Schriftliche Prüfung aus Regelungstechnik am

Größe: px
Ab Seite anzeigen:

Download "Schriftliche Prüfung aus Regelungstechnik am"

Transkript

1 TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte eeichte Pukte

2 TU Gaz, Istitut fü Regelugstechik Aufgabe Gegebe sei folgede Regelkeis it de Fühugsgöße ud de Ausgagsgöße : - R(s) G(s) Die Übetagugsfuktioe de Stecke bzw. des Regles sid gegebe als: Hiebei ist V ei eelle Paaete. s 6 Gs () bzw. Rs () V ( s3)( s4) s a) Beeche Sie die Fühugsübetagugsfuktio T() s. b) Skizziee Sie die Lage de Pole de Fühugsübetagugsfuktio T() s i Abhägigkeit vo Paaete V. Kezeiche Sie i de Skizze die Lage de Pole fü die Wete V 0 ud V. c) Eittel Sie äheugsweise de Wetebeeich des Paaetes V, fü de alle Pole s i de Übetagugsfuktio T(s) die Bedigug Re( s ) efülle. i Hiweise: Regel zu Kostuktio de Wuzelotskuve: Ls () K ( s ) ( s ) 80 i ( i ), i,,( ) Übetagugsfuktio des offee Keises Wikel de Asptote fü K 0 0 Schittpukt de Asptote it de eelle Achse

3 TU Gaz, Istitut fü Regelugstechik 3 Aufgabe : Gegebe sei das Blockschaltbild eies Fühugsegelkeises it de Eigagsgöße ud de Ausgagsgöße : K G(s) Als Regle wid ei Popotioalegle it de Übetagugsfuktio K (it K 0 ) s eigesetzt; die Übetagugsfuktio de Stecke lautet: Gs (). 3 ( s) De Fequezgag G( j ) de Stecke liegt i aßstäbliche Dastellug abe ohe Beschiftug gaphisch vo: I{ G( j)} Re{ G( j )} a) Eittel Sie aus de gegebee Date de Stecke die Schittpukte des Fequezgages it de eelle Achse. (Gebe Sie jeweils eie atheatische Begüdug a!) b) Eittel Sie it Hilfe des Nquistkiteius de gößtögliche Wetebeeich des Reglepaaetes K, fü de obige Regelkeis die BIBO-Eigeschaft besitzt. Hiweis: ac( L( j)) ( a ) L() s stellt hiebei die Übetagugsfuktio des offee Keises da.

4 TU Gaz, Istitut fü Regelugstechik 4 Aufgabe 3 Gegebe sei das atheatische Modell eie Regelstecke it de Eigagsgöße u ud de Ausgagsgöße : 0 0 x u 3 x 0 x Es soll ei Zustadsegle de Fo u k k x eigesetzt wede. Hiebei sid k ud k feie eelle Paaete. a) Gebe Sie die Wetebeeiche de Reglepaaete k ud k a, dait de Regelkeis asptotisch stabil ist. Nu wid de Reglepaaete k gewählt. b) Bestie Sie de Wetebeeich des Reglepaaetes k so, dass die Daikatix des Regelkeises asptotisch stabil ist ud ei kojugiet koplexes Eigewetpaa besitzt.

5 TU Gaz, Istitut fü Regelugstechik 5 Aufgabe 4 Gegebe sei folgede Regelkeis it de Fühugsgöße ud de Ausgagsgöße : s( s) sa Hiebei ist a ei eelle Paaete. a) Beeche Sie die Fühugsübetagugsfuktio T() s. b) Eittel Sie it Hilfe des Routh-Huwitz-Kiteius de gößtögliche Wetebeeich vo a so, dait die Fühugsübetagugsfuktio die BIBO-Eigeschaft aufweist. Als Fühugsgöße wid u die Spugfuktio gewählt: t () () t c) Beeche Sie fü die Paaetewete a ud a de Gezwet de Ausgagsgöße li t ( ). t

6 Schiftliche Püfug aus Regelugstechik a Nae / Voae(): Studieichtug: Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte eeichte Pukte

7 Aufgabe Gegebe sei de folgede Stadadegelkeis it de Fühugsgöße ud de Ausgagsgöße : L(s) Die Fühugsübetagugsfuktio des Regelkeises lautet: Hiebei ist K ei eelle Paaete. T() s = Ks ( + ) s + ( K + ) s+ K. a) Eittel Sie de Wetebeeich vo K, fü de gilt: = li ( t) = fü t 0 fü t < 0 t () = fü t 0 b) Skizziee Sie die Lage de Pole de Fühugsübetagugsfuktio T(s) i Abhägigkeit des Paaetes K. Hiebei ka K als positiv voausgesetzt wede. Kezeiche Sie i de Skizze die Lage de Pole fü die Wet K=0 ud K. c) Eittel Sie auf gaphische Wege äheugsweise die Wete vo K (it K>0) so, dass T(s) ehfache Pole besitzt. Hiweise: Ls () = K = = ( s - b ) ( s -a ) Übetagugsfuktio des offee Keises 80 Y i = ( i- ), i =, ( - ) Wikel de Asptote fü K > 0 - x = 0 Â a - Â = = - b Schittpukt de Asptote it de eelle Achse

8 Aufgabe Gegebe sei de folgede Stadadegelkeis it de Fühugsgöße, de Stellgöße u ud de Ausgagsgöße : H(s) u P(s) Die Regelstecke wid duch die Übetagugsfuktio Ps () beschiebe, H() s ist die Regleübetagugsfuktio. De qualitative Velauf de Otskuve P( jω) ist i folgede Abbildug dagestellt: I ω Re P(jω) a) Zu welche de folgede Übetagugsfuktioe Ps ( ) ka obige Otskuve pizipiell gehöe? Begüde Sie Ihe Atwote! i) Ps () = 3 ( s + ) ii) Ps () = s ( s+ ) iii) Ps () = ss ( + ) iv) Ps () = s b) Es soll u ei sogeate Popotioalegle (P-Regle) etwofe wede, d.h. H() s = K. Hiebei ist K ei eelle, positive Paaete. Eittel Sie it Hilfe des Nquistkiteius de Wetebeeich vo K, fü de de geschlossee Regelkeis die BIBO-Eigeschaft besitzt. c) Fü de Paaete K soll u gelte: K=. Eittel Sie i eigeschwugee Zustad de Velauf de Stellgöße u fü t () = si() t.

9 Aufgabe 3 Gegebe sei das folgede atheatische Modell eies daische Sstes it de Eigagsgöße u, de Zustadsvekto x ud de Ausgagsgöße : Hiebei ist α ei eelle Paaete x = x+ u = [ 0 ] x 0 0 α 0 a) Übepüfe Sie obiges Modell auf Steuebakeit. Es wid u ei Zustadsegle de Fo [ k k ], ud k feie eelle Paaete. k k 3 u = k x eigesetzt. Hiebei sid 3 b) Bestie Sie die Reglepaaete k, k ud k3 so, dass zwei Eigewete de Ssteatix des Regelkeises bei s = liege. Wo liegt de ditte Eigewet? (Begüde Sie Ihe Atwot!) c) Fü welche Wete vo α besitzt die Ausgagsgöße des Regelkeises fü jede beliebige Afagszustad x 0 die Eigeschaft = li ( t) = 0? Aufgabe 4 Gegebe sei das Blockschaltbild eies Regelkeises it de Eigagsgöße ud de Ausgagsgöße ( α ud β sid eelle Paaete). P(s) u t α Q(s) β a) Eittel Sie die Übetagugsfuktio s () T() s =. s () Fü die Übetagugsfuktioe P(s) ud Q(s) soll u gelte: Ps ( ) = Qs ( ) s = s b) Gebe Sie otwedige ud hieichede Bediguge fü die Paaete α ud dass obige Regelkeis die BIBO-Eigeschaft besitzt. β a, so c) Stelle Sie de i Pukt (b) eittelte Stabilitätsbeeich i de α β -Ebee gaphisch da.

10 Schiftliche Püfug aus Regelugstechik a Nae / Voae(): Studieichtug: Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte eeichte Pukte

11 Aufgabe Gegebe sei de folgede Regelkeis it de Fühugsgöße ud de Ausgagsgöße : G(s) K Die Übetagugsfuktio G(s) lautet: Hiebei ist K ei eelle Paaete. Gs () = s + ss ( ). a) Eittel Sie de Wetebeeich vo K, fü de gilt: = li ( t) = fü t 0 fü t < 0 t () = fü t 0 b) Skizziee Sie die Lage de Pole de Fühugsübetagugsfuktio T(s) i Abhägigkeit des Paaetes K. Hiebei ka K als positiv voausgesetzt wede. Kezeiche Sie i de Skizze die Lage de Pole fü die Wet K=0 ud K. c) Eittel Sie auf gaphische Wege äheugsweise die Wete vo K (it K>0) so, dass T(s) die BIBO-Eigeschaft besitzt. Hiweise: Ls () = K = = ( s - b ) ( s -a ) Übetagugsfuktio des offee Keises 80 Y i = ( i- ), i =, ( - ) Wikel de Asptote fü K > 0 - x = 0 Â a - Â = = - b Schittpukt de Asptote it de eelle Achse

12 Aufgabe Gegebe sei de folgede Stadadegelkeis it de Fühugsgöße, de Stellgöße u ud de Ausgagsgöße : H(s) u P(s) Die Regelstecke wid duch die Übetagugsfuktio Ps () beschiebe, H() s ist die Regleübetagugsfuktio. Vo de Regelstecke ist bekat, dass sie 3. Odug ist ud keie Polstelle it positive Realteil besitzt. De Velauf de Otskuve P( jω) ist i folgede Abbildug dagestellt: I ω = ω Re ω = P(jω) a) Es soll ei sogeate Popotioalegle (P-Regle) etwofe wede, d.h. H() s = K. Hiebei ist K ei eelle, positive Paaete. Eittel Sie it Hilfe des Nquistkiteius de Wetebeeich vo K, fü de de geschlossee Regelkeis die BIBO-Eigeschaft besitzt. b) Fü de Paaete K soll u gelte: K=0.. Eittel Sie i eigeschwugee Zustad de Velauf de Stellgöße u fü t ( ) = + cos(0.75 t).

13 Aufgabe 3 Gegebe sei das atheatische Modell eies Übetagugssstes it de Eigagsgöße u ud de Ausgagsgöße. 0 x = u 5 x+ 0 = 0 x. [ ] a) Utesuche Sie obiges Modell auf Steuebakeit. Es soll u ei Zustadsegle de Fo [ ] u = k k x + k eigesetzt wede. Hiebei sid 3 k, k ud k3 feie eelle Paaete. Mit wid die Fühugsgöße des Regelkeises bezeichet. k k s i b) Bestie Sie die Wetebeeiche de Reglepaaete, ud so, dass die Ssteatix des Regelkeises eie doppelte eelle Eigewet it < besitzt ud bei de Wahl de Fühugsgöße t ( ) = σ ( t) fü die Ausgagsgöße t ( ) gilt: li t ( ) =. Aufgabe 4 Gegebe sei das Blockschaltbild eies Regelkeises it de Eigagsgöße ud de Ausgagsgöße ( k, kud k3 sid eelle Paaete). s i k 3 t s k 3 s s + k k s () a) Eittel Sie die Übetagugsfuktio T() s =. s () b) Gebe Sie otwedige ud hieichede Bediguge fü die Paaete k, kud k3 a, so dass obige Regelkeis die BIBO-Eigeschaft besitzt. c) Bestie Sie die Paaete k, kud k3 so, dass alle Pole vo T(s) a de Stelle liege. s = 5

14 TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: BONUSPUNKTE aus Coputeecheübug SS003: 3 4 eeichbae Pukte eeichte Pukte

15 TU Gaz, Istitut fü Regelugstechik Aufgabe : Gegebe sei das Blockschaltbild eies Regelkeises it de Fühugsgöße ud de Ausgagsgöße (V ist hiebei ei eelle Paaete): V s+5 (s-)(s+8) s+ s- a) Beeche Sie die Fühugsübetagugsfuktio T() s. b) Skizziee Sie die Lage de Pole de Fühugsübetagugsfuktio i Abhägigkeit des eelle Paaetes V (it V > 0 ) (Wuzelotskuve). c) Eittel Sie it Hilfe de Wuzelotskuve de gößtögliche Wetebeeich des Paaetes V so, dass alle Pole s i de Fühugsübetagugsfuktio die Bedigug Re( s ) < efülle. i Hiweise: Regel zu Kostuktio de Wuzelotskuve: Ls () = K = = ( s - b ) ( s -a ) Übetagugsfuktio des offee Keises 80 Y i = ( i- ), i =,,( - ) - Wikel de Asptote fü K > 0 x = 0 Â a - Â = = - b Schittpukt de Asptote it de eelle Achse

16 TU Gaz, Istitut fü Regelugstechik 3 Aufgabe : Gegebe sei das Blockschaltbild eies Regelkeises it de Fühugsgöße ud de Ausgagsgöße : e K G(s) ( K ist hiebei ei eelle Paaete) 50(0s -) Die Übetagugsfuktio de Stecke lautet: Gs () = 3( s+ 5)( s- ) ( s+ 0) Zusätzlich liegt de Fequezgag G( jw ) de Stecke (fü 0 w < ) i aßstäbliche Dastellug (abe ohe Beschiftug) gaphisch vo: a) Eittel Sie it Hilfe des Nquistkiteius de gößtögliche Wetebeeich des Paaetes K (it K > 0 ), fü de obige Regelkeis die BIBO-Eigeschaft besitzt. b) Es wid u als Fühugsgöße die Spugfuktio t ( ) = σ ( t) gewählt. Bestie Sie de gößtögliche Wetebeeich des Paaetes K (it K > 0 ), fü de fü die bleibede Regelabweichug e = li e( t) < gilt. t

17 TU Gaz, Istitut fü Regelugstechik 4 Aufgabe 3: I Zuge des Kultuhauptstadtjahes hat sich ei Küstle i de Kopf gesetzt, fü das atheatisches Modell eie Regelstecke it de Eigagsgöße u ud de Ausgagsgöße 0 x = + u x = x [ 0 ] eie besodes küstleische Zustadsegle de Fo u [ h h ] T = x= T h x zu etwefe. Ei Eigewet des geegelte Sstes soll (aufgud 003) klaeweise bei s i = 3 liege. Da abe de Zustadsvekto x icht essba ist, uss fü die paktische Realisieug de T Regelug ei Schätzwet ˆx heagezoge wede, d.h. u = hxˆ. Hiefü soll ei Zustadsbeobachte de Fo x ˆ = Ax ˆ ˆ + bu f vewedet wede, woduch sich ei Gesatsste de Fo x x = G ˆ ˆ x x egebe wüde. Die Eigewete de Matix G solle u (aus aheliegede ästhetische Güde) etwede bei liege. i) s =, s =, s 3 = 3 ud s 4 = 4 ode bei ii) s =, s = 3, s 3 = 4 ud s 4 = 5 ode bei iii) s, = 3 ud s3,4 = 3± j3 a) Zu welche Eigewetkofiguatio wüde Sie ate? (Begüde Sie Ihe Wahl.) (Hiweis: Betachte Sie zuächst das atheatische Modell de Regelstecke geaue.) b) Bestie Sie de Zeilevekto h T des Zustadsegles. (De Küstle hatte die Idee, dass h h = 003 gelte soll. Was halte Sie davo?) c) Eittel Sie de Vekto f des asptotische Beobachtes.

18 TU Gaz, Istitut fü Regelugstechik 5 Aufgabe 4: Gegebe sei das Blockschaltbild eies Regelkeises it de Fühugsgöße ud de Ausgagsgöße : (s+)(s+α) u 5 (s-) (α ist hiebei ei eelle Paaete) a) Beeche Sie die Fühugsübetagugsfuktio T( s ). b) Eittel Sie de gößtögliche Wetebeeich des Paaetes α, fü de obige Regelkeis die BIBO-Eigeschaft aufweist. c) Als Fühugsgöße wid u die Spugfuktio t ( ) = σ ( t) gewählt. i) Fü welche Wete vo α ehält a = li ( t) =? t ii) Fü welche Wete vo α ehält a u = li u( t) =? t

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institut fü Regelungs- und Automatisieungstechnik 1 Schiftliche Püfung aus Regelungstechnik am 21.10.2004 Name / Voname(n): Kenn-Mat.N.: BONUSPUNKE aus Computeechenübung SS2003: BONUSPUNKE aus Computeechenübung

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institut Regelungs- und Automatisieungstechnik 1 Schiftliche Püfung aus Regelungstechnik am 0.10.008 Name / Voname(n): Matikel-Numme: Bonuspunkte aus den MALAB-Übungen: O ja O nein 1 3 4 eeichbae

Mehr

Prof. Dr. Tatjana Lange

Prof. Dr. Tatjana Lange Pof. D. Tatjaa Lage Lehgebiet: egelugstechik Laboübug 6: Thea: Stabilität vo egelkeise: Wuzelotsvefahe 1. Übugsziele: etiefug de egel zu Bildug vo Wuzelotskuve Deostatio echegestützte efahe de lieae Systeaalyse

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institt Regelngs- nd Atomatisiengstechnik Schiftliche Püfng as Regelngstechnik am 29.0.200 Name / Voname(n): Matikel-Nmme: Bonspnkte as den MALAB-Übngen: O ja O nein 2 3 4 eeichbae Pnkte 6 6 5 4

Mehr

Ableitung mechanischer Schemata und Schaltungen

Ableitung mechanischer Schemata und Schaltungen 2.1 Taslatoische Teilsystee 39 Aufgabe 2.9 Ableitug echaische Scheata ud Schaltuge Gebe Sie fü die echaische Systee i de Bilde.16 (a) bis (g) die echaische Scheata ud die echaische Schaltuge a. a) b) c)

Mehr

AR: Grundlagen der Tensor-Rechung

AR: Grundlagen der Tensor-Rechung Auto: Walte Bisli vo walte.bislis.ch/doku/a 8..3 7:57 AR: Gudlage de Teso-Rechug Matheatisch wede Beechuge de Eegiedichte ud de zugehöige Rauzeitküug it de Wekzeug de Teso-Aalysis ausgefüht. Auf de folgede

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Lösungsvorschlag zu den Hausaufgaben der 4. Übung

Lösungsvorschlag zu den Hausaufgaben der 4. Übung FKULTÄT FÜR MTHEMTIK Pof. D. Patizio Neff Chistia Thiel 05.11.013 Lösugsvoschlag zu de Hausaufgabe de 4. Übug ufgabe 1: 6 Pute I eiem Lad ist jede Stadt mit jede adee duch geau eie Staße vebude, wobei

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Optische Abbildung. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: OA. Fachrichtung Physik

Optische Abbildung. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: OA. Fachrichtung Physik Techische Uivesität Desde achichtug Physik M. Lehma (07/005) Physikalisches Paktikum Vesuch: OA Optische Abbildug Ihaltsvezeichis Ziel des Vesuchs... Gudlage.... Dicke Lise ud Lisesysteme.... Gauß'sche

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Lösungsvorschlag zur Klausur zur Analysis III

Lösungsvorschlag zur Klausur zur Analysis III Prof. Dr. H. Garcke, D. Deper WS 9/ NWF I - Mathematik 8..9 Uiversität Regesburg Lösugsvorschlag zur Klausur zur Aalysis III 6 Pukte pro Aufgabe) Aufgabe i) Bestimme Sie für die Fuktioefolge f :, 4) R,

Mehr

Absorption von Röntgenstrahlung in Abhängigkeit von der Energie (Härte) der Strahlung

Absorption von Röntgenstrahlung in Abhängigkeit von der Energie (Härte) der Strahlung Absoptio vo Rötgestahlug i Abhägigkeit vo de Eegie (Häte) de Stahlug Aufgabe: Ma ehe die Schwächugskuve fü Aluiiu bei zwei veschiedee Aodespauge ud zwei veschiedee Aodestöe auf. Die Abb.9.4 zeigt das Pizip

Mehr

Humboldt-Universität zu Berlin Wintersemester 2017/18. Mathematisch-Naturwissenschaftliche Fakultät II Institut für Mathematik A.

Humboldt-Universität zu Berlin Wintersemester 2017/18. Mathematisch-Naturwissenschaftliche Fakultät II Institut für Mathematik A. Huboldt-Uiversität zu Berli Witerseester 07/8. Matheatisch-Naturwisseschaftliche Fakultät II Istitut für Matheatik A. Filler Übugsaufgabe zur Vorlesug Lieare Algebra ud Aalytische Geoetrie I Übugsserie

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

7.7. Abstände und Winkel

7.7. Abstände und Winkel uu uu uu uu uu uu uu uu 77 Astäde ud Wikel 77 Wikel Geade - Geade Schittwikel zweie Geade: Am Schittpukt zweie Geade g ud g lasse sich die eide Wikel (g, g ) ud (g, g ) messe Als Schittwikel ezeichet ma

Mehr

Mathematik 4 Vektorräume und affine Räume

Mathematik 4 Vektorräume und affine Räume 4 ektoäume ud affie äume olesugsmitschift - Kuzfassug Etwuf Pof. D. e. at. B. Gabowski HTW des Saalades 4 Ihalt Mathematik Kapitel 4 INHALTSEZEICHNIS 4 EKTOÄUME UND AFFINE ÄUME... 4.. EINLEITUNG... 4.

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen D. Jüge Sege MTHEMTIK Gudlage fü Ökooe ÜBUNG 8.. - LÖSUNGEN. Gegee ist das lieae Gleichugssyste: 7 a. Es hadelt sich u ei ihoogees lieaes Gleichugssyste it Gleichuge ud Vaiale.. Ei lieaes Gleichugssyste

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Grundlagen der Differentialrechnung mit mehreren Veränderlichen

Grundlagen der Differentialrechnung mit mehreren Veränderlichen www.atheatik-etz.de Copyright, Page 1 of 6 Grudlage der Differetialrechug it ehrere Veräderliche Die Differezierbarkeit eier Fuktio f:m eier Veräderliche (d.h. M ) i eie Häufugspukt a M bedeutet a - geoetrisch

Mehr

2 Amplitudenmodulation

2 Amplitudenmodulation R - ING Übertraggstechik MOD - 16 Aplitdeodlatio Der isträger bietet drei igalparaeter, die wir beeiflsse köe. Etspreched terscheide wir Aplitdeodlatio für die beeiflsste Aplitde, Freqezodlatio d Phaseodlatio

Mehr

Forschungsstatistik I

Forschungsstatistik I Pschologie Pof. D. G. Meihadt 6. Stock, TB II R. 06-206 (Pesike) R. 06-321 (Meihadt) Spechstude jedezeit ach Veeibaug Foschugsstatistik I D. Malte Pesike pesike@ui-maiz.de http://psmet03.sowi.ui-maiz.de/

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7.

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7. Bee Fchhochschule Hochschule fü Techik ud Ifomtik Bugdof Mthemtik Geometie Auto: Niklus Bue Dtum: 7. Septeme 4 Ihlt. Mtize ud Detemite..... Defiitio..... Detemite..... Ivese eie Mti....4. Cmeegel... 4.5.

Mehr

Aufgabenbereich Analysis: Lösungen

Aufgabenbereich Analysis: Lösungen a) Schittpukte x-achse: N( ) e x (- x) -,5x (da e x für alle x IR) x Schittpukt y-achse: P( ) f()e (-,5) Asymptote: Aufgabebereich Aalysis: Lösuge für x gilt: f(x) Die x-achse ist für de Graphe für x eie

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Kapitel 6 Lieare Abbilduge ud Matrize I diese Kapitel werde wir lieare Abbilduge ittels sogeater Matrize beschreibe. Das Matrizekalkül wurde i Wesetliche vo C.F. Gauß, J.J. Sylvester ud A. Cayley i 19.

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud e Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 008/009 Übug am 8..008 Übug 5 Eileitug Zuerst soll auf de aktuelle Übugsblatt ud Stoff der Vorlesug eigegage werde. Dazu werde

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

3.3. Spezielle Verteilungen für mehrstufige Experimente

3.3. Spezielle Verteilungen für mehrstufige Experimente 3.3. Spezielle Veteiluge fü mehstufige Expeimete Baumdiagamme fü mehstufige Expeimete wede bei viele Wiedeholuge schell uübesichtlich. Fü das wiedeholte Ziehe mit ud ohe Zuüclege aus eie Ue, die u zwei

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =?

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =? Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati - W 8/9 57 Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Einleitung. Aufgabe 1a/1b. Übung IV

Einleitung. Aufgabe 1a/1b. Übung IV Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]

Mehr

R05 - Reibschlüssige Verbindungen

R05 - Reibschlüssige Verbindungen IZ-ÜCIG-IIU Ü MCIEEE DE ECICE UIEIÄ CLUL Pofesso D.-Ig. Pee Diez 0..00 e 05 - eibschlüssige ebiduge ufgabe: uf eie ohlwelle aus Ck 5 soll eie ieescheibe aus eie luiiulegieug iels eie zlidische Peßvebidug

Mehr

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER Elektrotechik ud Iformatiostechik Istitut für Nachrichtetechik, Vodafoe Chair Dr. Emil Matus - Digitale Sigalverarbeitugssysteme I/II - Übug 3 ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER.

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

Schwerpunkt 1 E Ma 1 Lubov Vassilevskaya

Schwerpunkt 1 E Ma 1 Lubov Vassilevskaya http://www.ewagilmour.com/wp-cotet/uploads/2010/05/forkkifespooegg.jpg Schwerpukt 1 E Der starre c Körper http://www.flickr.com/photos/iesca/3139536876/i/pool-streetlamps Abb. 1 1: Zur Defiitio eies starre

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Istitut SS 2009 Uiversität Müche Prof. Dr. M. Schotteloher C. Paleai M. Schwigeheuer A. Stadelmaier Übuge zur Fuktioetheorie Übugsblatt. (a) Sei α: C C x y x + iy y x da ist α offesichtlich

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

(5) Quaternionen. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(5) Quaternionen. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (5) Quateioe Volesug Aimatio ud Simulatio S. Mülle KOBLENZ LANDAU Fage: De ekostuiete Wikel ist ische ud 8, as ist mit gößee Wikel? Atot: die ekostuiete Nomale eigt i die adee Richtug. also kei Poblem.

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

( 1) n 1 n n n + 1. n=1

( 1) n 1 n n n + 1. n=1 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmud Musterlösug zum 6. Übugsblatt zur Höhere Mathematik I P/ET/AI/IT/IKT/MP) WS 20/2 Aufgabe mittels Zeige Sie die Kovergez der Reihe )

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Lösung: Die Zahl ist die größte Zahl mit der in der Aufgabenstellung genannten Eigenschaft.

Lösung: Die Zahl ist die größte Zahl mit der in der Aufgabenstellung genannten Eigenschaft. Ladeswettbewerb Mathematik ade-württemberg 005 Rude ufgabe Eie atürliche Zahl besteht aus paarweise verschiedee Ziffer, vo dee keie Null ist. Streicht ma i dieser Zahl eie beliebige Ziffer k, so ist die

Mehr

Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Tutoraufgabe 1 (Rekursionsgleichungen):

Tutoraufgabe 1 (Rekursionsgleichungen): Prof. aa Dr. E. Ábrahám Datestrukture ud Algorithme SS4 Lösug - Übug F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Rekursiosgleichuge): Gebe Sie die Rekursiosgleichuge für die Laufzeit der folgede

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $ $Id: covex.tex,v 1.18 2015/05/21 18:28:20 hk Exp $ 3 Kovexgeometrie 3.2 Die platoische Körper Ei platoischer Körper vo Typ (, m) ist ei kovexer Polyeder desse Seitefläche alle gleichseitige -Ecke ud i

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a Übuge zu Materialwisseschafte I Prof. Alexader Holleiter Übugsleiter: Jes Repp / ric Parziger Kotakt: jes.repp@wsi.tum.de / eric.parziger@wsi.tum.de Blatt 4, Besprechug:28.-3..23 Halbleiter II. itrisische

Mehr

Fit in Mathe. April Klassenstufe 12 Summenzeichen Σ. a 1. a a n. 105 k 5 oder k

Fit in Mathe. April Klassenstufe 12 Summenzeichen Σ. a 1. a a n. 105 k 5 oder k Thea Fit i Mathe Musterlösuge 1 April Klassestufe Suezeiche Σ {a 0,a 1, a,...,a } sei eie Folge vo +1 Zahle. Da wird defiiert a k :=a o a 1 a... a. Ist das erste Folgeglied a ud, so ist a k = a a 1...

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Blatt 07.5: Matrizen II: Inverse, Basistransformation

Blatt 07.5: Matrizen II: Inverse, Basistransformation Fakultät für Physik R: Rechemethode für Physiker, WiSe 015/16 Dozet: Ja vo Delft Übuge: Beedikt Bruogolo, Deis Schimmel, Frauke Schwarz, Lukas Weidiger http://homepages.physik.ui-mueche.de/~vodelft/lehre/15r/

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Korrektur 6.06.06:.,3. ; 7.07.06: 3. Name, Vorame: Studiegag: Matrikelummer: 3 4 5 6 Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0.

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Tutoriumslösug - Übug 3 (Abgabe 3.05.05 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder Tutoraufgabe (Rekursiosgleichuge:

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr