Das Kollektive Risikomodell II

Größe: px
Ab Seite anzeigen:

Download "Das Kollektive Risikomodell II"

Transkript

1 Semia Vesiheugsisiko ud Rui Pof.D.Haspete Shmidli Das Kollektive Risikomodell II 4.6. Eweiteug de Pae Rekusiosfomel Die (a,b,)-veteilugsklasse. Eie Veteilug gehöt zu (a,b,)klasse,we ihe Wahsheilihkeitsfuktio { } ekusiv duh die Fomel b q a+ q q (4.3) fü,3,4, beehet wede ka,wobei a ud b Kostat sid. Bem: q >. Methode: ull-tukieug Sei{ } eie Wahsheilihkeitsfuktio aus de (a,b,)klasse. Die etspehed p q i de (a,b,)klasse ist q p fü,,3, p. Methode: ull-modifizieug Sei{ } eie Wahsheilihkeitsfuktio aus de (a,b,)klasse. Die etspehed p q i de (a,b,)klasse ist q α p, fü,,3, ud q α mit <α <. p Es gibt vie adee Elemete vo (a,b,)klasse, zwei davo sid Logaithmishe- Veteilug ud eweitete tukieede egative biomialveteilug. Duh die ull-modifizieede Fom vo de beide Veteiluge köe wi die übige zwei Veteiluge estelle,we alle Veteiluge auf positive gazzahl defiiet sid. We die Azhal des Shades zu (a,b,)-veteilugsklasse gehöt ud die Höhe des

2 idividuelle Shades auf atülihe Zahle veteilt ist, da ka ma eie ekusive Fomel fü die Wahsheilihkeitsfuktio des Gesamtshades ableite. Sei b Q q wobei q a+ q fü,,3, Q q q q, + + b Q q + a+ q q+ a q + b q + Q q q q+ a q + q + b q + q aq bq q a+ b q + a q + b q 443 Q Ute Beutzug de Idetität -+ ( ) + a q a q a q 443 a q + aq Q aq + aq Q q ( a+ b) q + aq + ( a+ b) Q Q. Ud PS Q PX P S Q PX P X ( ) ( ) ( ) P S q a+ b q + apx Q PX + a+ b Q PX PX ( ) ( ) q a+ b q PX + apx Q PX PX + a+ b Q PX PX PS PS

3 P q ( a+ b) q P + ap P + ( a+ b) P P S X S X X S (4.4) Die wahsheilihkeitsezeugede Fuktioe vo P ud P sid duh S X k PS gk ud PX f k gegebe. k Die Ableitug ah : P S k gk, P X f ah (4.4) folgt k k k k k gk q ( a+ b) q f + a f k gk + ( a+ b) gk f k k k k k k k gk q ( a+ b) q f + a f k gk + ( a+ b) gk f k k k beide Seite multipliziee mit : Da mahe wi die Koeffizietevegleih: like Seite ist de Koeffiziet vo ehte Seite: de Koeffizie des este Podukts vo gleih de Koeffizie des zweite Podukts vo g gleih q ( a+ b) q f gleih ( ) a f g, fü,,,, de Koeffizie des ditte Podukts vo gleih a+ b f g, fü,,, g q a+ b q f + a f g + a+ b f g ( + ) + + ( ) + ( + ) q a b q f af g a f g a b f g af g q a + b q f + a a + a + b f g b ( af) g q ( a + b) q f + a + f g Da folgt ekusive Fomel fü die Wahsheilihkeitsfuktio des Gesamtshades 3

4 b g q a+ b q f + a+ f ( af ) ( ) g (4.5) fü,,3,... qf Q ( f), f > mit Afagswet g (4.6) q, f ud q > falls q ud f,ist Afagswet P P g X q f Adee Klasse vo Veteiluge Eie Veteilug gehöt zu Shöte Klasse, we ihe Wahsheilihkeitsfuktio { } ekusiv duh die Fomel b p a+ p + p p (4.7) fü,,3, beehet wede ka, wobei a,b ud Kostat sid ud p :. We die Azhal des Shades zu Shöte Klasse gehöt ud die Höhe des idividuelle Shades auf atülihe Zahle veteilt ist, da köe wi wiede eie ekusive Fomel die Wahsheilihkeitsfuktio fü Gesamtshade ableite. Sei b P p wobei p a+ p + p P p p P p +, b P a + p + p b a + p + p fü,,3, a p + b p + p P P 4

5 Ute Beutzug de Idetität -+ a p + a p a p 443 P a p + ap P ap + ap P ap + a+ b+ P (4.8) Ud PS P PX P S P PX P X ( ) ( ) ( ) P S apx P PX + a+ b+ PX P PX PX ( ) PS PS apx P PX P X + a+ b+ PX P PX PX ap P + a + b + P P P (4.9) X S X S X Jetzt defiiee wi die Zufallsvaiable Y als Y X X ( P P P ) Y X X ah (4.9) folgt +,da P P + ( + ) + P S apx P S a b PS P X PS PX PX 4443 ap P + ( a+ b) P P + P P X S S X S Y Die wahsheilihkeitsezeugede Fuktioe vo P Y Y Y P Y ist duh * * gegebe,da ( Y ) ( X X ) f P f * Die Ableitug ah : Die Summefom ist: P P + fü,,, P Y f X 5

6 g a f g a b g k f k k k k k + ( + ) k k * + g k fk k beide Seite multipliziee mit : g a f g a b g k f k k Koeffizietevegleih: k k + ( + ) k k k * + g k fk k like Seite ist de Koeffiziet vo ehte Seite: gleih g de Koeffizie des este Podukts vo gleih ( ) a f g, fü,,,, de Koeffizie des zweite Podukts vo de Koeffizie des ditte Podukts vo gleih gleih a+ b f g, fü,,,, f * g g a f g + a+ b f g + f g * *, fü,,,, afg + a f g + a + b f g + f g af g a f g a b f g f g * Da folgt ekusive Fomel fü die Wahsheilihkeitsfuktio des Gesamtshade b g a f f * af + + g (4.3) fü,,3,... mit Afagswet g P ( f ) 6

7 Diese ekusive Fomel hat eie ahteil, um mit g ehe zu köe muss ma * est { f } beehe. Sei ud uabhägig, i (a,b,)klasse, eie Poissoveteilug ud setze wi 3 + da ist die Veteilug vo 3 i Shöte Klasse. Bew: Fü eie Zufallsvaiable i (a,b,)klasse mit Paamete a α ud b β,da ist die Gleihug (4.5) ist P αp + ( α + β) P ud betahte P α + β P α Aalog fü ~ P( λ ) : P d log P. P d P d λ log P. P d Da fü, So dass, + P P P 3 3 log P log P + log P 3 3 P P 3 P α + β α + β + λ λα + + λ. P P P α α Jetzt betahte wi,dass die Veteilug vo zu Shöte Klasse gehöt, da duh die Gleihug (4.8) folgt P a+ b+. P a Dahe, die Veteilug vo 3 gehöt zu Shöte Klasse,ud die Pametes sid a α, b β + α ud λα. 7

8 Eie Veteilug gehöt zu R Klasse, we ihe Wahsheilihkeitsfuktio k { p} k bi ekusiv duh die Fomel p ai + p i i beehet wede ka, k wobei { },{ b } k ai i i i ( p :,falls <) Kostat ud k eie positive gazezahl sid. 4.7 Vewedug de Rekusiosfomel 4.7. Disketisieugsmethode Um die Rekusiosfomel awede zu köe,esetze wi die stetige Veteilug duh die diskete Veteilug..Methode Sei F eie stetige Veteilug mit F(), die etspehed disketisiete Veteilug mit Wahsheilihkeitsfuktio{ h } ka ma duh estellt wede. Daaus folgt: h F F (4.3) fü,, H h F Fü alle, H F s.d H eie utee Shake vo F ist. Aalog köe wi eie disketisiete Veteilug H % estelle, die eie obee Shake vo F ist. Fü alle : H( ) F( ) H % ( ).Methode Eie alteative Methode ist die Momete de diskete ud stetige Veteilug zu messe. Z.B 8

9 Wi defiiee eie Wahsheilihkeitsfuktio { h } ˆ mit de Veteilugsfuktio Ĥ fü die gilt,dass. Hˆ hˆ F y dy (4.3) + We X~ F ud Y~ Ĥ da gilt: [ ] ( F( y) ) E X + ( F ( y) ) EY [ ] Hˆ dy dy De Ewatugswet bleibt ehalte. Obwohl wi bishe auf gazzahle disketisiee,gilt die Methode auh fü,z,z,,wobei z eie beliebige Zahl ist. Sei Zufallsvaibale S d als eie zusammegesetzte Poisso-Veteilug mit Poisso Paamete λ ud disketisiete Veteilug de Höhe des idividuelle Shades mit Pa( α, k ( α )) ist. Da ist S d diskete Zufallsvaibale dee Wahsheilihkeitsfuktio mit Hilfe de Pae Rekusiosfomel beehet wede ka.die Veteilugsfuktio vo S ka gefude wede sofe gilt,dass ( P S P ks k P Sd k ) Die Qualität diese Appoimatio hägt vo de Wahl vo k ab. Je göße k,desto besse ist die Appoimatio umeishe Awedug umeishe Übelauf iht alle Rekusiosvoshifte sid stabil,d.h de Rudugsfehle köte ah eiige Shitte so göße sei,dass Edegebiss keie Si maht. Die Pae Rekusiosfomel ist fü Poisso od. egative-biomialvteilte 9

10 Shadezahl stabil, edoh iht fü Biomialveteilug. umeishe Utelauf We de Afagswet eie Rekusive Beehug so klei ist,dass diese vom Compute als ull aufgefasst wid,so wüde die Rekusiosvoshift est g liefe,ud da g, usw. Um dieses Poblem zu vemeide,ka ma eie willkülihe Wet (ZB: g ) g setze,ud ehet ekusiv weite. Diese willkülihe Wet ka duh geeigete Skalieug ehalte wede.(zb: duh fahe Kalkulatio mit g ) 4.8 Appoimative Beehug de Gesamtshadeveteilug 4.8. Die omal-appoimatio We wi de Ewatugswet ud die Vaiaz vo S kee, appoimiee wi die Veteilug vo S duh die omalveteilug mit gleihe Ewatugswet ud gleihe Vaiaz. Bsp: S hat eie zusammegesetze Poissoveteilug mit Poisso Paamete λ ud de Höhe des idividuelle Shades,die Logomalveteilug mit Ewatugswet ud Vaiaz.5 ist. Wi suhe de Wet mit P(S ).95 Beh: (a) 8.3we λ (b) 6. we λ Bew: E[ S] ist ( λ,.5 λ ). λ ud Va [ S].5λ,da die appoimiete Veteilug vo S Daduh, P λ S P Z wobei Z (,)..5λ Mit Hilfe die Tabelle vo stadad omalveteilug wisse wi P(Z.645).95

11 λ λ λ, 8.3 ud λ, 6. Voteile: -weig Ifomatioe -eifahe Awedug -agemessee Aäheug we die Shadezahl seh goß ist ahteile: - P(S<) > -die Appoimatiosveteilug ist symmetish, higege ist die ehte Veteilug omaleweise vezet. -die Appoimatio eigt dazu de tail zu uteshätze Die veshobee Gamma- Appoimatio Eie Shwähe vo omal-appoimatio ist,dass sie auf de este zwei Momete vo S basiet. Die veshobee Gamma-Appoimatio bewältigt diese ahteil, idem sie auf de este dei Momete vo S basiet. Die Veteilug vo S wid duh die Veteilug vo Y+k appoimet,wobei Y~ γ ( αβ, ) ud k kostat ist. Die paametes α, β ud k wede duh folgede Gleihuge bestimmt. [ ] Sk S (4.33) α [ ] V S E[ S] α β (4.34) α + k (4.35) β Bsp: die Vaiable S hat gleihe Voaussetzug wie obige Beispiel,u vewedet ma die veshobee Gamma-Appoimatio ud bestimmt. Beh: (a) 9.59 we λ

12 (b) 7.7 we λ Bew;. Shitt: Zuest bestimme wi dei Momet vo Logomalveteilug m ep{ μ σ } +, m {.5 ep μ + σ } s.d μ.458 ud.957 σ folgt m 9 3 { μ σ } ep ah (4.33) gilt : λm ( λm ) 3 3 4λm α α m 3 3 α m ah (4.34) gilt : λm β β m 3 α ah (4.35) gilt : λm + k s.d β m λ α β λ 3 k m m m We λ,α.56, β.3 ud k., setze SY+k, Y γ (α, β ) ud ehalte wi P ( S P Y k),da ka ma duh eie Softwae (ZB: speadsheets) die ivese vo Gammaveteilug beehe. P ( Y 7.59).95 folgt 9.59 We λ,α 5.6, β.3 ud k.,da P ( Y 7.7) Voteile: -beahtet die Vezeug vo die Veteilug vo S. -eifah zu implemetieede Aäheug -hevoagede Appoimatio. ahteile: -meh Ifomatio als omal-appoimatio. -P(S<)

beschreiben wir zuerst den Gesamtschadenprozess, der mit

beschreiben wir zuerst den Gesamtschadenprozess, der mit Die klassishe Ritheoie. Eifühg I diesem Kapitel betahte wi de klassishe Risiko-Pozess d leite eiige Egebisse fü die Wahsheilihkeit des Ris he. Isbesodee beweise wi Ldbeg s Ugleihg d zeige, wie explizite

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

3.3. Spezielle Verteilungen für mehrstufige Experimente

3.3. Spezielle Verteilungen für mehrstufige Experimente 3.3. Spezielle Veteiluge fü mehstufige Expeimete Baumdiagamme fü mehstufige Expeimete wede bei viele Wiedeholuge schell uübesichtlich. Fü das wiedeholte Ziehe mit ud ohe Zuüclege aus eie Ue, die u zwei

Mehr

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) =

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) = Techische Uivesität Dotmud Sommesemeste 2017 Fakultät fü Mathematik Übugsblatt 3 Pof. D. Detlev Hoffma 22. Mai 2017 Maco Sobiech/ Nico Loez Lieae Algeba 1 Lösug zu Aufgabe 3.1: Voaussetzuge: Sei V ei deidimesioale

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

AR: Grundlagen der Tensor-Rechung

AR: Grundlagen der Tensor-Rechung Auto: Walte Bisli vo walte.bislis.ch/doku/a 8..3 7:57 AR: Gudlage de Teso-Rechug Matheatisch wede Beechuge de Eegiedichte ud de zugehöige Rauzeitküug it de Wekzeug de Teso-Aalysis ausgefüht. Auf de folgede

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen D. Jüge Sege MTHEMTIK Gudlage fü Ökooe ÜBUNG 8.. - LÖSUNGEN. Gegee ist das lieae Gleichugssyste: 7 a. Es hadelt sich u ei ihoogees lieaes Gleichugssyste it Gleichuge ud Vaiale.. Ei lieaes Gleichugssyste

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

2. Verteilung der Primzahlen. Bertrands Postulat

2. Verteilung der Primzahlen. Bertrands Postulat O Forster: Prizahle 2 Verteilug der Prizahle Bertrads Postulat 21 Satz (Euklid Es gibt uedlich viele Prizahle Beweis Wir zeige, dass es zu jeder edliche Mege 1, 2,, vo Prizahle ier och eie weitere Prizahl

Mehr

Forschungsstatistik I

Forschungsstatistik I Pschologie Pof. D. G. Meihadt 6. Stock, TB II R. 06-206 (Pesike) R. 06-321 (Meihadt) Spechstude jedezeit ach Veeibaug Foschugsstatistik I D. Malte Pesike pesike@ui-maiz.de http://psmet03.sowi.ui-maiz.de/

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

KAPITEL 2: NÄHERUNGSVERFAHREN

KAPITEL 2: NÄHERUNGSVERFAHREN 2.1 Variatiosprizip 2.2 Störugstheorie KAPITL 2: NÄRUNGSVRFARN Amerkug: i alle folgede Theme wird die Gültigkeit der BO-Näherug vorausgesetzt Literatur: z.b: Atkis, Friedma, Moleular Quatum Mehais, Oxford

Mehr

11. Übungsblatt zur Vorlesung Mathematik I für Informatik

11. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 9/./3. Jauar Gruppeübug Aufgabe G Itegratio) Bereche

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

4 Beschreibung des Run-Tests

4 Beschreibung des Run-Tests 4 Bescheibug des Ru-Tests Die mathematische Gudlage fü dieses Kaitel fidet ma i [6],[8] ud [6]. 4. Was ist ei Ru-Test 4.. Eifühug De Ru-Test ist ei ichtaametische Test (siehe Kaitel 3.6), dem die Azahl

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

Wir sprechen von einer Rente, wenn die Ein- oder Auszahlungen (= Raten) regelmässig erfolgen und konstant immer in der gleichen Höhe erfolgen.

Wir sprechen von einer Rente, wenn die Ein- oder Auszahlungen (= Raten) regelmässig erfolgen und konstant immer in der gleichen Höhe erfolgen. 2. eteechge 2.1 Gdlage Weitee Afgabestellge i de Fiazmathematik egebe sich, we die apitaleilage ode die ückzüge egelmässig d i gleiche Höhe efolge. I diese Fälle spicht ma vo ete. Die Altesete ist davo

Mehr

Gleichung D. Gleichung C

Gleichung D. Gleichung C Gleihug C: gültig für Kerte > bis 10 11 3 PO 4 8.4.4 Shwahe Säure ud ase etwikel aus Gleihug oder: Gleihug C ud C oder: für iht zu kleie 0, 0 (sost C, C ) K K gegeüber... ud ² gegeüber K0 verahlässigbar

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

Lösungsvorschlag zu den Hausaufgaben der 4. Übung

Lösungsvorschlag zu den Hausaufgaben der 4. Übung FKULTÄT FÜR MTHEMTIK Pof. D. Patizio Neff Chistia Thiel 05.11.013 Lösugsvoschlag zu de Hausaufgabe de 4. Übug ufgabe 1: 6 Pute I eiem Lad ist jede Stadt mit jede adee duch geau eie Staße vebude, wobei

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß De Appoximatiossatz vo Weiestaß Votag im Posemia zu Fouieaalysis Uivesität Hambug, Dept. Mathematik ejami Wieeck Sommesemeste, 1. Apil 8 Das Ziel dieses Votages ist de eweis des Appoximatiossatzes vo Weiestaß.

Mehr

Mathematik 4 Vektorräume und affine Räume

Mathematik 4 Vektorräume und affine Räume 4 ektoäume ud affie äume olesugsmitschift - Kuzfassug Etwuf Pof. D. e. at. B. Gabowski HTW des Saalades 4 Ihalt Mathematik Kapitel 4 INHALTSEZEICHNIS 4 EKTOÄUME UND AFFINE ÄUME... 4.. EINLEITUNG... 4.

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1.

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1. KAPITEL 8 Wichtige statistische Veteilungen In diesem Kapitel weden wi die wichtigsten statistischen Veteilungsfamilien einfühen Zu diesen zählen neben de Nomalveteilung die folgenden Veteilungsfamilien:

Mehr

Lineare Algebra 2. A m. A 3 XI n3

Lineare Algebra 2. A m. A 3 XI n3 Techische Uivesität Dotmud Sommesemeste 27 Fakultät fü Mathematik Übugsblatt 6 Pof D Detlev Hoffma 6 Jui 27 Maco Sobiech/ Nico Loez Lieae Algeba 2 Lösug zu Aufgabe 6: Voaussetzuge: Sei K ei Köpe ud sei

Mehr

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache "Rechen"-Regeln: " ": Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt:

Der Groß-O-Kalkül. Additionsregel. Zunächst ein paar einfache Rechen-Regeln:  : Sei. Lemma, Teil 2: Für beliebige Funktionen f und g gilt: Der Groß-O-Kalkül Additiosregel Zuächst ei paar eifache "Reche"-Regel: Lemma, Teil 1: Für beliebige Fuktioe f g gilt: Zu beweise: ur das rechte "=" Zu beweise: jede der beide Mege ist jeweils i der adere

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate 9. Speiheelemete Die Wiug vo Rüoppluge Shaltetze habe eie haateitihe Eigehaft: ie ethalte eie Rüoppluge. Welhe Wiug eie Rüopplug habe a, oll a folgedem Beipiel gezeigt wede. 1 1 1 1 1 1 Duh die Rüoppluge

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Analysis Übungen Hausaufgaben für 4. April

Analysis Übungen Hausaufgaben für 4. April Aalysis Übuge Hausaufgabe für 4. April Reihe sg 1. AN 8.2. c), AN 8.9. a). 2. Beweise die otwedige Bedigug für die Kovergez eier Reihe: we a koverget ist, da lim a = 0. (I der Praxis: we lim a 0, da ist

Mehr

Innere und äußere (transversale) Orientierungen

Innere und äußere (transversale) Orientierungen Iere ud äußere (trasversale) Orietieruge Ei geometrishes Objekt P (ei Weg, eie Flähe) liege i eie höherdimesioalem geometrishe Objekt K K ka ei affier Raum sei Eie iere Orietieruge legt liks, rehts obe,

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Gebrochenrationale Funktionen

Gebrochenrationale Funktionen Gebrocheratioale Fuktioe Aufgabe Bestimme de Defiitiosbereich der Fuktio f() = ösug: Hier ist der maimale Defiitiosbereich icht R, de im der Neer wird für = Null ud ma würde durch Null teile. Aus diesem

Mehr

7 Brownsche Bewegung (Version Januar 2012)

7 Brownsche Bewegung (Version Januar 2012) 7 Browsche Bewegug (Versio Jauar 0) Wir führe zuerst die Defiitio eier Browsche Bewegug ei ud zeige da, dass ei solcher Prozess eistiert. Daach beweise wir eie Reihe vo Eigeschafte der Browsche Bewegug,

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Übung 11. Stochastische Signale Prof. Dr.-Ing. Georg Schmitz

Übung 11. Stochastische Signale Prof. Dr.-Ing. Georg Schmitz Übug Aufgabe : Ukorrelierte, statistisch uabhägige Prozesse Es sid zwei stochastische Prozesse gegebe mit X = cos(z ), Y = cos(z φ). Hierbei sei Z auf [ π, π] gleichverteiltes weißes Rausche mit E{Z }

Mehr

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =?

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =? Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati - W 8/9 57 Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati

Mehr

13. Übungsblatt zur Vorlesung Mathematik I für Informatik

13. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 3. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 009/00 6./7. Jauar 00 Gruppeübug Aufgabe G (Reihe)

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

a) Folgt aus der Linearität der Ableitung und den Eigenschaften der Supremumsnorm.

a) Folgt aus der Linearität der Ableitung und den Eigenschaften der Supremumsnorm. Lösug. a) Folgt aus der Liearität der Ableitug ud de Eigeschafte der Supremumsorm. b) d ist wohldefiiert. Es ist d(φ, φ 2 ) ( ) 2 2 α β = m 2 m = 4 < α,β N Symmetrie ist klar. Aus d(φ, φ 2 ) = folgt φ

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken Semiar: Radomisierte Algorithme Routeplaug i Netzwerke Marie Gotthardt 3. Oktober 008 Ihaltsverzeichis 1 Routeplaug i Netzwerke 1.1 Laufzeit eies determiistische Algorithmus'................ 1. Radomisierter

Mehr

2. Übung Algorithmen II

2. Übung Algorithmen II Johaes Sigler, Prof. Saders 1 Johaes Sigler: KIT Uiversität des Lades Bade-Württemberg ud atioales Forschugszetrum i der Helmholtz-Gemeischaft Istitut für Theoretische www.kit.edu Iformatik Orgaisatorisches

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Lösuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Beekuge: Kle vo ie h usse uflöse; Pukt vo Stih 0. / /. π lr lr Q lr d 00 ln Beekug zu d Geht uh ohe TR! Küze Nee: ud Zähle:

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

1.1 Mengensysteme. Ω Grundmenge, 2 Ω Potenzmenge, A 2 Ω Mengensystem. Definition 1.1: a) A stabil ( stabil, \-stabil), wenn für A, B A auch A B A

1.1 Mengensysteme. Ω Grundmenge, 2 Ω Potenzmenge, A 2 Ω Mengensystem. Definition 1.1: a) A stabil ( stabil, \-stabil), wenn für A, B A auch A B A 1.1 Megesysteme Grudmege, 2 Potezmege, A 2 Megesystem Defiitio 1.1: a) A stabil ( stabil, \-stabil), we für A, B A auch A B A (A B A, A\B A). b) A heißt Halbrig, we i) A ii) A ist stabil iii) A, B A es

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 13

Wahrscheinlichkeit & Statistik Musterlösung Serie 13 ETH Zürich FS 2013 D-MATH Has Rudolf Küsch Koordiator Blaka Horvath Wahrscheilichkeit & Statistik Musterlösug Serie 13 1. a) Die Nullhypothese lautet dass das echte Medikamet höchstes gleich gut ist wie

Mehr

Lösungen zur Klausur Maß- und Integrationstheorie WS 2012/13

Lösungen zur Klausur Maß- und Integrationstheorie WS 2012/13 Lösuge zur Klausur 45 Maß- ud Itegratiostheorie S 22/3 Lösug zu Aufgabe I der Aufgabestellug ist kei Tippfehler. Es steht dort fx, y, x dλ 3 x, y, z. z fx, y, x ist kostat i z. Falls jemad fx, y, z dλ

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen.

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen. Uverstät Ulm, Isttut Stochastk 5. Jul 200 Semar: Stochastsche Geometre ud hre Aweduge - Ubegrezt telbare ud stable Verteluge. Ausarbetug: Stefa Fuke Betreuer: Ju.-Prof. Dr. Zakhar Kabluchko Ubegrezt telbare

Mehr

(5) Quaternionen. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(5) Quaternionen. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (5) Quateioe Volesug Aimatio ud Simulatio S. Mülle KOBLENZ LANDAU Fage: De ekostuiete Wikel ist ische ud 8, as ist mit gößee Wikel? Atot: die ekostuiete Nomale eigt i die adee Richtug. also kei Poblem.

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Didaktik der Mathematik der Sek II Umkehrfuktioe Ableitugsregel für Umkehrfuktioe (Umkehrregel) Beispiele für die Awedug der Umkehrregel Stetigkeit ud Differezierbarkeit Neuma/Roder Umkehrfuktio Fuktio

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

Modul 10: Autokonfiguration

Modul 10: Autokonfiguration Hohshul BoRhiSig Pof. D. Mati Lish Ntzwksstm ud TK Lzil: Modul 1: Autokofiguatio Nah Duhait diss Tilkapitls soll Si di Aufgastllug Autokofiguatio läut ud di id Kozpt SLAAC ud DHCPv6 zu automatish Kofiguatio

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2012 Prof. Dr. F. Kremer. Übersicht der Vorlesung am

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2012 Prof. Dr. F. Kremer. Übersicht der Vorlesung am olesug "Molekülhysik/estköehysik" Sommesemeste Pof... Keme Übesicht de olesug am 4.-.6. Halbleite mit idealem Kistall Eegieeigewetdichte des Elektoegases Eegieveteilug de quasifeie Elektoe Elektische eitfähigkeit

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Klausur zur Analysis II

Klausur zur Analysis II Uiversität Würzburg Mathematisches Istitut Prof Jör Steudig SS 007 807007 Klausur zur Aalysis II Aufgabe Die Mege M R 3 sei gegebe durch Zeit: 7:45-9:45 M := { x, y, z R 3 expx + y + z = } a Ist M abgeschlosse?

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) What is the matrix? Beispiel: Anwendung von Matrizen. Sommersemester 2018

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) What is the matrix? Beispiel: Anwendung von Matrizen. Sommersemester 2018 Poga heute Algoithe ud Datestuktue (fü ET/IT) Soeseeste 08 D Stefaie Deici Copute Aided Medical Pocedues Techische Uivesität Müche 7 Fotgeschittee Datestuktue 8 Such-Algoithe 9 Gaph-Algoithe 0 Nueische

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen.

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen. Schülerbuchseite 98 1 Lösuge vorläufig IV Beurteilede Statistik S. 98 p S. 1 p w a t Tabelle Tabelle dowloadbar im Iteretauftritt 1 Teste vo Hypothese 1 a) Erwartugswert μ = 5 ud Stadardabweichug σ = 1,6;

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr