b aus der Scheitelform und c aus der normalen Form. Der Graph einer quadratischen Funktion ist immer eine Kurve und niemals eine Linie.

2 2. Berechnung der Nullstellen Die Schnittpunkte mit der x-achse heißen Nullstellen. Da alle Schnittpunkte auf der x-achse liegen müssen, müssen alle dazugehörigen y-werte dieser Nullstellen = 0 sein. Aus diesem Grund setzt man den y-wert einfach auf 0. Eine Funktion zweiten Grades kann maximal 2 (es können aber auch 1 oder 0 sein) Nullstellen besitzen. Diese kann man händisch oder mit speziellen Taschenrechnerbefehlen berechnen. Berechnen mit der Quadratischen Lösungsformel Man kann man die Gleichung mit einer der beiden Lösungsformeln berechnen. Falls man die kleine Lösungsformel verwendet, muss man beachten, dass vor dem x² keine Zahl steht und dass auf der rechten Seite 0 steht. Fall das nicht der Fall sein sollte, kann man entweder umformen oder die große Lösungsformel (aber auf hier muss auch auf der rechten Seite 0 stehen) verwenden. Kleine Lösungsformel Große Lösungsformel Gleichung: x² + px + q = 0 Gleichung: ax² + bx + c = 0 Lösung: x1,2 = - p 2 ± ( p 2 )2 q Lösung: x1,2 = b ± b² 4ac 2a p = Zahl vor dem x, q = Zahl ohne x a = Zahl vor dem x², b = Zahl vor dem x, c = Zahl ohne x Beispiel: y = x² - 6x + 5 = 0 Beispiel: y = 4x² + 3x - 8 p = -6, q = +5 a = +4, b = +3, c = -8 Lösung: x1,2 = - 6 ± ( 6 3 ± 3² 4 4 ( 8) 2 2 )2 5 Lösung: x1,2 = x1,2 = 3 ± 5 = 3 ± 4 x1,2 = x1 = = 7, x2 = 3-4 = -1 x1 = Mit dem TR-Befehl berechnen 3 ± , = 1,0; x2 = 3 11,7 8 = -1,84 Alle, die diesen oder einen ähnlichen Taschenrechner haben, können die Nullstellen auch mit einem Befehl lösen. Hierbei drückt man die y= Taste (links oben), gibt die gewünschte Gleichung ein und drückt auf Graph (rechts oben). Nun wird die Funktion gezeichnet. Jetzt kann man mehrere Befehle wählen, die direkt Nullstellen, Extremstellen, usw. berechnen. Für die Nullstellen drückt man auf 2nd- Trace (=Calc) und wählt den Punkt Zero. Dann wird nach einem left bound (einfach einen beliebigen Punkt links von der Nullstelle wählen und Enter drücken) und einem right bound (einfach einen beliebigen Punkt rechts von der Nullstelle wählen und Enter drücken) gefragt. Jetzt fragt der Rechner nach einem guess, und da drückt man einfach wieder Enter. 3. Zeichnen und Funktionsgleichung bestimmen Zum Zeichnen einer quadratischen Funktion müssen entweder die Funktionsgleichung oder Punkte gegeben sein.

3 Wenn die Funktionsgleichung gegeben ist Beispiel: y = 4x² + 2x 1 Punkte/Wertetabelle bestimmen: Man sucht sich beliebige x-werte (egal welche), setzt diese in die Gleichung ein und bekommt ein y heraus. Ein x-wert mit einem dazugehörigen y-wert ist dann ein Punkt P(x/y). Man kann das Ganze auch in einer Wertetabelle (rechts) darstellen. Die Wertetabelle kann auch der Taschenrechner anzeigen, indem man die Funktion bei y= eintippt und bei 2nd=> Graph (Table) die Tabelle anzeigen lässt. Zeichnung bestimmen: Zuerst ein Koordinatensystem erstellen und beschriften. Dann entweder Punkte einzeichnen und verbinden. Wenn die Punkte gegeben sind x y x y x y Beispiel: P1(3/0) P2(1/4) P3(8/12) Punkt x y Zeichnung bestimmen: Siehe Punkt oben: einfach Punkte einzeichnen und verbinden. Gleichung bestimmen: Man schreibt zuerst die allgemeine Gleichung y = ax²+bx+c auf. Dann setzt man den ersten Punkt für x und y ein => 1. Gleichung. Dasselbe macht man mit Punkt 2 und 3 => nun hat man 3 Gleichungen, die man entweder mit dem Einsetzungsverfahren (siehe dazu Zusammenfassung Gleichungssysteme) oder mit Matrix lösen kann. 1.) 0 = a*3² + b*3 + c => 0 = a+3b+c => umformen auf a => a = 3b c 2.) 4 = = a*1² + b*1 + c => 4 = 1a+1b+c 3.) 12 = = a*8² + b*8 + c => 12 = 64a+8b+c Nun wird der Ausdruck für a in die Gleichungen 2 und 3 eingesetzt: 4 = 3b c + b + c => vereinfachen (*) => 36 = -3b c + b + c => 36 = 6b + 8c 12 = 64* 3b c + 8b + c => 108 = 64*(-3b-c) + 72b + c => 108 = -12b 64c + 72b + c => 108 = -120b 55c Gleichung 2 und 3: 36 = 6b + 8c *20 => 720 = 120b + 160c 108 = -120b 55c => 108 = -120b 55c 828 = 105c => c = 7,8 Einsetzen in Gleichung 2: 36 = 6b + 8*7,8 => 36 = 6b + 63,0 => -27,0 = 6b => b = -4,51 Einsetzen in Gleichung 1: a = 3 ( 4,51) 7,8 => a = 0,63 => y = 0,63x² - 4,51x + 7,8 Oder mittels Matrix (einfach die Koeffizienten der 3 Gleichungen eintippen, Achtung: immer mit der Reihenfolge a, b, c, Zahl):,3,1,0 1,0,0,0.63 1,1,1,4 => rref => 0,1,0, ,8,1,12 0,0,1,7.8 Wenn die Zeichnung gegeben ist Punkte/Wertetabelle bestimmen: Die Punkte muss man ablesen. Gleichung bestimmen: Siehe Punkt oben.

4 Wenn die Nullstellen gegeben sind: Satz von Vieta Der Mathematiker François Viète hat herausgefunden, wie man von den Nullstellen auf die Gleichung kommt. Allerdings ist das nur für Gleichungen der Form y = x² + px + q (eigentlich die Gleiche Form wie y = x² + bx + c, nur heißt b => p und c => q, Achtung: der Koeffizient a muss 1 sein). Der Satz ist also für die Gleichung y = x² + 2x - 1, nicht aber für die Gleichung y = 4x² + 2x - 1 gültig (wegen dem a = 4). Der Satz von Vieta lautet: p = -(x1+x1) und q = x1*x2 x1 und x2 = Nullstellen Beispiel: Nullstellen: x1 = 2, x2 = 8 => p = -(x1+x1) => p = -(2+8) = -10 => q = x1*x2 => q = 16 => Gleichung: y = x² - 10x Ermittlung des Scheitels Der Scheitelpunkt ist jener Punkt, der ganz unten/oben ist (=Hochpunkt oder Tiefpunkt), bei dem der Graph von steigend auf fallend umdreht und umgekehrt. Es gibt 3 Möglichkeiten, diesen zu berechnen. 1.) Ermittlung als Hoch-/Tiefpunkt: Erste Ableitung 0 setzen (siehe dazu auch Zusammenfassung Kurvendiskussion => Hoch- und Tiefpunkt). 2.) Ermittlung als Punkt zwischen den 2 Nullstellen: der Scheitelpunkt ist immer genau zwischen den beiden Nullstellen. Wenn man also diese kennt, bekommt man den x-wert des Scheitels heraus, um den y-wert zu erhalten einfach in die Gleichung einsetzen. Beispiel: y = x² + x 6 => Nullstellen bei x = 2 und x = -3 => Abstand zwischen beiden = 5, halber Abstand = 2,5 => -3+2,5 = -0,5 => der Scheitel muss bei x = -0,5 sein => einsetzen => y = (-0,5)² - 0,5-6 = -5,75 => S(-0,5/-5,75) 3.) Ermittlung durch Scheitelform: man bringt die Gleichung in diese Form (x+ )², die Zahl in der Klammer (in diesem Fall ) ist der x-wert des Scheitels. Beispiel: y = x² - 4x + 8 => (x-2)² + 4 => -2 bedeutet, dass der Graph um 2 nach rechts verschoben ist => x-wert = +2 => einsetzen in y => y-wert = -4 => S(2/-4) Hinweis: Wie kommt man von x² - 4x + 8 auf (x-2)² + 4? Zuerst schaut man auf das x² und zieht die Wurzel => x. Dann schaut man auf das -4x. Man weiß durch das Minus, dass in der Klammer auch ein Minus stehen muss => (x- )². Das 4x ergibt sich aus 2*erster Ausdruck*zweiter Ausdruck, also 4x = 2*x* Deswegen muss der zweite Ausdruck 2 sein. Würde man dann (x-2)² ausrechen, so würde x² - 4x + 4 herauskommen, es fehlt also noch ein +4 hinten, um auf gesamt x² - 4x + 8 zu kommen. Kubische Funktion 1. Bedeutung der Parameter Als kubische Funktionen werde alle Funktionen bezeichnet, die die Form y = a*x³ + b*x² + c*x + d aufweisen, also alle, bei denen das x hoch 3 vorkommt. Kommt das höchste x in einer anderen Potenz vor (also hoch 2, 4, ), liegt keine kubische Funktion mehr vor. Grundsätzlich verläuft jede kubische Funktion (hoch 3) in 3 Richtungen, die Parameter a, b, c und d bestimmen den genauen Verlauf.

5 a = Steigung des Graphen: ist a positiv, so steigt er am Beginn und zum Schluss (in der Mitte fällt er), ist a negativ, so fällt der Graph im ersten und dritten Abschnitt und steigt in der Mitte. Je höher die Zahl von a, desto steiler nach oben/unten verläuft der Graph. b/c = Die Koeffizienten b und c sind für die Verschiebung des Graphen auf der x-achse, aber auch für die Steigung verantwortlich. d = Verschiebung des Graphen auf der y-achse: ist d positiv, so schneidet der Graph die y-achse im positiven Bereich, ist d negativ, so schneidet der Graph die y-achse im negativen Bereich. 2. Berechnung der Nullstellen Die Schnittpunkte mit der x-achse heißen Nullstellen. Da alle Schnittpunkte auf der x-achse liegen müssen, müssen alle dazugehörigen y-werte dieser Nullstellen = 0 sein. Aus diesem Grund setzt man den y-wert einfach auf 0. Eine Funktion dritten Grades kann maximal 3 (es können aber auch 2 oder 1 sein) Nullstellen besitzen. Diese kann man händisch oder mit speziellen Taschenrechnerbefehlen berechnen. Händisches Berechnen mit Polynomdivision 1. Erste Nullstelle raten: Ist in der Regel ein Teiler von d (= allein stehende Zahl). Also bei d = 6 einfach 1,2,3 und 6 einsetzen und probieren, ob für f(x) = 0 rauskommt. 2. Grundgleichung dividiert durch (x - [Erratener Wert]) [a*x 3 + b*x 2 + c*x + d] : [x-wert] Beispiel: (-5 = erratener Wert durch probieren) (x³ + 6x² + 3x - 10) : (x + 5) = x² + x - 2 -(x³ + 5x²) x² + 3x ergibt -(x² + 5x) -2x (-2x - 10) 0 Mit dem TR-Befehl berechnen y = -0.7x³ + 3x³ - 1.2x - 2 Vorgehensweise: Wie oft geht x in x³? x²mal. Dann x² hineinmultiplizieren: x²*x = x³ und x²*5 = 5x. Die beiden Werte unter die Gleichung schreiben, Vorzeichen wechseln und von der Gleichung abziehen. x³-x³ = 0 und 6x²-5x² = x². Nächste Stelle herunter. Wie oft geht x in x²? Gleiche Vorgehensweise wie oben Alle, die diesen oder einen ähnlichen Taschenrechner haben, können die Nullstellen auch mit einem Befehl lösen. Hierbei drückt man die y= Taste (links oben), gibt die gewünschte Gleichung ein und drückt auf Graph (rechts oben). Nun wird die Funktion gezeichnet. Jetzt kann man mehrere Befehle wählen, die direkt Nullstellen, Extremstellen, usw. berechnen. Für die Nullstellen drückt man auf 2nd-Trace (=Calc) und wählt den Punkt Zero. Dann wird nach einem left bound (einfach einen beliebigen Punkt links von der Nullstelle wählen und Enter drücken) und einem right bound (einfach einen beliebigen Punkt rechts von der Nullstelle wählen und Enter drücken) gefragt. Jetzt fragt der Rechner nach einem guess, und da drückt man einfach wieder Enter.

6 3. Zeichnen und Funktionsgleichung bestimmen Zum Zeichnen einer kubischen Funktion müssen entweder die Funktionsgleichung oder Punkte gegeben sein. Wenn die Funktionsgleichung gegeben ist Beispiel: y = 6x³ + 4x² + 2x 1 Punkte/Wertetabelle bestimmen: Man sucht sich beliebige x-werte (egal welche), setzt diese in die Gleichung ein und bekommt ein y heraus. Ein x-wert mit einem dazugehörigen y-wert ist dann ein Punkt P(x/y). Die Wertetabelle kann auch der Taschenrechner anzeigen, indem man die Funktion bei y= eintippt und bei 2nd=> Graph (Table) die Tabelle anzeigen lässt. Zeichnung bestimmen: Zuerst ein Koordinatensystem erstellen und beschriften. Dann entweder Punkte einzeichnen und verbinden. Wenn die Punkte gegeben sind x y x y x y x y Beispiel: P1(3/0) P2(1/4) P3(8/12) P4(4/0) Zeichnung bestimmen: Siehe Punkt oben: einfach Punkte einzeichnen und verbinden. Gleichung bestimmen: Man schreibt zuerst die allgemeine Gleichung y = ax³+bx²+cx+d auf. Dann setzt man den ersten Punkt für x und y ein => 1. Gleichung. Dasselbe macht man mit Punkt 2, 3 und 4 => nun hat man 4 Gleichungen, die man entweder mit dem Einsetzungsverfahren (siehe dazu Zusammenfassung Gleichungssysteme) oder mit Matrix lösen kann (siehe dazu Beispiel bei der quadratischen Funktion). Wenn die Zeichnung gegeben ist Punkte/Wertetabelle bestimmen: Die Punkte muss man ablesen. Gleichung bestimmen: Siehe Punkt oben. 4. Ermittlung der beiden Scheitel Die Scheitelpunkte sind jene Punkte, die ganz unten/oben sind (=Hochpunkt oder Tiefpunkt), bei denen der Graph von steigend auf fallend umdreht und umgekehrt. Es gibt 2 Möglichkeiten, diese zu berechnen. 1.) Ermittlung als Hoch-/Tiefpunkt: Erste Ableitung 0 setzen (siehe dazu auch Zusammenfassung Kurvendiskussion => Hoch- und Tiefpunkt). 2.) Ermittlung als Punkt zwischen den 2 Nullstellen: der Scheitelpunkt ist immer genau zwischen den beiden Nullstellen. Wenn man also diese kennt, bekommt man den x-wert des Scheitels heraus, um den y-wert zu erhalten einfach in die Gleichung einsetzen. Beispiel: y = x² + x 6 => Nullstellen bei x = 2 und x = -3 => Abstand zwischen beiden = 5, halber Abstand = 2,5 => -3+2,5 = -0,5 => der Scheitel muss bei x = -0,5 sein => einsetzen => y = (-0,5)² - 0,5-6 = -5,75 => S(-0,5/-5,75)

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - -

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - - KURVENDISKUSSION Vorüberlegungen Die Kurvendiskussion ist ein wichtiges Teilgebiet der Mathematik, das speziell für die Matura von großer Bedeutung ist. Dabei untersucht man einen Graphen auf dessen geometrische

Mehr

Lösungen zum Arbeitsblatt: y = mx + b Alles klar???

Lösungen zum Arbeitsblatt: y = mx + b Alles klar??? I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5

Mehr

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen? R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Die Quadratische Gleichung (Gleichung 2. Grades)

Die Quadratische Gleichung (Gleichung 2. Grades) - 1 - VB 003 Die Quadratische Gleichung (Gleichung. Grades) Inhaltsverzeichnis Die Quadratische Gleichung (Gleichung. Grades)... 1 Inhaltsverzeichnis... 1 1. Die Quadratische Gleichung (Gleichung. Grades)....

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis) .5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................

Mehr

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Frederieke Sperke x Funktionsanpassung

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Frederieke Sperke x Funktionsanpassung Frederieke Sperke 12 16.11.2009 x Funktionsanpassung Verbinde die Strecken zwischen den Punkten A(-4/1) und B(-3/-3)mit der Strecke zwischen den Punkten C(4/2) und D(3/-1) knickfrei und exakt miteinander.

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Funktionsgraphen (Aufgaben)

Funktionsgraphen (Aufgaben) Gymnasium Pegnitz JS 9 August 2007 Funktionsgraphen (Aufgaben) 1. Betrachte die beiden linearen Funktionen f(x) = x + 2 und g(x) = x 3 und die quadratische Funktion p(x) = f(x) g(x) (a) Zeichne die Graphen

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

Wiederholung Quadratische Funktionen (Parabeln)

Wiederholung Quadratische Funktionen (Parabeln) SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! 12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Graphen quadratischer Funktionen und deren Nullstellen

Graphen quadratischer Funktionen und deren Nullstellen Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Leitprogramm Funktionen

Leitprogramm Funktionen 3. Quadratische Funktionen (Zeit 10 Lektionen) Lernziel: Grundform y = ax + bx + c und Scheitelform y = a(x + m) + n der Funktionsgleichungen quadratischer Funktionen kennen. Bedeutung der Parameter a,

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

De Taschäräschnr TI-84

De Taschäräschnr TI-84 De Taschäräschnr TI-84 (Menü: Classic ) Übersicht: 1. Katalog 2. Nullstellen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. y-werte ausrechnen lassen 8. Steigung einer

Mehr

Grundwissen 9. Sabine Woellert

Grundwissen 9. Sabine Woellert Grundwissen 9 1. Quadratische Funktion... 2 1.1 Definition... 2 1.2 Eigenschaften der Normalparabel ( ):... 2 1.3 Veränderung der Normalparabel... 2 1.4 Normalform, Scheitelform... 4 1.5 Berechnung der

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 6. Semester ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 6. Semester ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION Bisher haben wir immer eine Funktion gegeben gehabt und sie anschließend diskutiert. Nun wollen wir genau das entgegengesetzte unternehmen. Wir wollen

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

Bestimmung einer ganzrationalen Funktionenschar

Bestimmung einer ganzrationalen Funktionenschar Bestimmung einer ganzrationalen Funktionenschar x Gesucht ist eine Schar f a ganzrationaler Funktionen. Grades, deren Graphen durch A(0 ) und B( ) verlaufen und in A die Steigung a haben. Funktionenschar

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.

Mehr

Tiefpunkt = relatives Minimum hinreichende Bedingung:

Tiefpunkt = relatives Minimum hinreichende Bedingung: R. Brinkmann http://brinkmann-du.de Seite 1 0.0.01 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt

Mehr

QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades)

QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) I. Einführung: Allgemeine Funktionsgleichung: y = ax 2 + px + q Aufgabe 2 1 (Westermann EK, S.14) II. Terminologie: a.) Abhängige Variable (erklärte

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Repetitionsaufgaben: quadratische Funktionen

Repetitionsaufgaben: quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: quadratische Funktionen Zusammengestellt von Bruno Wyrsch und Erich Huber, KS Seetal Inhaltsverzeichnis 1. Einführungsbeispiel.... Allgemeine Form der

Mehr

Gemischte Aufgaben zur Differentialund Integralrechnung

Gemischte Aufgaben zur Differentialund Integralrechnung Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Unterrichtsfach Lehrplan HAK: Mathematik und angewandte Mathematik -- 2. HAK (2. Jahrgang), 3. Semester Kompetenzmodul 3 -- 1. AUL (1. Jahrgang) Lehrplan HLW: Mathematik und angewandte Mathematik -- 3.

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph. f ( x) = 1 8 ( x3 +3 x 2 9 x+5) x f ( x) = 3 8 ( x2 +2 x 3)

Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph. f ( x) = 1 8 ( x3 +3 x 2 9 x+5) x f ( x) = 3 8 ( x2 +2 x 3) Kurvendiskussion Diskutiere die Funktion f(x) - Nullstellen, Extremwerte, Wendepunkte, Graph f ( x) = 1 8 x3 + 3 8 x2 9 8 x+5 8 Zuerst berechne ich die Ableitungen. Außerdem hebe ich so weit wie möglich

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion Wolfgang Kippels. September 017 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3 3 Aufgaben 3.1 Aufgabe 1:................................... 3. Aufgabe :...................................

Mehr

De Taschäräschnr Casio (Reihe: 9860G)

De Taschäräschnr Casio (Reihe: 9860G) De Taschäräschnr Casio (Reihe: 9860G) Übersicht: 1. Nullstellen 2. Gleichungen 2. oder 3. Grades lösen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. Steigung einer Funktion

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Vorbereitungsmappe Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Liebe Schülerinnen und Schüler, vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS stellt sich vor allem im Fach

Mehr

Übungsaufgaben Analysis hilfsmittelfrei

Übungsaufgaben Analysis hilfsmittelfrei Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)

Mehr

Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002.

Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002. Funktionen Klassenstufe 0/ Teil Ganzrationale Funktionen (ohne Ableitungen) Datei Nr. 80 Ausdrucken ist nur von der Mathematik-CD möglich Mai 00 Friedrich Buckel Internatsgymnasium Schloß Torgelow Funktionen

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Lineare Funktionen. Die lineare Funktion

Lineare Funktionen. Die lineare Funktion 1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen

Mehr

Mathematik 1. Klassenarbeit Klasse 10e- Gr. A 28. Sept Quadratische Funktionen - ups -

Mathematik 1. Klassenarbeit Klasse 10e- Gr. A 28. Sept Quadratische Funktionen - ups - Mathematik. Klassenarbeit Klasse 0e- Gr. A 8. Sept. 006 Quadratische Funktionen - ups - Name:.... Aufgabe:. Die Tabellen gehören zu quadratischen Funktionen der Form y=x²+bx+c. ergänze die fehlenden Zahlen

Mehr

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.

Mehr

ARBEITSBLÄTTER. Verknüpft mit den Lehrwerken: Lineare Funktion und Quadratische Funktion / Parabel. Für meine Enkel Moritz, Matthis, Greta und Zoe

ARBEITSBLÄTTER. Verknüpft mit den Lehrwerken: Lineare Funktion und Quadratische Funktion / Parabel. Für meine Enkel Moritz, Matthis, Greta und Zoe Verknüpft mit den Lehrwerken: Lineare Funktion und Quadratische Funktion / Parabel ARBEITSBLÄTTER Lernen ist mehr als Verstehen! Wie geschieht eigentlich das Lernen? Du wirst die Absichten und das Vorgehen

Mehr

Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen

Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Leun4m 29. April 2015 Version: 0 Ich kann nicht für Richtigkeit garantieren! Inhaltsverzeichnis 1 Themenübersicht 1 2 Funktionen und Graphen 2

Mehr

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Übungsaufgaben zu quadratischen Gleichungen und Parabeln Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel

Mehr

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse. Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.

Mehr

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)

Mehr

Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen.

Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. -1- Selbst lernen: Einführung in den Graphikrechner TI-84 Plus Das Graphikmenü des TI84-Plus Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. 1 Grundsätzliches Die

Mehr

V2-2-4 Polynom vom Grad 3

V2-2-4 Polynom vom Grad 3 2.4 Polynom vom Grad 3 Titel V2-2-4 Polynom vom Grad 3 Version Mai 20 Themenbereich Von der Sekanten- zur Tangentensteigung Themen Verfeinerung der Intervalle zur Bestimmung der Steigung an mehreren Punkten

Mehr

2.3 Quadratische Funktionen

2.3 Quadratische Funktionen 2.3 Quadratische Funktionen 2.3.1 Definition einer quadratischen Funktion Bisher hatten wir uns ganz auf lineare Funktionen beschränkt. Wir stellen sie im Koordinatensystem als Geraden dar.interessanter

Mehr

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle. Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,

Mehr

Zum Schluss berechnen wir die Steigung, indem wir

Zum Schluss berechnen wir die Steigung, indem wir Einführung Grafisches Differenzieren (auch grafische Ableitung genannt) gibt uns zum einen die Möglichkeit, die Steigung des Graphen einer Funktion in einem bestimmten Punkt zu ermitteln, ohne dass wir

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Das kennen wir bereits aus dem vergangenen Unterricht: Funktionen, deren Graph eine Gerade darstellen, nennen wir lineare Funktionen. Sie haben die allgemeine Form: y = mx + b Detlef

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion ARBEITSBLATT 5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Einzelwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden Taschenrechner sind nicht zugelassen Teamnummer Die folgende Tabelle

Mehr

Arbeiten mit Funktionen

Arbeiten mit Funktionen Arbeiten mit Funktionen Wir wählen den Funktioneneditor (Ë W) und geben dort die Funktion f(x) = x³ - x² - 9x + 9 ein. Der TI 92 stellt uns eine Reihe von Funktionsbezeichnern zur Verfügung (y 1 (x), y

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Grundlagen zu Geraden

Grundlagen zu Geraden Grundlagen zu Geraden Punkte in ein Koordinatensystem einzeichnen: Bei einem Punkt P(x y) wird die erste Komponenten (die erste Zahl in der Klammer) auf der x-achse abgetragen und die zweite Komponente

Mehr

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5 R. Brinkmann http://brinkmann-du.de Seite 07..009 Achsenschnittpunkte quadratischer Funktionen y P y ( 0 y ) s P ( 0) S y s f() P ( 0) s Bei der Betrachtung des Graphen in nebenstehender Abbildung fallen

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.

Mehr

CAS / GTR. endlich mal eine verständliche Bedienungsanleitung. Texas Instruments TI Copyright. Havonix Schulmedien-Verlag

CAS / GTR. endlich mal eine verständliche Bedienungsanleitung. Texas Instruments TI Copyright. Havonix Schulmedien-Verlag CAS / GTR endlich mal eine verständliche Bedienungsanleitung Texas Instruments TI 84 Kostenlose Mathe-Videos auf Mathe-Seite.de - 1 - Copyright Inhaltsübersicht 1. Katalog 2. Nullstellen 3. Gleichungen

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr