Lösungen TM I Statik und Festigkeitslehre

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen TM I Statik und Festigkeitslehre"

Transkript

1 Technische Mechanik I L Lösungen TM I Statik und Festigkeitslehre Modellbildung in der Mechanik N Pa (Pascal). m.4536kg.38slug [a] m, [b] dimensionslos, [c] m, [d] m Dichte: kgm slugft 3 Geschwindigkeit: ms 3.8fts Energie: Nm.7376ftlb 3 min 5 s 8 grd s 34 rad s, P 34 Nm s v 9.6 m s

2 Technische Mechanik I L Vektoren in der Mechanik r OA m, r OB 3 3 m, F F F r OB F 3.78Nm, r OA F R 5.3N, 8.8 r AB m, F N, F 43 4 N, N, F F 9.434N, r OA F 6.6Nm, 3 N 3 R 3 N, R 55.3N 3.75 Nm, d.3m M..65 6aF M 9.33 Nm, r OB F 8.78 Nm a) R b) c) F R F F F F F F R F

3 Technische Mechanik I L 3 R 4 Aufgabe 9 a) S 4 c) R 7 a) S 4 3 S S G F W M 6 S b) G G 6 3 S 3 c) R 4 3 S G 3 3 b) G G M S G M Ga 4 Ga Sa Sa ag

4 Technische Mechanik I L 4 3 Gleichgewicht freier Körper af bf R F, M P a)нim Gleichgewicht b)нnicht im Gleichgewicht c)нim Gleichgewicht, äquivalent zu a) R F, M O af, äquivalent zu zentralem Kräftesystem mit r OP a 3 F F F sin F F cos, M O af F cos F F (c sin b cos ) af F sin, M n F F cos (c sin b cos ) af F sin sin S S 65.N, S N S (3 )G S 3 6 G R F F G M O bg af F b a G F 4F

5 Technische Mechanik I L 5 4 Gleichgewicht gebundener Körper Bindung eben räumlich Reaktionen Reaktionen Wertigkeit Wertigkeit Seil, Kette starre Koppel 4 Gelenklager 5 Kugelstütze Rollenstütze

6 Technische Mechanik I L 6 G T 8N, G N, x.4m, y.m, G G, x.m, y s mg sin 4c Abschnitt links F p l x C l Abschnitt Mitte F 9p l x C 8l 3 Abschnitt rechts F 3 p l x C3 l a)н A 3 5 F, B 3 5 F b) A F, B F c)н A F, B d) A 6 F, B F

7 Technische Mechanik I L 7 5 Gleichgewicht gebundener Systeme i)н f u 6,Н n c 6,Н r,н n 6,Н f, kinematisch und statisch bestimmt. ii)н f u 9,Н n c 8,Н r,н n 8,Н f, kin. unbestimmt, statisch bestimmt. iii)н f u 6,Н n c 5,Н r,н n 5,Н f, kin. unbestimmt, statisch bestimmt. iv)н f u 9,Н n c,н r,н n 9,Н f, kin. bestimmt, statisch unbestimmt. v)н f u 9,Н n c 9,Н r,н n 9,Н f, kinematisch und statisch bestimmt..9 b) M A m A m GgR c) m G m A F H G 3, G F H 3, Neigungswinkel hat keinen Einfluss F C N, 3 N A N D 5 5 mg, NC mg, NB 3mg G 4 mg Aufgabe 9 G mg sin cos cos

8 Technische Mechanik I L 8 6 Schwerpunkt und andere Mittelpunkte tangentiale Lage: r M OC rg OC radiale Lage: r M OC, rg OC a (3R a ) R(R 3a ) T r M OC Linienmittelpunkt: r OC R ; Flächenmittelpunkt: r OC 4R 3 r OC 3R a)нr OC a 6 b)нr OC a c)нr OC a d)нr OC a x, y 8 5 a a) b) c) a C C a C a C C a C C a a a A (4 5 )R, V 8 3 R3

9 Technische Mechanik I L 9 V 4a 3 Aufgabe 9 A 6a x ( ) a y 4 a x C a y C 33 9 a

10 Technische Mechanik I L 7 Reibung a L tan obere bzw. untere Kiste rutscht bei arctan obere Kiste kippt bei arctan.5 7 untere Kiste kippt bei arctan 45 bei.6 kippt zuerst die obere Kiste R G 3 P, N 3 G P,.5G P.64G alle Kisten bewegen sich gleichzeitig tan tan k, Abheben bei k tan S F e sin F.Fall M : P 7 M a e s e s, Selbsthemmung bei s ln.fall M : P 7 M a e s e s M Gr (e s ) e s Aufgabe 9 F mg 3, keine Selbsthemmung möglich kein Rutschen : 3 3 G G 4G kein Kippen: h b 3 4 G G

11 Technische Mechanik I L S l a cos G R l a G tan a l tan N mg N ( )mg R R mg 3 N 3 4 l a F R 3l 4a F N 3 l a F 4a l 4a

12 Technische Mechanik I L 8 Fachwerke a) einfach, statisch unbestimmt, kinematisch bestimmt b) nichteinfach, statisch bestimmt, kinematisch unbestimmt c) nichteinfach, statisch unbestimmt, kinematisch bestimmt Nullstäbe: a), b) 3, 4, 9 c),, 4, 7 a) nichteinfach, stat. und kinem. bestimmt, Nullstäbe, 4, 7 b) nichteinfach, stat. best., kinem. unbestimmt, keine Nullstäbe c) einfach, stat. und kinem. bestimmt, Nullstäbe, 9 a) zu entfernender Stab: 3, 4, 5, 6, 7, 9, oder b) zu entfernender Stab: 5 c) zu ergänzender Stab d) zu ergänzender Stab S S 4 S 5 S, S S 6 3 G, S 3 3 G, S7 S 3 G, S 8 3 G, S 9 S 3 G, S 3 G S S 4 S F, S S F, S6 S F S, S G, S 3, S 4 5 G S F, S 3 F, S 3 F Aufgabe 9 S F, S S 3 (3 3 )F

13 Technische Mechanik I L 3 Nullstab: 5, S 3 F, S 8 F, S 5 F, S 6F Nullstab: 9, S S 5 G, S G, S 3 G, S 4 G, S 6 3 G

14 Technische Mechanik I L 4 9 Innere Balkenbelastung Einzelkraft: Q(x) Gx L M(x) Gx L Verteilte Last: Q(x) G L x, M(x) G x L a) p(x) p p x l p x 4l b) p(x) p p x l p x l p x 4l c) p(x) p 3l x l p 3l x 4l p x 4l d) p(x) p p l x l p l x l p x l Q(x) 4 3 p l p x p x l, M(x) 4 3 p lx p x p x l, M max M 4 3 l 8 9 p l Q(x) F F x l F 3l x l F l x 4l F 3l x 4l M(x) Fx F x l F 9l x l 3 F l x 4l F 9l x 4l 3 5Fl x 4l a) Q(x) F F x l F l x 4l, M(x) Fx F x l F l x 4l b) Q(x) F 3F x l 3F x l F x 4l M(x) Fx 3F x l 3F x l F x 4l M A p q F A

15 Technische Mechanik I L 5 M(x) p x p lx 3p l x l Q(x) p x l p l x l, M(x) p l p l x l p x l Aufgabe 9 A x G, A z 4G N(x) Fx 3 4 L, Q(x) 3 4 F F x 3 4 L, M(x) 3 4 Fx F x 3 4 L FL x 3 4 L N(x) 5 4 F 4 4 F x a, Q(x) 5 4 F 4 F x a, M(x) 5 Fx 4 4 F x a N(x) 5F x l, Q(x) F l x F l x l 5F x l, M(x) F l x F l x l 5F x l

16 Technische Mechanik I L 6 Spannungen a)нd.9mm b)нs B.7, nicht ausreichend c)нm 8kg mit S B 3 d 49mm 55MPa, 4MPa max 47.7MPa a).mpa,, max.55mpa b) max 47.7MPa, max x 5MPa, 3.5MPa, MPa 7.6MPa, 7.6MPa, max 6.MPa, 4., 6.5MPa, 6 3.6MPa 67.5MPa, 6MPa, Aufgabe 9 x MPa, y 3MPa, xy 34.6MPa 5MPa 66MPa, 3MPa 5MPa, 9MPa, 75

17 Technische Mechanik I L 7 Verzerrungen 5.9 4, L.57mm, l.59 4, d.4mm a)нf 595.5kN b)н links 5.6MPa, L links.8mm, rechts 65.4MPa, L rechts.mm N Pfosten 697N, S Seil 493N, Pfosten.39MPa 4Fa r (3a x), L Fa 3 Er, F r, L Fa Er, L 5 Fa 3 Er I P r 4 a r 4 i G 77MPa a).699rad.97, max 6.6MPa b).7rad.985, max 5.MPa,.%.7rad.95 Aufgabe 9 a) 3 M 5 Gr 3 b) G 4MPa Messing

18 Technische Mechanik I L 8 Technische Biegelehre I y ab3 3, I z a3 b 3, I yz a b 4 I y a3 b, I z ab3, I yz a b 4 I y mm 4, I z.33 6 mm 4, I yz a) I 7 6 a4 b) I 6 3 a4 c) I 8 3 a4 a) I y a 4, I z a 4, I yz 6a 4 b) z C 3 a, y C a, I y 7 a4, I z 4a 4, I yz 3a 4 c) 6.6, I a 4, I 5 a4 (, z) FL a L, z 3FL a 4 z, L, z), 3 h 33MPa z, L 4, z 9FL a 4 z, L, z 6FL a 4 z, kritischer Querschnitt l x 4l, max l, h Fl h I y Aufgabe 9 kritische Position bei L : max L, h 7.53MPa F.7kN

19 Technische Mechanik I L 9 3 Biegelinie a) w(), w(4l) b) w(), w(), w(4l) c) w(), w(l), w(4l) d) w(), w(), w(5l), w(5l) w(x) F x 6EI 3 x l 3 y l x 4l 4 x l, w max 3 Fl3 EI y w(x) mg L Ebh 3 6L w max 5.53mm an der Stelle x.76m x3 6 x 3 L Lx x 6 6L (L )3, a) EI y w p x 5 p l x l p x 3l, w(l) w(4l) b) w(x) p EI y 9 7 l4 9 l3 x 4 x4 5 l x l 3 4 l x 3l 4, w() 9p l4 7EI y a) S cu b) w(x) S EI x3 6 L x F x EI x3 6 6 x 3, w(l) 6EI SL 3 F(3L ) (3L ) c) u F 6EI L 3, max. Durchbiegung bei L c A x, A z 3M L, M A M, B z 3M L w(x) M x 4EI y x L, M(x) M 3x L a) w(4l) 8p l4 9EI y b) w(4l) 7p l4 EI y c) w(4l) p l4 3EI y d) w(4l) 4 p l4 EI y a) w (5l) 5 Fl 3 8 EI, w (5l) Fl 3, w(5l) 65 Fl 3 3 EI 4 EI b) w (5l) 5 Fl 3 8 EI, w (5l) 4 Fl 3, w(5l) 7 Fl 3 3 EI 4 EI

20 Technische Mechanik I L 4 Überlagerung einfacher Belastungsfälle a) gesamter Balken Biegung, Schub; linkes Lager bis Aufhängung Zug b) gesamter Balken Biegung, Schub; linkes Lager bis Aufhängung Druck c) gesamter Balken Biegung, Schub; linkes Lager bis Aufhängung Zug in A Biegung, Schub; in B Biegung, Schub, Torsion Biegung, Schub Schub Teil : V 355.8MPa, Teil : V 8MPa, Teil 3: V 8MPa Punkt A: 5.9MPa, ; Punkt B: 5.9MPa, 7.3MPa S F.3, S B 3.8 Zug: z N bh, Biegung: b 6N 5bh 3 xz, b max (x) 3 z 5 x h keine Druckspannungen: x 5 3 h max. Biegespannung: max MPa, maximale Verschiebung: w(l).4mm Aufgabe 9 h3 h4 b3

21 Technische Mechanik I L 5 Knickung Knickfall IV Knickfall II d 3.4cm d 7.cm F Ky Eab 3 L, F Kz Ea 3 b 3L, a b gleichseitiges Dreieck F Q 64kN, F K 5.7kN, F E 66kN w(l) e cos kl cos kl F K EI 4L Knickfall I mit k F EI,

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Lösungen der Übungsaufgaben TM III

Lösungen der Übungsaufgaben TM III L Lösungen der Übungsaufgaben TM III Methoden der Analytischen Mechanik a) z l cos x l sin cos b) W e Gl cos Sl sin cos c) S G cot cos 4 a) W e (mg 4cx)x b) x mg 4c a) x x b) W e (Mg mg sin )x m M sin

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

tgt HP 1999/2000-2: Turmdrehkran

tgt HP 1999/2000-2: Turmdrehkran tgt HP 1999/000-: Turmdrehkran tgt HP 1999/000-: Turmdrehkran Der skizzierte Turmdrehkran darf in der gezeichneten Lage eine maximale Last von 10 kn heben. Die Hubbewegung erfolgt über eine Seiltrommel,

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

3. Lager und Lagerreaktionen

3. Lager und Lagerreaktionen 3. Lager und Lagerreaktionen 3.1. Beispiee, Grundbegriffe 3.2. Ebene Beanspruchung 3.3. Räumiche Beanspruchung HAW Hamburg M+P Ihenburg TM1/ Lager, Lagerreaktionen 1 Beispiee (Bauwesen) HAW Hamburg M+P

Mehr

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens . Aufgabe Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens Geg.: Kräfte F, F = F, F Streckenlast q F a Moment M = Fa Maß a 5 F Ges.: a) Lagerreaktionen in B, C und Gelenkkräfte in G, b)

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum BP I, S K5 Genehmigte Hilfsmittel: Fach Urteil Technische Mechanik Ergebnis: Punkte Taschenrechner Literatur

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

1. Aufgabe: (ca. 16 % der Gesamtpunkte)

1. Aufgabe: (ca. 16 % der Gesamtpunkte) Institut für Mechnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in Festigkeitslehre 0. März 05. Aufgbe: (c. 6 % der Gesmtpunkte) ) Wie viele unbhängige Spnnungskomponenten gibt

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

Technische Mechanik II

Technische Mechanik II INSTITUT FÜR MECHANIK Technische Universität Darmstadt Prüfung Technische Mechanik II Prof. W. Becker Prof. D. Gross Prof. P. Hagedorn Jun. Prof. R. Müller am 5. Juli 005 (Name) (Vorname) (Matr.-Nr.) (Studiengang)

Mehr

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b,

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b, TM I Aufgabe 1.1 Gegeben sind die Spaltenvektoren 3 2 a = 1, b = 6 7 Man berechne a) die Summe a + b, 2 b) das Skalarprodukt a b,, c = 3 5 c) die Koordinate c z für den Fall, dass a c ist, d) das Kreuzprodukt

Mehr

1 Fragestellungen der Statik... 1

1 Fragestellungen der Statik... 1 VII 1 Fragestellungen der Statik... 1 2 Kräfte und ihre Wirkungen... 5 2.1 Äußere Kräfte, wirkende Lasten... 5 2.2 Reaktionskräfte und innere Kräfte... 8 2.3 Kräfte am starren Körper... 10 2.3.1 Linienflüchtigkeitsaxiom...

Mehr

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre D. Bestle Technische Mechanik I Statik und Festigkeitslehre Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle a x b x a y b y Vektoren Addition

Mehr

ERGEBNISSE TM I,II UND ETM I,II

ERGEBNISSE TM I,II UND ETM I,II ERGEBNISSE TM I,II UND ETM I,II Lehstuhl fü Technische Mechanik, TU Kaiseslauten WS /2, 8.02.22. Aufgabe: ( TM I, TM I-II, ETM I, ETM I-II) q 0 = 3F a F G a M 0 = 2Fa x a A y z B a a De skizziete Rahmen

Mehr

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre D. Bestle Technische Mechanik I Statik und Festigkeitslehre Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt

Mehr

Kapitel 8. Haftung und Reibung

Kapitel 8. Haftung und Reibung Kapitel 8 Haftung und Reibung 8 192 Haftung Haftung (Haftreibung) ufgrund der Oberflächenrauhigkeit bleibt ein Körper im leichgewicht, solange die Haftkraft H kleiner ist als der renzwert H 0.Der Wert

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum Fach Urteil BM K8 März 4 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner Literatur

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Umwelt-Campus Birkenfeld Technische Mechanik II

Umwelt-Campus Birkenfeld Technische Mechanik II 10. 9.4 Stoffgesetze Zug und Druck Zug- und Druckbeanspruchungen werden durch Kräfte hervorgerufen, die senkrecht zur Wirkfläche stehen. Zur Übertragung großer Zugkräfte eignen sich Seile und Stäbe, Druckkräfte

Mehr

HP 2009/10-1: Wanddrehkran

HP 2009/10-1: Wanddrehkran HP 2009/10-1: Wanddrehkran Mit dem Kran können Lasten angehoben, horizontal verfahren und um die Drehachse A-B geschwenkt werden. Daten: Last F L 5,kN Hebezeug F H 1,kN Ausleger 1,5 kn l 1 500,mm l 2 2500,mm

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

ISBN ISBN

ISBN ISBN .» 0 .» 0 6.4.75 9.55 47 : :.. 47 :.. / [.]. :... 0. 4. :. ISBN. -. 05.07.05 -. : 6.4.75 : 9.55 ISBN 978-5-788-064-7 0 -.. - -. 4 6................ 7 7 9 6 9.. -.........................4.4....4.....4.....4.4.4.5...4.6............4....4....4.

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

Formelsammlung. für die Klausur. Technische Mechanik I & II

Formelsammlung. für die Klausur. Technische Mechanik I & II Formelsammlung für die Klausur Technische Mechanik I & II Vorwort Diese Formelsammlung ist dazu gedacht, das Suchen und Herumblättern in den Büchern während der Klausur zu vermeiden und somit Zeit zu sparen.

Mehr

Teilfachprüfung Statik der Baukonstruktion II (Nr. 37)

Teilfachprüfung Statik der Baukonstruktion II (Nr. 37) FH Potsdam Prof Dr.-phil. ndreas Kahlow 12. 07. 2012 Dr.-Ing. Christiane Kaiser Teilfachprüfung Statik der aukonstruktion II (Nr. 7) Name: Matr.-Nr.: Vorname: Hinweis: Die Lösungswege müssen nachvollziehbar

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM

4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM 4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM 1 3.4-1 4. Ebene Fachwerke Ein Fachwerk ist ein Tragwerk, bei dem die folgenden vereinfachenden Annahmen zulässig sind: Das Tragwerk besteht

Mehr

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Bachelorprojekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Wintersemester 2009/20 Verfasser:

Mehr

Technische Mechanik I Dr.-Ing. Dr. rer. nat. Jahn

Technische Mechanik I Dr.-Ing. Dr. rer. nat. Jahn Technische Mechanik I Dr.-Ing. Dr. rer. nat. Jahn Jennifer Peter und Daniela Hermsdorff WS 05/06 Inhaltsverzeichnis 1 Grundlagen 4 1.1 Einteilungen der Mechanik...................... 4 1.2 Größen und Einheiten........................

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM, Ing. K 8 11.7.14 Kinetik, Kinematik Genehmigte Hilfsmittel: Punkte Taschenrechner Literatur

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I Lösungen

Baustatik und Holzbau. Übungen Technische Mechanik I Lösungen Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische echanik I Lösungen Wintersemester 16/17 Lösungen zu Übungen Technische echanik I Inhalt Inhaltserzeichnis Lösungen zu Übungen

Mehr

Zur Erinnerung Stichworte aus der 12. Vorlesung:

Zur Erinnerung Stichworte aus der 12. Vorlesung: Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Experimentalphysik I SS 2008 13-1 Hydrostatik

Mehr

1.3. Aufgaben zur Statik

1.3. Aufgaben zur Statik 1.3. Aufgaben ur Statik Aufgabe 1: Kräfteerlegung Ein Schlitten kann auf einer Schiene horiontal bewegt werden. Im Winkel von = 40 ur Schiene ieht ein Seil mit der Kraft = 100 N an dem Schlitten. Bestimme

Mehr

7.1 Grundregeln der Kinematik: Polplan

7.1 Grundregeln der Kinematik: Polplan 7 Einflusslinien 7. Grundregeln der Kinematik: Polplan Trotz der Erfüllung der Bedingungsgleichungen für statisch (un)bestimmte Tragwerke (Abzählkriterien A/B) kann es vorkommen, dass Stabwerksstrukturen

Mehr

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5 Inhaltsverzeichnis Vorwort 5 1 Allgemeine Einführung 13 1.1 Aufgabe und Einteilung der Mechanik.............. 13 1.2 Vorgehen in der Mechanik..................... 14 1.3 Physikalische Größen und Einheiten................

Mehr

K5_15-09_L.Docx Seite 1 von 17

K5_15-09_L.Docx Seite 1 von 17 K5 Technische Mechanik Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Elektronische Geräte sowie nicht zugelassene Unterlagen bitte vom Tisch räumen. Mit Annahme der Klausur

Mehr

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 1. März 016 Prüfungsklausur Technische Mechanik I Familienname, Vorname Matrikel-Nummer Fachrichtung Aufgabe 1 (3

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

2. Eulersche Knickfälle

2. Eulersche Knickfälle Das Stabilitätsversagen von Balken unter Druckbelastung wird als Knicken bezeichnet. Linear-elastisches Knicken wurde bereits von Euler untersucht. Je nach Randbedingungen lassen sich verschiedene so genannte

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Fakultät Maschinenwesen

Fakultät Maschinenwesen Fakultät Maschinenwesen TECHNISCHE UNIVERSITÄT DRESDEN Arbeitsgruppe Fernstudium TU Dresden. Fakultät Maschinenwesen/AG Fernstudium. 01062 Dresden Telefon: (0351) 463 33604 Telefax: (0351) 463 37717 Hinweise

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

tgt HP 2011/12-5: Klappbrücke

tgt HP 2011/12-5: Klappbrücke tgt HP 2011/12-5: Klappbrücke Klappbrücken werden an Kanälen eingesetzt um Schiffe mit höheren Aufbauten die Durchfahrt zu ermöglichen. Das Hochklappen des Brückenbodens erfolgt durch eine Zahnstange und

Mehr

tgt HP 2013/14-1: Industrielift

tgt HP 2013/14-1: Industrielift tgt HP 013/1-1: Industrielift tgt HP 013/1-1: Industrielift Ein Industrielift mit höhenverstellbarer Plattform ist so weit ausgefahren, dass der Tragarm horizontal liegt. Der Tragarm besteht aus einem

Mehr

Technische Mechanik kompakt

Technische Mechanik kompakt Peter Wriggers, Udo Nackenhorst, Sascha Beuermann, Holger Spiess, Stefan Löhnert Technische Mechanik kompakt Starrkörperstatik Elastostatik Kinetik Mit zahlreichen Abbildungen und Tabellen, 106 durchgerechneten

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

Heinz Dieter Motz. Ingenieur-Mechanik

Heinz Dieter Motz. Ingenieur-Mechanik Heinz Dieter Motz. Ingenieur-Mechanik Ingenieur-Mechanik Technische Mechanik fur Studium und Praxis Prof. Dr. rer. sec. Dipl.-Ing. Heinz Dieter Motz VDlVERLAG Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales

Mehr

15 Knickung. Vorüberlegung L 2. Störung durch Auslenkung. Gleichgewichtsbetrachtung L 2 M A. Auslenkmoment Rückstellmoment. L w.

15 Knickung. Vorüberlegung L 2. Störung durch Auslenkung. Gleichgewichtsbetrachtung L 2 M A. Auslenkmoment Rückstellmoment. L w. 9 5 Knickung Die bisherigen Betrachtungen führten jeweils auf einen proportionalen Zusammenhang zwischen Belastung und Verformung. Dies gilt auch für Stäbe unter Druckspannungen, die dadurch gestaucht

Mehr

Technische Mechanik I

Technische Mechanik I 1 Die Technische Mechanik ist ein Teilgebiet der Physik und wird definiert als Lehre von den Bewegungen und den Kräften. Sie lässt sich unterteilen in die Behandlung von Kräften an ruhenden Körpern (Statik,

Mehr

Technische Mechanik kompakt

Technische Mechanik kompakt ,, '"""",.""''-.,..,..' f.' " \ Peter Wriggers, Udo Nackenhorst, Sascha Beuermann, Holger Spiess, Stefan löhnert Technische Mechanik kompakt Starrkörperstatik Elastostatik Kinetik 2., durchgesehene und

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM4, Ing.II K8 14.7.11 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

tgt HP 2007/08-5: Krabbenkutter

tgt HP 2007/08-5: Krabbenkutter tgt HP 2007/08-5: Krabbenkutter Zum Fang von Krabben werden die Ausleger in die Waagrechte gebracht. Die Fanggeschirre werden zum Meeresboden abgesenkt. Nach Beendigung des Fanges werden die Ausleger in

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Mathematik 2 SS 2016

Mathematik 2 SS 2016 Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,

Mehr

, 2 f N, f M f n f m dx 0 sin xx x3 3! x 5 5! a n x n n0 N f N x a n x n n0 a,ba * x b x a * y b y a * z b z aa x 2 a y 2 a z 2, * r,tr,td 3 r, * d 3 r * * d 3 r, *, * d 3 r * d 3 r, * d 3 r * * d 3 r

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte)

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 206 P II 2. August 206 Bachelorprüfung in Technische Mechanik II/III Nachname, Vorname E-Mail-Adresse

Mehr

Aufgabe Max. Punkte Erreichte Punkte Gesamt 100

Aufgabe Max. Punkte Erreichte Punkte Gesamt 100 Wintersemester 0/ Baumechanik II-Klausur ( tunden)-lösung. eptember 0 Name: Matrikelnummer: ufgabe Max. Punkte Erreichte Punkte 8 0 5 6 Gesamt 00 Bitte jede ufgabe auf einem neuen Blatt bearbeiten und

Mehr

Festigkeitslehre. Aufgaben

Festigkeitslehre. Aufgaben Modurüfung in Technischer Mechanik am 8. März 06 Festigkeitsehre Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutich esbar. Zeichnungen müssen sauber und übersichtich

Mehr

Tragwerksentwurf II Philippe Block Joseph Schwartz

Tragwerksentwurf II Philippe Block Joseph Schwartz http://www.block.arch.ethz.ch/eq/ Tragwerksentwurf II Philippe Block Joseph Schwartz Tragwerksentwurf I+II Tragwerksentwurf I 2. Gleichgewicht & grafische Statik. Einführung 3.+4. Seile 5.+7. Bögen 6.+8.

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Technische Mechanik für Wirtschaftsingenieure Bearbeitet von Ulrich Gabbert, Ingo Raecke 3., aktualisierte und erweiterte Auflage 2006. Buch. 324 S. Hardcover ISBN 978 3 446 40960 6 Format (B x L): 16,2

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Lösungen der Übungsaufgaben TM II Dynamik

Lösungen der Übungsaufgaben TM II Dynamik L Lösungen der Übungsaufgaben TM II Dynamik Einleiung und Grundlagen Aufgabe a) ẋ() A cos B sin, ẋ. () A 2 sin B 2 cos 2 x() b) ẋ() C sin, ẋ. () C 2 cos 2 x() c) ẋ Ce cos Ce sin, ẋ. Ce 2 2 cos 2 sin d)

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben).

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben). Technische Universität Darmstadt Technische Mechanik I B 13, G Kontinuumsmechanik Wintersemester 007/008 Prof. Dr.-Ing. Ch. Tsakmakis 9. Lösungsblatt Dr. rer. nat. P. Grammenoudis 07. Januar 008 Dipl.-Ing.

Mehr

4. Lösung linearer Gleichungssysteme

4. Lösung linearer Gleichungssysteme 4. Lösung linearer Gleichungssysteme a x + : : : + a m x m = b a 2 x + : : : + a 2m x m = b 2 : : : a n x + : : : + a nm x m = b n in Matrix-Form: A~x = ~ b (*) mit A 2 R n;m als Koe zientenmatrix, ~x

Mehr

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 23. September 2016 Aufgabe 1 (12 Punkte) Ein Wanderer (Gewicht G ) benutzt in unebenem Gelände einen Wanderstab

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

Biomechanik Bioniker erforschen Pflanzen und Tiere mit den Augen eines Ingenieurs, denn

Biomechanik Bioniker erforschen Pflanzen und Tiere mit den Augen eines Ingenieurs, denn Bioniker erforschen Pflanzen und Tiere mit den Augen eines Ingenieurs, denn eigentlich sind sie Konstruktionen der Natur mit einer Entwicklungszeit von vielen Millionen Jahren. Um diese Konstruktionen

Mehr

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte:

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte: B Konstruktion Tabelle1 Vorgegebene Werte: Drehzahl [1/min] Startleistung [kw] Planetengetriebe Eingang 3520 377 Planetengetriebe Ausgang 565 369 Eingriffswinkel α 20.00 0.3491 Verzahnungsqualität Q 5

Mehr

Kapitel 8. Verbundquerschnitte

Kapitel 8. Verbundquerschnitte Kapitel 8 Verbundquerschnitte 8 8 Verbundquerschnitte 8.1 Einleitung... 279 8.2 Zug und Druck in Stäben... 279 8.3 Reine Biegung... 286 8.4 Biegung und Zug/Druck... 293 8.5 Zusammenfassung... 297 Lernziele:

Mehr