5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz

Größe: px
Ab Seite anzeigen:

Download "5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz"

Transkript

1 5. Teilchensystee und Ipulserhaltung 5. Massenittelpunkt 5. Ipuls als Bewegungsgröße 5.3 Ipulserhaltungssatz 5.4 Stoßprozesse R. Girwidz 5. Massenittelpunkt Spezialfall di. Welt: V: Wagen auf Balken R. Girwidz

2 5. Massenittelpunkt Allgeein: Ges r s i r i i r s i i r i i i R. Girwidz Massenittelpunkt V: Schraubenschlüssel it Markierung Vergleich it Ball Trägheitssatz und Newton II für ein Syste von Teilchen: Der Massenittelpunkt eines Systes bewegt sich unter de influss einer resultierenden äußeren Kraft wie ein Teilchen it der Masse: ( Ges i ) i R. Girwidz 4

3 5. Massenittelpunkt V: Schraubenschlüssel it Markierung Vergleich it Ball Trägheitssatz und Newton II für ein Syste von Teilchen: Der Massenittelpunkt eines Systes bewegt sich unter de influss einer resultierenden äußeren Kraft wie ein Teilchen it der Masse: ( Ges i ) i Spezialfall: F 0; v konst; Schwerpunkt (d. h. der Massenittelpunkt bewegt sich geradlinig gleichförig oder ruht) R. Girwidz 5 5. Ipuls als Bewegungsgröße Def.: p v F F ext ext Ges Ges a v sp sp allg. : d F ( v) p dt Mit Hilfe des Ipulses lässt sich die Grundgleichung der Mechanik allgeein forulieren: R. Girwidz 6 3

4 5. Ipuls als Bewegungsgröße F p d p F dt Fdt d p Ft p Aussagen ablesen können R. Girwidz 7 5. Ipuls als Bewegungsgröße Kraftstoß und Ipulsänderung: d p F dt Fdt d p p Kraftstoß = Ipulsänderung R. Girwidz 8 4

5 5.3 Ipulserhaltungssatz (actio = reactio) R. Girwidz Ipulserhaltungssatz (actio = reactio) Theorie: R. Girwidz 0 5

6 5.3 Ipulserhaltungssatz (actio = reactio) Allgeein: F a 0 d p dt 0 oder : p const. Ipulssatz: Ohne inwirkung äußerer Kräfte bleibt in eine Syste die Sue aller Ipulse konstant. R. Girwidz 5.3 Ipulserhaltungssatz (actio = reactio) R. Girwidz 6

7 5.3 Ipulserhaltungssatz (actio = reactio) R. Girwidz Stoßprozesse Stoßart elastisch ineleastisch unelastisch Charakteristik Q Kin, nach Kin, vor Sue der kinetischen nergie vor und nach de Stoß gleich Q 0 Sue der kinetischen nergie nach de Stoß kleiner Q 0 Die Körper bewegen sich nach de Stoß zusaen it gleicher Geschwindigkeit Q 0 überelastisch Q 0 R. Girwidz 4 7

8 xperiente zu geraden unelastischen Stoß Spezialfall: v' v' v' a) b) R. Girwidz 5 a) Unelastische Stöße (Körper haften nach de Stoß aneinander, d. h. v ' = v ' = u' ) Ipulssatz: nergiesatz: R. Girwidz 6 8

9 a) Unelastische Stöße (Körper haften nach de Stoß aneinander, d. h. v ' = v ' = u' ) Ipulssatz: nergiesatz: v v ( ) v' v v ( ) v' Q Sei speziell v =0 (ruhendes Target): v' v R. Girwidz 7 Inelastisch Stoß auf Fahrbahn: Geschwindigkeiten essen Beispiel: Zusaenstoß LKW - PKW = 5 t; v = 00 k/h =,5 t; v =-00 k/h Frontaler Zusaenstoß, vollkoen inelastisch: R. Girwidz 8 9

10 nergieabgabe bei unelastischen Stoß: R. Girwidz 9 Relative nergieabgabe: R. Girwidz 0 0

11 Relative nergieabgabe: Weiterer spezieller Fall: ; v v v R. Girwidz B) lastische Stöße I) Ipulssatz: v v v v ' ' II) nergiesatz: v v v' v' R. Girwidz

12 B) lastischer Stoß - Spezialfall: v = 0 (ruhendes Target) R. Girwidz 3 B) lastischer Stoß - Spezialfall: v = 0 (ruhendes Target) ' v v v' v ; v 0; (gleiche Massen) R. Girwidz 4

13 Relativer nergieübertrag: ' v ' ' ; v v ' 4 4 Max. bei = R. Girwidz 5 Messung von Geschwindigkeiten it de ballistischen Pendel M 646g; M 0 49g; l ; P G, R. Girwidz 6 3

14 t t + t R. Girwidz 7 Prinzip: Antrieb durch Rückstoß der ausströenden Gase; Ipulserhaltung für Gesatsyste (Rakete + ausströenden Gas) w w : Ausströgeschw. der Gase relativ zur Rakete v(t) : Geschwindigkeit der Rakete i raufesten Syste v G t vt w Moentangeschwindigkeit R : Masse Rakete; G : Masse der ausgestoßenen Gase; R. Girwidz 8 4

15 Aufstellen der Bewegungsgleichung für den kräftefreien Rau R. Girwidz 9 Rakete i Schwerefeld (Raketenstart) ( äußeres Kraftfeld: F G g kot hinzu ) R. Girwidz 30 5

16 Integration der Bewegungsgleichung: R. Girwidz 3 Diskussion: a) Bedingung für Abheben: dv dt 0 F S F G entscheidende Paraeter für Schubkraft: w d und ; dt w hängt von Brennkaerdruck und -teperatur sowie vo verwendeten Gasgeisch ab; In der Praxis: fl.h fl.o Kerosin - fl.o k d hohes w ~ 4,5, aber kleines s dt k d kleines w ~, 5, aber höheres s dt R. Girwidz 3 6

17 Diskussion: b) ndgeschwindigkeit v (d.h. Geschwindigkeit bei Brennschluss t = t ) v ln 0 w g t it t t Masse der leergebrannten Rakete bei Brennschluss entscheidende Paraeter: w und 0 In der Praxis: w,5 0 v 6 8 bis k s 4,5 k s ( siehe oben) zu Vergleich: Fluchtgeschwindigkeit v in =, k/s Mehrstufenprinzip! R. Girwidz 33 Daten der Saturn V (Apollo-Projekt) o 950t; Treibstoff 000t; 4; 700. Stufe: Kerosin + fl. O k d t w, ; 5 ; F 3,3 0 7 s N; s dt s Brenndauer: t in., 3. Stufe: fl. H + fl. O R. Girwidz 34 7

18 ndgeschwindigkeit v nach. Stufe k/s nach. Stufe ,8 k/s nach 3. Stufe ,85 k /s Ulaufbahn in 85 k Höhe Beschleunigung der Rakete: a) a Anfang (kurz nach Start: F g s a 0, A s 0 b) a nde (kurz vor Brennschluss): a F s 0 g g 40 4 g ; s R. Girwidz 35 ; Die heißen Verbrennungsgase ströen aus den Brennkaern nach hinten aus. R. Girwidz 36 8

19 5.6 Stöße - zweidiensional R. Girwidz Stöße - zweidiensional Stoßart Charakteristik gerade Geschwindigkeitsvektoren liegen auf einer Geraden schief Geschwindigkeitsvektoren liegen in einer bene und schließen einen Winkel ein zentral Die Schwerpunkte liegen auf der Stoßnoralen (Senkrechte zur Stoßebene) exzentrisch Die Schwerpunkte liegen nicht auf der Stoßnoralen => Rotation R. Girwidz 38 9

20 5.6 Stöße - zweidiensional R. Girwidz Stöße - zweidiensional Bei gleichen Massen stehen die Geschwindigkeitsvektoren nach de Stoß senkrecht aufeinander. R. Girwidz 40 0

21 5.6 Stöße - zweidiensional R. Girwidz Stöße - zweidiensional R. Girwidz 4

5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz

5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz 5. Teilchensystee und Ipulserhaltung 5. Massenittelpunkt 5. Ipuls als Bewegungsgröße 5.3 Ipulserhaltungssatz 5.4 Stoßprozesse 5.5 Raketenphysik R. irwidz 5. Massenittelpunkt Massenittelpunkt: V: Wagen

Mehr

Reibungskräfte. Haftreibung. (µ H hängt von Material und Oberflächenbeschaffenheit ab, aber nicht von der Größe der reibenden Oberflächen)

Reibungskräfte. Haftreibung. (µ H hängt von Material und Oberflächenbeschaffenheit ab, aber nicht von der Größe der reibenden Oberflächen) Reibungskräfte F =g=g N F zug Reibung ist eine der Bewegung entgegenwirkende Kraft, die entsteht, wenn zwei sich berührende Körper sich gegeneinander bewegen. Haftreibung F zug = F H ist die Kraft, die

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

Kinematik und Dynamik eines Massepunktes GK

Kinematik und Dynamik eines Massepunktes GK Kineatik und Dynaik eines Massepunktes GK Rotation ) Notiere die Gleichung für a) Drehipuls (L=r v) b) Drehoent (M= r F) ) Erhaltungssätze Ohne äußere Krafteinwirkung gilt: a) Energieerhaltung (Evor =

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

NTB Druckdatum: DKM

NTB Druckdatum: DKM KLASSISCHE MECHANIK Das Einheitensyste Physikalische Grössen Skalare Masszahl und Einheit Zeit, Masse, Voluen Vektoren Masszahl, Einheit und Richtung Weg, Kraft, Geschwindigkeit Die Basiseinheiten Sybol

Mehr

Zur Erinnerung. System von Massenpunkten. Stichworte aus der 8. Vorlesung: Schwerpunkt-System. Schwerpunktsbewegung. Innere Kräfte, äußere Kräfte

Zur Erinnerung. System von Massenpunkten. Stichworte aus der 8. Vorlesung: Schwerpunkt-System. Schwerpunktsbewegung. Innere Kräfte, äußere Kräfte Zur rinnerung Stichworte aus der 8. Vorlesung: Syste on Massenunkten Schwerunkt-Syste Schwerunktsbewegung Innere Kräfte, äußere Kräfte Drehoent und Drehiuls eines Systes on Massenunkten (bezogen auf SPS

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experientalphysik E1 Drehbewegung, Drehipuls Keplersche Gesetze Alle Inforationen zur Vorlesung unter : http://www.physik.lu.de/lehre/vorlesungen/index.htl 11. Nov. 2016 Ipuls p = v Definition des Ipulses

Mehr

c) Um etwa wie viel muss die Leistung des Motors erhöht werden, um die Höchstgeschwindigkeit eines Fahrzeugs zu verdoppeln?

c) Um etwa wie viel muss die Leistung des Motors erhöht werden, um die Höchstgeschwindigkeit eines Fahrzeugs zu verdoppeln? Station A Luftwiderstand Ein Fahrzeug it der Masse = 1000 kg, einer Querschnittsfläche on A = 1,5 ² und eine cw-wert on cw = 0,4 fährt it der Geschwindigkeit auf ebener Strecke. a) Berechne die Luftwiderstandskraft

Mehr

Die Raketengleichung (eine Anwendungzum Impulssatz)

Die Raketengleichung (eine Anwendungzum Impulssatz) Die Raketengleichung (eine Anwendungzu Ipulssatz) Ipuls vor de Ausstoß: p Ipuls nach de Ausstoß: p R v R + Δ v R Ipulserhaltungssatz: p p Ipulse einsetzen ergibt: R v R + Δ + v R Für die Massenänderung

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

DER KRAFTBEGRIFF UND DIE NEWTON SCHEN AXIOME

DER KRAFTBEGRIFF UND DIE NEWTON SCHEN AXIOME DER KRATBEGRI UND DIE NEWTON SCHEN AXIOME 1. Wozu wird der Kraftbegriff in der Physik verwendet? Die klassische Mechanik untersucht das Verhalten von Körpern: Bewegungsverhalten und oränderungen Dabei

Mehr

6 Dynamik der Translation

6 Dynamik der Translation 6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche

Mehr

Wirkung einer Kraft auf einen Körper durch Angabe der F noch nicht eindeutig bestimmt: hängt noch von der Körpereigenschaft m ab: a.

Wirkung einer Kraft auf einen Körper durch Angabe der F noch nicht eindeutig bestimmt: hängt noch von der Körpereigenschaft m ab: a. .0 Impuls /lap5.../mewae_act_scr0_7.0(impuls)_s.tex_6_nov_03 Wirkung einer Kraft auf einen Körper durch Angabe der F noch nicht eindeutig bestimmt: hängt noch von der Körpereigenschaft m ab: a dv F dt

Mehr

Zu 5. Kinetik: Ableitung der Gesetze aus den Axiomen ( Blatt 1 )

Zu 5. Kinetik: Ableitung der Gesetze aus den Axiomen ( Blatt 1 ) Zu 5. Kinetik: Ableitung der Gesetze aus den Axioen ( Blat ) Massenpunkt: Axio (Newtonsches Grundgesetz): Fres = a. () F res : Geäß de (bereits in der Statik eingeführten) Parallelograaxio gebildete resultierende

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

2.2 Dynamik von Massenpunkten

2.2 Dynamik von Massenpunkten - 36-2.2 Dynamik von Massenpunkten Die Dynamik befasst sich mit der Bewegung, welche von Kräften erzeugt und geändert wird. 2.2.1 Definitionen Die wichtigsten Grundbegriffe der Dynamik sind die Masse,

Mehr

Joachim Stiller. Über die Stoßgesetze. Alle Rechte vorbehalten

Joachim Stiller. Über die Stoßgesetze. Alle Rechte vorbehalten Joachim Stiller Über die Stoßgesetze Alle Rechte vorbehalten Über die Stoßgesetze Der Impulssatz 1. Der Impulssatz für abgeschlossene Systeme Zwei Billardkugeln stoßen aufeinander. Will man die Geschwindigkeit

Mehr

3 Räumliche Punktbewegung

3 Räumliche Punktbewegung 19 3 Räuliche Punktbewegung Unsere 3-diensionalen Rau entsprechend benötigt an drei Koordinaten ur eindeutigen Beschreibung der Lage eines Massenpunkts i Rau. Wählt an ein raufestes Koordinatensste und

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 Inhalt der Vorlesung A. Einführung Methode der Physik Physikalische Größen Übersicht über die orgesehenen Theenbereiche. Teilchen A. Einzelne Teilchen Beschreibung on Teilchenbewegung Kineatik: Quantitatie

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E 3. Nov. Systeme von Massepunkten - Stöße Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Def. M = m i Schwerpunkt Gesamtmasse m r s =

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik (WS 16/17 http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 6 Lösungen Name des Übungsgruppenleiters und Gruppenbuchstabe:

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik für Pharmazeuten MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber:

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Physik 1. Stoßprozesse Impulserhaltung.

Physik 1. Stoßprozesse Impulserhaltung. Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz

Mehr

Versuch 6. Zähigkeit (Viskosität) Abbildung 1. v τ=η (1) y

Versuch 6. Zähigkeit (Viskosität) Abbildung 1. v τ=η (1) y Versuch 6 Zähigkeit (Viskosität) Gesetz von Stokes Wenn zwei feste Körper aufeinander gleiten, so wird ihre Bewegung dadurch gehet, dass zwischen den Körpern ein Reibungswiderstand herrscht. in ähnliches

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. To Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.htl 23. Noveber 25 Übungsblatt 3 Vorrechnen & Diskussion:

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F

Mehr

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0 1. Kinematik ================================================================== 1.1 Geradlinige Bewegung 1.1. Gleichförmige Bewegung v = x v = 1 m s v x Geschwindigkeit zurückgelegter Weg benötigte Zeit

Mehr

12 Stoßprobleme. Bezeichnung

12 Stoßprobleme. Bezeichnung 8 Stoßprobleme Stöße sind kurzzeitige Körperkontakte mit großen Kontaktkräften, die zu sprungförmiger Änderung des Geschwindigkeitszustands führen. Theoretisch könnte man ein solches Stoßproblem mit den

Mehr

b γ 11. Impuls 11.0 Mathematische Grundlagen à Integral über 0 à Winkel zwischen zwei Vektoren

b γ 11. Impuls 11.0 Mathematische Grundlagen à Integral über 0 à Winkel zwischen zwei Vektoren . Impuls Peter Riegler, FH Wolfenbüttel.0 Mathematische Grundlagen à Integral über 0 Welche Funktion ergibt abgeleitet 0, d.h. was ist FHxL = Ÿ 0 x? FHxL =, denn F ÅÅÅÅÅÅÅ x = 0. à Winkel zwischen zwei

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

Impulserhaltung. einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss viel grösser

Impulserhaltung. einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss viel grösser Impulserhaltung Raketenersuch (Vorlesung) einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss iel grösser Elastischer Stoss zweier Massen m 1 und m 2 Versuche: Hammerschlag,

Mehr

Studienbücherei. Mechanik. W.Kuhn. w He y roth. unter Mitarbeit von H. Glaßl. Mit 187 Abbildungen. VEB Deutscher Verlag der Wissenschaften Berlin 1989

Studienbücherei. Mechanik. W.Kuhn. w He y roth. unter Mitarbeit von H. Glaßl. Mit 187 Abbildungen. VEB Deutscher Verlag der Wissenschaften Berlin 1989 Studienbücherei Mechanik w He y roth W.Kuhn unter Mitarbeit von H. Glaßl Mit 187 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1989 Inhaltsverzeichnis Experimentelle Grundlagen der Mechanik

Mehr

Schriftliche Abiturprüfung 2005 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2005 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schriftliche Abiturprüfung 00 Sachsen-Anhalt Physik n (Leistungskursniveau) Thea G: Ipulserhaltung in der Mechanik und in der Quantenphysik Stoßprozesse Bei der Diskussion von Stoßprozessen in der Physik

Mehr

Fragen aus dem Repetitorium V

Fragen aus dem Repetitorium V Fragen aus de Repetitoriu V Folgend werden die Fragen des Repetitorius V, welche ihr i Skript II ab Seite 217 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich lohnt,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 26/7 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 7 / 3..26. Wegintegral Gegeben sei das Vektorfeld A( r) = ay

Mehr

Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thema G 1: Analyse von Stoßvorgängen

Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thema G 1: Analyse von Stoßvorgängen Abiturtraining Physik Mechanik 1 Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thea G 1: Analyse von Stoßvorgängen 1. Stöße auf der Luftkissenbahn Auf einer Luftkissenbahn werden ehrere Experiente

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

1 Drehimpuls und Drehmoment

1 Drehimpuls und Drehmoment 1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin

Mehr

Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse)

Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Bewegung Masse Kräfte Die fundamentalen Gesetze der Mechanik (Isaac

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt der Vorlesung Experientalphysik I Teil : Mechanik. Physikalische Größen und Einheiten. Kineatik von Massepunkten 3. Dynaik von Massepunkten 3. Wechselwirkungen und Kräfte 3. Newtonsche Axioe 3.3

Mehr

Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I. Übersicht

Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I. Übersicht Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I Übersicht Messungen, Einheiten (1) Mathematische Grundlagen (3, E1, E2, E4, E5) Kinematik von Punktteilchen (2+4, E2,

Mehr

r r oder: Fres r F t m v Der Kraftstoss F t m v res

r r oder: Fres r F t m v Der Kraftstoss F t m v res KAPITEL 5 Impuls 5.1 Der Kraftstoss Einführungsbeispiel Bei der Ausführung eines Freistosses tritt Beckham mit einer Kraft von 1000 N auf den Ball. a) Mit welcher Geschwindigkeit fliegt der Ball (m = 450

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Vorlesung 3: Roter Faden:

Vorlesung 3: Roter Faden: Vorlesung 3: Roter Faden: Bisher: lineare Bewegungen Energie- und Impulserhaltung Heute: Beispiele Energie- und Impulserhaltung Stöße Gravitationspotential Exp.: Billiard Ausgewählte Kapitel der Physik,

Mehr

8.1 Arbeit 8.2 Verschiedene Arten mechanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie

8.1 Arbeit 8.2 Verschiedene Arten mechanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie Inhalt 8 Arbeit, Energie - Leistung 8. Arbeit 8. Verschiedene Arten echanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie 8.6. Energieuwandlung 8.7 Stoßprozesse

Mehr

Experimentalphysik 1. Vorlesung 2

Experimentalphysik 1. Vorlesung 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 10.12.2018 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Falls die Masse nicht konstant ist, gilt die allgemeine Formulierung: p ist der Impuls des Körpers.

Falls die Masse nicht konstant ist, gilt die allgemeine Formulierung: p ist der Impuls des Körpers. Mechanik Physik Mechanik Newton sche Gesetze 1. Newton sches Gesetz - Trägheitssatz Wirkt auf einen Körper keine Kraft oder befindet er sich im Kräftegleichgewicht, so bleibt er in Ruhe oder er bewegt

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur - 1 - Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur I ersten Teil der Vorlesung wurde zunächst ein Überblick über Typen von Differentialgleichungen gegeben. Anschließend wurden hauptsächlich

Mehr

Brahe Kepler. Bacon Descartes

Brahe Kepler. Bacon Descartes Newton s Mechanics Stellar Orbits! Brahe Kepler Gravity! Actio = Reactio F = d dt p Gallilei Galilei! Bacon Descartes Leibnitz Leibniz! 1 Statistical Mechanics Steam Engine! Energy Conservation Kinematic

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen

Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen 1. Eine Lore mit der Masse 800 kg fährt mit 1,5 m/s durch ein Bergwerk. Während der Fahrt fallen von oben 600 kg Schotter in die Lore. Mit welcher

Mehr

Die Vektoren der Geschwindigkeit lassen sich zu einem Parallelogramm addieren, es gilt:

Die Vektoren der Geschwindigkeit lassen sich zu einem Parallelogramm addieren, es gilt: Stoßgesetze Stöße Ein Stoß ist eine zeitlich begrenzte Wechselwirkung zwischen zwei Teilchen. Vor und nach einem Stoß unterscheiden sich Geschwindigkeit, Impuls und Energie der einzelnen Stoßpartner. Je

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

IMPULS UND IMPULSERHALTUNG AM BEISPIEL DES BILLARDS

IMPULS UND IMPULSERHALTUNG AM BEISPIEL DES BILLARDS IMPULS UND IMPULSERHALTUNG AM BEISPIEL DES BILLARDS Autoren: Katharina Diederichs 2015 WWW.KNSU.DE Seite 1 Übersicht Einleitung Der Impuls o Definition und theoretische Grundlagen o Impulserhaltungssatz

Mehr

1 Mechanik des Massenpunktes

1 Mechanik des Massenpunktes 1.1 Kinematik 1.1.1 Der Massenpunkt Definition: Der Massenpunkt ist eine Idealisierung eines Körpers durch Vernachlässigung der Ausdehnung, bzw. Vereinigung der Gestamtmasse im Schwerpunkt (vorausgesetzt

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00

Mehr

Rainer Müller. Klassische Mechanik. Vom Weitsprung zum Marsflug. Walter de Gruyter Berlin New York

Rainer Müller. Klassische Mechanik. Vom Weitsprung zum Marsflug. Walter de Gruyter Berlin New York Rainer Müller Klassische Mechanik Vom Weitsprung zum Marsflug w DE G Walter de Gruyter Berlin New York Inhaltsverzeichnis Vorwort 7 1 Fundamentale Konzepte: Das Trägheitsgesetz 13 1.1 Die Aufgabe der Mechanik

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2014/15 Lösung Übungsblatt 8 Lösung Übungsblatt 8 Besprechung am 02.11.2014 Aufgabe 1 Impulserhaltung : Zwei Personen der Massen m 1 und

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 27.11.2017 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 486428 Hammer and feather drop, revisited Für den Fall (vom Loslassen bis zum Aufschlag)

Mehr

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder ) Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall

Mehr

E in einfacher Beweis für die T rägheit der E nergie.

E in einfacher Beweis für die T rägheit der E nergie. download unter www.biologiezentrum.at E in einfacher Beweis für die T rägheit der E nergie. Von Philipp Frank. (Vortrag, gehalten am 6. Dezember 1922 in der physikalischen Fachgruppe des,,lotos.) Die Aussage

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 04.12.2017 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 03.12.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 189263 Hammer and feather drop, revisited Für den Fall (vom Loslassen bis zum Aufschlag)

Mehr

Dr. Alfred Recknagel. em.ord. Professor der Technischen Universität Dresden. PH i SIlv. Mechanik. 17., unveränderte Auflage VERLAG TECHNIK BERLIN

Dr. Alfred Recknagel. em.ord. Professor der Technischen Universität Dresden. PH i SIlv. Mechanik. 17., unveränderte Auflage VERLAG TECHNIK BERLIN Dr. Alfred Recknagel em.ord. Professor der Technischen Universität Dresden PH i SIlv Mechanik 17., unveränderte Auflage VERLAG TECHNIK BERLIN Inhaltsverzeichnis Die wichtigsten Buchstabensymbole 7 1. Einleitung

Mehr

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG) Datei 2_Kugeln.docx Titel Leichte und schwere Kugel Hinweise: Kamke Walcher: Kap. 7.7.1 Hering: Kap. 2.7 Orear: Kap. 7.2 Alonso Finn: Kap. 10.12 Dobrinski: Kap. 1.3.4.5 Leichte und schwere Kugel Eine schwere

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr