3.3. Spezielle Verteilungen für mehrstufige Experimente

Größe: px
Ab Seite anzeigen:

Download "3.3. Spezielle Verteilungen für mehrstufige Experimente"

Transkript

1 3.3. Spezielle Veteiluge fü mehstufige Expeimete Baumdiagamme fü mehstufige Expeimete wede bei viele Wiedeholuge schell uübesichtlich. Fü das wiedeholte Ziehe mit ud ohe Zuüclege aus eie Ue, die u zwei Sote vo Kugel ethält, lasse sich abe Veteilugsfomel agebe, die das Baumdiagamm esetze. Wie goß ist die Wahscheilicheit, beim deimalige (zehmalige) Wüfel eimal (zweimal) die sechs zu wüfel? Kombiatoi Kombiatoische Fomel diee dazu, die Zahl de Egebisse ( Kombiatioe de Egebisse de eizele Stufe) bei mehstufige Expeimete zu beeche. Aufgabe zu hypegeometische Veteilug:. 1 ud Allgemeies Zählpizip bei mehstufige Expeimete: Besteht ei Zufallsexpeimet aus voeiade uabhägige Stufe mit jeweils 1,,..., Egebisse, so hat das Gesamtexpeimet 1... ombiiete Egebisse. Spezialfälle: 1. Aus eie Ue mit Kugel wid mal mit Zuüclege gezoge. Da gibt es... veschiedee Egebisse.. Aus eie Ue mit Kugel wid mal ohe Zuüclege gezoge. Da gibt es ( 1)...( + 1) veschiedee Egebisse. 3. Aus eie Ue mit Kugel wede alle Kugel ohe Zuüclege gezoge. Da gibt es ( 1)...1! (lies Faultät) veschiedee Egebisse. Übuge: Aufgabe zu hypegeometische Veteilug:. 3-6 Aufgabe zu hypegeometische Veteilug:. 7 a) ud b) Satz übe die Zahl de Kombiatioe/Teilmege Aus eie Ue mit Kugel wid mal ohe Zuüclege gezoge. Jeweils alle! Egebisse mit gleiche Auswahl abe uteschiedliche Reihefolge de Kugel wede als Kombiatio zusammegefasst Da gibt es ( 1)... ( 1)!! ( )!! mögliche Kombiatioe. Die Zahle (lies aus ) heiße Biomialoeffiziete. Alteative Fomulieug: Es gibt Möglicheite, aus veschiedee Objete Objete auszuwähle. Übuge: Aufgabe zu hypegeometische Veteilug:. 7 c) - g) Das Ziehe ohe Zuüclege ud die hypegeometische Veteilug Aufgabe zu hypegeometische Veteilug:. 8 Satz übe da Ziehe ohe Zuüclege (Hypegeometische Veteilug) Eie Ue ethält Kugel, davo ote ud schwaze. Es wede Kugel ohe Zuüclege gezoge. Die Wahscheilicheit, geau ote Kugel zu ziehe, ist da H, / () mal ot mal schwaz Übuge: Aufgabe zu hypegeometische Veteilug:

2 Das Ziehe mit Zuüclege ud die Biomialveteilug Aufgabe zu Biomialveteilug:. 1 Satz übe da Ziehe mit Zuüclege (Biomialveteilug) Eie Ue ethält Kugel, davo ote ud schwaze. Es wede Kugel mit Zuüclege gezoge. Die Wahscheilicheit, geau ote Kugel zu ziehe, ist da B, / () mit p p q Wahscheilicheit, bei eie Ziehug eie ote Kugel zu ziehe q 1 p Wahscheilicheit, bei eie Ziehug eie schwaze Kugel zu ziehe Eigabe im GTR: z.b. B 00 0,3 (5 X 15) sum(seq(00 C X*0,3^X*0,7^(00 X),X,5,15)) mit sum LIST/MATH/5, seq LIST/OPS/5 ud C MATH/PRB/3 Übuge: Aufgabe zu Biomialveteilug: äheug de hypegeometische Veteilug duch die Biomialveteilug Beeche die Wahscheilicheit fü die Ziehug zweie ote Kugel mit ud ohe Zuüclege aus eie Ue mit a) 5 Kugel, davo 3 ote b) 50 Kugel, davo 30 ote Lösug a) Bei de este Ziehug ist p 5 3 0,6. Bei de zweite Ziehug ist p etwede u och 4 0,5 (falls zuvo eie ote Kugel gezoge wude) ode 4 3 wude). b) Bei de este Ziehug ist p 0,75 (falls zuvo eie schwaze Kugel gezoge ,6. Bei de zweite Ziehug ist p etwede 0,59 (falls zuvo eie ote Kugel gezoge wude) ode 0,61 (falls zuvo eie schwaze Kugel gezoge wude). 49 Ma a also uabhägig vo dem Egebis de este Ziehug auch fü die zweite Ziehug p 0,6 als äheugswet vewede. We fü beide Ziehuge die gleiche Wahscheilicheite gelte, etspicht dies abe dem Ziehe mit Zuüclege ud füht auf die Biomialveteilug. äheug de hypegeometische Veteilug duch die Biomialveteilug Bei viele Wiedeholuge ( 0) lässt sich auch das Ziehe ohe Zuüclege (d.h. die hypegeometische Veteilug) duch die Biomialveteilug aähe. Befide sich ämlich seh viele Kugel i de Ue, so wede die Megevehältisse bzw. Wahscheilicheite duch die Etahme weige Kugel aum geädet. Ma a also bei de., 3., usw. Kugel äheugsweise die gleiche Wahscheilicheite vewede wie bei de este Kugel

3 Ewatugswet ud Vaiaz Aufgabe zu Biomialveteilug. 11 Wahscheilicheitsfutio ud Veteilugsfutio eie Zufallvaiable X Gegebe sei eie Zufallsvaiable X,die jedem Egebis ω 1, ω,... eie eelle Zahl X(ω 1 ), X(ω ),.. zuodet. Die Wahscheilicheitsfutio f gibt fü jedes R die zugehöige Wahscheilicheit f() P(X ) a. Die Veteilugsfutio F gibt fü jedes R die zugehöige Wahscheilicheit F() P(X ) a. Übuge: Aufgabe zu Biomialveteilug. 1 ud 13 Aufgabe zu Biomialveteilug. 14 Ewatugswet, Vaiaz ud Stadadabweichug De Ewatugswet μ E(X) eie Zufallsvaiable X ist de mit de etspechede Wahscheilicheite P(ω i ) gewichtete Mittelwet alle mögliche Wete X(ω i ): E(X) X(ω 1 )P(ω 1 ) + X(ω )P(ω ) +... Die Vaiaz V(X) E((X μ) ) ist ei Maß fü die mittlee quadatische Abweichug vom Mittelwet. Die Stadadabweichug σ Übuge: Aufgabe zu Biomialveteilug. 15 ud 16 V(X) ist ei Maß fü die mittlee Abweichug vom Mittelwet Ewatugswet ud Stadadabweichug de Biomialveteilug Ist eie Zufallsvaiable biomialveteilt mit P(X ) B p (), so gilt: Ewatugswet μ p Wet mit de gößte Wahscheilicheit Maximum de Wahscheilicheitsfutio bei μ Stadadabweichug σ p q mittlee Steuug um de Ewatugswet Wedepute de Wahscheilicheitsfutio bei μ ± σ Beweis: De Beweis veeifacht sich sta duch die Vewedug de Lieaität des Ewatugswetes: Fü zwei Zufallsvaiable X ud Y sowie eelle Zahle a ud b gilt ämlixh E(aX + by) (ax(ω 1 ) + by(ω 1 ))P(ω 1 ) + a(x(ω 1 )P(ω 1 ) + ) + b(y(ω 1 )P(ω 1 ) + ) ae(x) + be(y). Sei X i 1, we die i-te Kugel ot ist ud X i 0, we sie schwaz ist. De Ewatugswet fü diese Zufallsvaiable ist da E(X i ) X i ()P() + X i (s)p(s) 1p + 0(1 p) p. Außedem gilt X X 1 + X + X ud dahe etspeched E(X) E(X 1 ) + + E(X ) p. Weite gilt E(X ) E((X X ) ) X 1 ()X 1 ()P() + + X ()X ()P(,) + X 1 ()X ()P(,) + + X 1 ()X () P(,) Summade p 1 Summade p + X ()X 1 ()P(,) + + X ()X () P(,) 1 Summade p + X ()X 1 ()P(,) + + X ()X 1 () P(,) Summe 1 Summade p ud damit p + ( 1)p V(X) E((X μ) ) E((X p) ) E(X px + (p) ) E(X ) p(e(x) + (p) p + ( 1)p (p) + (p) p p p(1 p) pq. 3

4 B 50 0,4 () mit μ 0 ud σ 3,46 Maximum bei 0 mit B 50 0,4 (0) 11,45 % Wedepute bei 17 mit B 50 0,4 (17) 8,07 % ud 3 mit B 50 0,4 (3) 7,78 %: 0,14 0,1 0,1 0,08 0,06 0,04 P(X) 0, σ μ σ Übuge: Aufgabe zu Biomialveteilug. 17 ud äheug de Biomialveteilug duch die omalveteilug Aufgabe zu omalveteilug ud Hypothesetests. 1 ud Loale Gezwetsatz vo de Moive ud Laplace Fü goße lässt sich die Biomialveteilug duch eie geeiget veschobee ud gestecte omalveteilug 1 1 Φ () e aähe: lim B 1 p(). Faustegel: Die äheug ist auseiched geau, we pq > 9 ist. EIstelluge im GTR: X MI μ σ, X MAX μ + σ, Y MI 0, Y MAX P(X μ) B 50 0,4 () mit μ 0 ud σ 3,46 B 50 0,4 () 1 0 3, , ,14 P(X) 0,1 0,1 0,08 0,06 0,04 0, Übuge: Aufgabe zu omalveteilug ud Hypothesetests

5 Hypothesetests Aufgabe zu omalveteilug ud Hypothesetests. 6 Hypothesetest 1. Möchte ma Aussage übe Wahscheilicheite bei z.b. Kude (Kaufetscheidug), Wähle (Wahletscheidug), Podute (Ausschussateil) ode Mediamete (Wiugsateil) gewie, so muss ma sich auf die Utesuchug eie Stichpobe ode Statisti vo begeztem Umfag beschäe.. Ma geht vo de Hypothese aus, dass das zu utesuchede Eeigis mit de Wahscheilicheit p 1 eititt. Häufig wid eie Gegehypothese ode Alteative mit de Wahscheilicheit p ebefalls utesucht. 3. Die Aufgabe des Statisties besteht dai, eie veüftige Etscheidugsgeze festzulege: Titt das Eeigis i weige ode meh als vo Fälle ei, so wid die Hypothese ageomme, asoste wid sie abgeleht bzw. die Alteative ageomme. 4. Dabei öe zwei Ate vo Fehletscheiduge auftete: Fehle 1. At: Die Hypothese wid abgeleht, obwohl sie efüllt ist. Risio 1. At (Sigifiaziveau, Itumswahscheilicheit) α Wahscheilicheit fü Fehle 1. At Fehle. At: Die Hypothese wid ageomme, obwohl sie icht efüllt ist. Risio. At β Wahscheilicheit fü Fehle. At Übuge: Aufgabe zu omalveteilug ud Hypothesetests

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) =

Lineare Algebra die Darstellungsmatrix von f bezüglich A. Es ist B = (b 1, b 2, b 3 ) mit. A = M A A (f) = Techische Uivesität Dotmud Sommesemeste 2017 Fakultät fü Mathematik Übugsblatt 3 Pof. D. Detlev Hoffma 22. Mai 2017 Maco Sobiech/ Nico Loez Lieae Algeba 1 Lösug zu Aufgabe 3.1: Voaussetzuge: Sei V ei deidimesioale

Mehr

4 Beschreibung des Run-Tests

4 Beschreibung des Run-Tests 4 Bescheibug des Ru-Tests Die mathematische Gudlage fü dieses Kaitel fidet ma i [6],[8] ud [6]. 4. Was ist ei Ru-Test 4.. Eifühug De Ru-Test ist ei ichtaametische Test (siehe Kaitel 3.6), dem die Azahl

Mehr

Das Kollektive Risikomodell II

Das Kollektive Risikomodell II Semia Vesiheugsisiko ud Rui Pof.D.Haspete Shmidli 9.5.9 Das Kollektive Risikomodell II 4.6. Eweiteug de Pae Rekusiosfomel 4.6.. Die (a,b,)-veteilugsklasse. Eie Veteilug gehöt zu (a,b,)klasse,we ihe Wahsheilihkeitsfuktio

Mehr

A D A E B D D E D E D C C D E

A D A E B D D E D E D C C D E ie Kombiatori beschäftigt sich mit der Zusammestellug vo lemete eier Mege. s werde 2 Kugel ohe Zurüclege aus zwei Ure gezoge. ie erste Ure ethält 3 Kugel ; ; ud die zweite Ure 2 Kugel ;. ie erste Kugel

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Forschungsstatistik I

Forschungsstatistik I Pschologie Pof. D. G. Meihadt 6. Stock, TB II R. 06-206 (Pesike) R. 06-321 (Meihadt) Spechstude jedezeit ach Veeibaug Foschugsstatistik I D. Malte Pesike pesike@ui-maiz.de http://psmet03.sowi.ui-maiz.de/

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf Fudametale Prizipie der Kombiatori ud elemetare Abzähloeffiziete Wolfram Koepf Die abzählede Kombiatori beschäftigt sich vor allem mit der Auswahl eier Teilmege, die ma häufig eie Stichprobe et (aus Wahrscheilicheitsrechug

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Ableitung mechanischer Schemata und Schaltungen

Ableitung mechanischer Schemata und Schaltungen 2.1 Taslatoische Teilsystee 39 Aufgabe 2.9 Ableitug echaische Scheata ud Schaltuge Gebe Sie fü die echaische Systee i de Bilde.16 (a) bis (g) die echaische Scheata ud die echaische Schaltuge a. a) b) c)

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Kapitel 2: Laplacesche Wahrscheinlichkeitsräume

Kapitel 2: Laplacesche Wahrscheinlichkeitsräume - 12 - (Kapitel 2 : Laplacesche Wahrscheilicheitsräume) Kapitel 2: Laplacesche Wahrscheilicheitsräume Wie beim uverfälschte Müzewurf ud beim uverfälschte Würfel spiele Symmetrieüberleguge, die jedem Elemetarereigis

Mehr

Lösungsvorschlag zu den Hausaufgaben der 4. Übung

Lösungsvorschlag zu den Hausaufgaben der 4. Übung FKULTÄT FÜR MTHEMTIK Pof. D. Patizio Neff Chistia Thiel 05.11.013 Lösugsvoschlag zu de Hausaufgabe de 4. Übug ufgabe 1: 6 Pute I eiem Lad ist jede Stadt mit jede adee duch geau eie Staße vebude, wobei

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1

Mehr

Der Fundamentalsatz der Algebra. Inhaltsverzeichnis

Der Fundamentalsatz der Algebra. Inhaltsverzeichnis Votag zum Posemia zu Aalysis, 06.10.2010 Stefa Bleß Ihaltsvezeichis 1 Vowot 2 2 De Beweis 3 2.1 -te Wuzel auf C............................... 3 2.2 Miimum des Betages eies Polyoms.................. 6

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Wiederholung: Transporttheorie

Wiederholung: Transporttheorie Wiedeholug: Taspottheoie Fü eie mathematisch oete ud auch quatemechaisch haltbae Beechug de Leitfähigeit vo Festöpe bzw. düe Schichte muss die Boltzma sche Taspottheoie agewedet wede. Wiedeholug: Asatz

Mehr

11 Divide-and-Conquer und Rekursionsgleichungen

11 Divide-and-Conquer und Rekursionsgleichungen 160 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Divide-ad-Coquer ud Rekursiosgleichuge Divide-ad-Coquer Problem aufteile i Teilprobleme Teilproblem (rekursiv) löse Lösuge der Teilprobleme zusammesetze

Mehr

Lösungen I.1. 21/6 (156 Ergebnisse!) = {6, 16, 26, 36, 46, 56, 116, 126,..., 156, 216, 226,..., 556, 111, 112,..., 555} Lösungen I.2. Lösungen I.

Lösungen I.1. 21/6 (156 Ergebnisse!) = {6, 16, 26, 36, 46, 56, 116, 126,..., 156, 216, 226,..., 556, 111, 112,..., 555} Lösungen I.2. Lösungen I. Löuge I. 0/ jede mögliche Augag eie Zufallexpeimet daf im Egebiaum u eimal voomme eideutige Zuodug); hie gehöt abe z.. de Augag geüfelt oohl zu de Elemete al auch geade Augezahl de Egebiaum /3 = {AA, AA,

Mehr

Kein Anspruch auf Vollständigkeit und Fehlerfreiheit

Kein Anspruch auf Vollständigkeit und Fehlerfreiheit Uivesität Regesbug Natuwisseschaftliche Fakultät I Didaktik de athematik D. Güte Rothmeie WS 008/09 5 7 Elemetamathematik (LH) Pivate Volesugsaufzeichuge Kei spuch auf Vollstädigkeit ud Fehlefeiheit 9.

Mehr

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =?

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =? Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati - W 8/9 57 Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

Vorlesung 3. Tilman Bauer. 11. September 2007

Vorlesung 3. Tilman Bauer. 11. September 2007 Vorurs Mathemati 2007 Tilma Bauer Vorurs Mathemati 2007 Vorlesug 3 Tilma Bauer Mege ud Abbilduge Wiederholug ud Vollstädige Idutio Das Prizip Idex-Schreibweise! ud Aufgabe Uiversität Müster 11. September

Mehr

Stochastik. Bernoulli-Experimente und Binomialverteilung. Allg. Gymnasien: ab J1 / Q1 Berufl. Gymnasien: ab Klasse 12.

Stochastik. Bernoulli-Experimente und Binomialverteilung. Allg. Gymnasien: ab J1 / Q1 Berufl. Gymnasien: ab Klasse 12. Stochastik Allg. Gymasie: ab J / Q Berufl. Gymasie: ab Klasse 2 Alexader Schwarz www.mathe-aufgabe.com August 208 Aufgabe : Ist der Zufallsversuch eie Beroulli-Kette? We ja, gib die Läge ud die Trefferwahrscheilichkeit

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Pof. D. Tatjaa Lage Lehgebiet: egelugstechik Laboübug 6: Thea: Stabilität vo egelkeise: Wuzelotsvefahe 1. Übugsziele: etiefug de egel zu Bildug vo Wuzelotskuve Deostatio echegestützte efahe de lieae Systeaalyse

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

Gymnasium Hilpoltstein Grundwissen 9. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 9. Jahrgangsstufe ymium Hilpolttei udwie 9. Jhggtufe Wie / Köe. Reche mit Wuzel Qudtwuzel Wuzel u it diejeige Zhl göße ode gleich Null, die mit ich elt multipliziet egit. Dei mu 0 ei. Reelle Zhle Jede uedliche, icht peiodiche

Mehr

Diplomvorprüfung Stochastik

Diplomvorprüfung Stochastik Uiversität Karlsruhe TH Istitut für Stochastik Prof. Dr. N. Bäuerle Name: Vorame: Matr.-Nr.: Diplomvorprüfug Stochastik 10. Oktober 2006 Diese Klausur hat bestade, wer midestes 16 Pukte erreicht. Als Hilfsmittel

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

Lineare Algebra 2. A m. A 3 XI n3

Lineare Algebra 2. A m. A 3 XI n3 Techische Uivesität Dotmud Sommesemeste 27 Fakultät fü Mathematik Übugsblatt 6 Pof D Detlev Hoffma 6 Jui 27 Maco Sobiech/ Nico Loez Lieae Algeba 2 Lösug zu Aufgabe 6: Voaussetzuge: Sei K ei Köpe ud sei

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2010 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2010 Mathematik 13 Technik - B I - Lösung Abiturprüfug Berufliche Oberschule 2010 Mathematik 13 Techik - B I - Lösug Teilaufgabe 1.0 Die Firma Sparlux stellt Eergiesparlampe i großer Azahl her, die, je achdem, wie geau sie die Neleistug eihalte,

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden.

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden. Stützus Mathemati WIW Übuge Tag Datum: ***LÖSNGSVORSCHLG*** Theme: Folge, Reihe, Gezwete, Mootoie mfag: Hilfsmittel: ufgabe Si eie otweig Eie Fomelsammlug u ei icht pogammiebae Tascheeche öe abe veweet

Mehr

Musterlösung Serie 4

Musterlösung Serie 4 D-MATH Lineae Algeba I HS 218 Pof Richad Pin Mustelösung Seie 4 Summen Podute und Matizen 1 Beweisen Sie: (a Fü jede ganze Zahl n gilt n ( n 2 n (b Fü alle ganzen Zahlen n gilt ( ( n n n (c Fü alle ganzen

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

11 Likelihoodquotiententests

11 Likelihoodquotiententests 11 Likelihoodquotietetests I de Paragraphe 7-10 wurde beste Tests UMP-Tests oder UMPU-Tests i spezielle Verteilugssituatioe hergeleitet Hier soll u ei allgemeies Kostruktiosprizip für Tests vo zusammegesetzte

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

f X1 X 2 Momente: Eigenschaften: Var(aX + b) = a 2 Var(X) a, b R

f X1 X 2 Momente: Eigenschaften: Var(aX + b) = a 2 Var(X) a, b R Siebformel vo Poicare-Sylvester: k P A k = k+ P A ij k= k= = k= P A k k= i

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Erfolg im Mathe-Abi 2017

Erfolg im Mathe-Abi 2017 Gruber I Neuma Erfolg im Mathe-Abi 2017 Übugsaufgabe für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Ihaltsverzeichis Ihaltsverzeichis Aalysis 1 Tuel... 7 2 Widkraftalage... 8 3 Testzug... 9 4 Abkühlug...

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Abituraufgabe Stochastik: Fliesenproduktion

Abituraufgabe Stochastik: Fliesenproduktion Abituaufgabe Stochastik: Fliesenpoduktion Eine Fima stellt mit zwei veschiedenen Maschinen A und B Bodenfliesen aus Keamik he. Damit eine Fliese als 1. Wahl gilt, muss sie stenge Qualitätsnomen efüllen.

Mehr

Absorption von Röntgenstrahlung in Abhängigkeit von der Energie (Härte) der Strahlung

Absorption von Röntgenstrahlung in Abhängigkeit von der Energie (Härte) der Strahlung Absoptio vo Rötgestahlug i Abhägigkeit vo de Eegie (Häte) de Stahlug Aufgabe: Ma ehe die Schwächugskuve fü Aluiiu bei zwei veschiedee Aodespauge ud zwei veschiedee Aodestöe auf. Die Abb.9.4 zeigt das Pizip

Mehr

Erfolg im Mathe-Abi 2015

Erfolg im Mathe-Abi 2015 Gruber I Neuma Erfolg im Mathe-Abi 2015 Übugsbuch für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Ihaltsverzeichis Ihaltsverzeichis Aalysis 1 Tuel... 2 Widkraftalage... 7 3 Testzug... 8 4 Abkühlug...

Mehr

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)!

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)! Aufgabe.4 Die Verallgemeierug der biomische Formel für (x y ist der Biomische Lehrsatz: (x y x y, x, y R, N. (a Zeige Sie die Beziehug ( ( ( zwische de Biomialoeffiziete. (b Beweise Sie de Biomische Lehrsatz.

Mehr

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug

Mehr

Aufgaben zu Kapitel 2

Aufgaben zu Kapitel 2 2 Sei a R ud seie a ud a Iverse vo a Da ist a = a = a ( aa ) = ( a a)a = a = a 22 Wege Aufgabe 4 bleibt lediglich (R2) ud (R3) zu zeige (R2): Die Multipliatio ist offebar assoziativ Das Eiselemet ist die

Mehr

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen Kombiatori Alexader (Axel Straschil 8. Dezember 2006 Diese urze Zusammefassug über Permutatioe, Variatioe, Kombiatioe ud de Biomische Lehrsatz etstad im laufe meies Iformatistudiums a der Techische Uiversität

Mehr

KOMBINATORIK. A) Permutationen: n! = n (n-1) (n-2) Beispiele :

KOMBINATORIK. A) Permutationen: n! = n (n-1) (n-2) Beispiele : KOMBINATORIK Sie utersucht die verschiedee Möglicheite der Aordug vo Gegestäde, das öe Zahle, Buchstabe, Persoe, Versuche,... sei. Wir ee sie Elemete ud bezeiche sie mit Kleibuchstabe. Die Zusammestelluge

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Algebra 2 Daiel Plauma Techische Uiversität Dortmud Sommersemester 2017 9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Arbeitsblatt: Der Satz vo Cayley-Hamilto ud Aweduge Lese Sie de Text sorgfältig ud löse Sie

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen.

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen. Schülerbuchseite 98 1 Lösuge vorläufig IV Beurteilede Statistik S. 98 p S. 1 p w a t Tabelle Tabelle dowloadbar im Iteretauftritt 1 Teste vo Hypothese 1 a) Erwartugswert μ = 5 ud Stadardabweichug σ = 1,6;

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neuma Erfolg im Mathe-Abi 2013 Vorabdruck Wahlteil Stochastik für das Abitur ab 2013 zum Übugsbuch für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Vorwort Vorwort Erfolg vo Afag a...ist das

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

Formelsammlung. PD Dr. C. Heumann

Formelsammlung. PD Dr. C. Heumann Formelsammlug zur Vorlesug Statistik II PD Dr C Heuma Formelsammlug Statistik II Iduktive Statistik Regel der Kombiatorik ohe Wiederholug mit Wiederholug! Permutatioe! 1! s! ( ) ( ) + m 1 ohe Reihefolge

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

14. Folgen und Reihen, Grenzwerte 14.1 Eine Folge definieren Explizite Definition. 14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 14.1 Eine Folge definieren Explizite Definition. 14. Folgen und Reihen, Grenzwerte 4. Eie Folge defiiere Eplizite Defiitio Reursive Defiitio 4. Glieder eier vorher defiierte Folge bereche Ei Glied Mehrere Glieder 6 4 5 4.3 Eie Folge defiiere ud eiige ihrer Glieder bereche 6 4 5 4.4 Eiige

Mehr

Perkolation (WS 2014) Übungsblatt 2

Perkolation (WS 2014) Übungsblatt 2 Istitut für Stochasti Prof. Dr. G. Last Dipl.-Math. S. Ziesche Perolatio WS 04 Übugsblatt Aufgabe Zeige Sie für T, dass θ 0 p ud χ 0 p stetig auf [0, ] sid, we ma als Wertebereich R + { } zulässt. Lösug:

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite Reelle Zahlen. Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus. Eine Wuzel kann nicht negativ

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

5 Stationäre Prozesse (Version Januar 2012)

5 Stationäre Prozesse (Version Januar 2012) 5 Statioäre Prozesse (Versio Jauar 2012) 5.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud defiiere, wa eie

Mehr

Election: Nachrichtenkomplexität. Mittlere Nachrichtenkomplexität (1) - Beispiel: Sei k = n = 4 - Über alle Permutationen mitteln (wieviele?

Election: Nachrichtenkomplexität. Mittlere Nachrichtenkomplexität (1) - Beispiel: Sei k = n = 4 - Über alle Permutationen mitteln (wieviele? Electio: Nachrichtekompleität - Message-etictio-Prizip vo Chag ud Roberts 979 - war eier der erste verteilte Algorithme Mittlere Nachrichtekompleität () - Beispiel: Sei k = = - Über alle Permutatioe mittel

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Abiturprüfung Mathematik 13 Technik B I - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik B I - Lösung mit CAS GS 04.06.2016 - m16_13t-b1_lsg_cas_gs.pdf Abiturprüfug 2016 - Mathematik 13 Techik I - Lösug mit CAS Teilaufgabe 1.0 Eiem Eishockey-Traier stehe isgesamt 15 Spieler zur Verfügug, wobei es sich um zwölf

Mehr

Stochastische Extremwertprobleme im Fächer-Modell II: Maxima von Wartezeiten und Sammelbilderprobleme 1

Stochastische Extremwertprobleme im Fächer-Modell II: Maxima von Wartezeiten und Sammelbilderprobleme 1 Stochastische Extemwetpobleme im Fäche-Modell II: Maxima vo Watezeite ud Sammelbildepobleme NORBERT HENZE, KARLSRUHE Zusammefassug: Im Fächemodell mit Fäche wede i eiem Besetzugsvogag s veschiedee de Fäche

Mehr