Kapitel 5: Koordination der Personalführung im Führungssystem

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 5: Koordination der Personalführung im Führungssystem"

Transkript

1 Kpitel 5: Koodintion de Peonlfühung im Fühungytem 5. Beziehungen zwichen Contolling und Peonlfühung Kpitel 5 5. Koodintion de Peonlfühung mit dem Infomtionytem 5.3 Koodintion de Peonlfühung mit Plnung und Kontolle Contolling WS /3 6 Gunthe Fiedl

2 5. Beziehungen zwichen Contolling und Peonlfühung Gegentnd de Peonlfühung Peonlfühung it unmittelb (diekt) uf Mitbeiteteueung ugeichtet Andee Fühungteilyteme (FTS) nu indiekt vehltenwikm (duch Pläne, Kontollen etc.) lemente de Peonlfühung Beeinflute Mitbeite, teuende Fühungkäfte, Intumente und Pozee zu Vehltenbeeinfluung Mitwikung de zu teuenden Peonen efodelich Bpw. hängen Pämien ode die Wikmkeit von Fotbildungmßnhmen vom Vehlten de Mitbeite b Mßnhmen de Plnung, Kontolle, Infomtionveogung und Ognition weden oft nu übe die Mßnhmen de Peonlfühung wikm ode zumindet von ih beeinflut Peonlfühung in ndeen Contolling-Konzeptionen teilweie zu wenig bechtet Contolling WS /3 7 Gunthe Fiedl

3 5. Beziehungen zwichen Contolling und Peonlfühung Intumente de Peonlfühung: Fühungpinzipien und utoitä Fühungtil ntcheidungpielum de Vogeetzten Vogeetzte entcheidet und odnet n Fühungpinzipien: llgemeine ndlungmimen de Mitbeitefühung ptichlich Vogeetzte entcheidet; e it be betebt, die Untegebenen von einen ntcheidungen zu übezeugen, bevo e ie nodnet Fühungtil: zeitlich übeduende und in Bezug uf betimmte Situtionen konitente Fühungvehlten von Vogeetzten gegenübe Mitbeiten (Wundee/Gunwld, 98, S. ) betend Vogeetzte entcheidet; e getttet jedoch Fgen zu einen ntcheidungen, um duch deen Bentwotung deen Akzeptieung zu eeichen koopetiv Vogeetzte infomiet eine Untegebenen übe eine bebichtigten ntcheidungen; die Untegebenen hben die Möglichkeit, ihe Meinung zu äußen, bevo de Vogeetzte die endgültige ntcheidung tifft ptiziptiv Abbildung: Spektum mögliche Fühungtile (Quelle: Stehle/Sydow, 987) ntcheidungpielum de Guppe Die Guppe entwickelt Vochläge; u de Zhl de gemeinm gefundenen und kzeptieten möglichen Poblemlöungen entcheidet ich de Vogeetzte fü die von ihm fvoiiete demoktich Die Guppe entcheidet, nchdem de Vogeetzte zuvo d Poblem ufgezeigt und die Genzen de ntcheidungpielume fetgelegt ht De Vogeetzte fungiet l Koodinto nch innen und nch ußen Contolling WS /3 8 Gunthe Fiedl

4 5. Beziehungen zwichen Contolling und Peonlfühung Intumente de Peonlfühung: Intumente de Peonlentwicklung Au- und Fotbildung (innehlb und ußehlb de Untenehmen) m Abeitpltz: Unteweiung, intz l Aitent ode Stellvetete, Qulitätzikel etc. ußehlb de Abeitpltze: Votg, Flltudienbeit etc. Abeittuktuieung Job Rottion, Job nlgement, Job nichment, Bildung utonome Abeitguppen Lufbhnplnung Auftiegmöglichkeiten im Untenehmen und entpechende Anfodeungen n Mitbeite Contolling WS /3 9 Gunthe Fiedl

5 5. Beziehungen zwichen Contolling und Peonlfühung Intumente de Peonlfühung: Motivtion- und Aneizyteme Weentliche Komponente: ntgeltytem Abeit(pltz)bewetung: Stelleninhlte und nfodeungen eltive Lohnhöhe Getltung de Vegütungytem Gundvegütung, Pämien etc. ntlohnung de individuellen Leitung Gewähung von Sozilleitungen Mitpche- und Mitgetltungechte Abeitbedingungen Auftiegmöglichkeiten Betiebklim Contolling WS /3 Gunthe Fiedl

6 5. Beziehungen zwichen Contolling und Peonlfühung ku: Übeblick übe die Pincipl-Agent-Theoie (/) Pincipl-Agent-Theoie (infomtionökonomiche Anätze) eft Beziehungen zwichen Auftggebe (Pincipl) und Auftgnehmen (Agent) Auftggebe = Pincipl Vehltenintedependenzen Auftgnehme = Agent igentüme, Aktionä Abteilungleite Poduktionuntenehmen Votnd, Mnge Mitbeite Liefent Getltung de Vehlten de Agenten duch vetgliche Regelungen Pämien de Pincipl-Agent-Theoie Individuelle Nutzenmimieung (divegieende Inteeen und Riikoeintellungen) Infomtiondichotomie Abeitleidhypothee Contolling WS /3 Gunthe Fiedl

7 5. Beziehungen zwichen Contolling und Peonlfühung ku: Übeblick übe die Pincipl-Agent-Theoie (/) Poblemtellungen de Pincipl-Agent-Theoie (Quelle: Küppe, 8, S.83) Typ de Infomtionymmetie Vegleichkiteium hidden chcteitic hidden infomtion hidden ction nttehungzeitpunkt vo Vetgbchlu nch Vetgbchlu, vo ntcheidung nch Vetgbchlu, nch ntcheidung nttehunguche e-nte vebogene igenchften de Agenten nicht beobchtbe Infomtiontnd de Agenten nicht beobchtbe Aktivitäten de Agenten Poblem ingehen de Vetgbeziehung gebnibeuteilung Vehlten-/Leitungbeuteilung Reultieende Gefh dvee election mol hzd mol hzd, hiking Löungnätze ignlling, ceening, elf election Aneizyteme, Kontollyteme, elf election Aneizyteme, Kontollyteme Fomen de Pincipl-Agent-Theoie: poitiv ( kläung de Relität) und nomtiv ( Getltungempfehlung) Contolling WS /3 Gunthe Fiedl

8 5. Beziehungen zwichen Contolling und Peonlfühung Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (/9) LN-Modell l (echenbe) Modellvinte: mol hzd hidden ction Gewinn de Untenehmen wid duch nicht beobchtben Abeiteintz de Agenten poitiv beeinflut Wie hoch it d optimle Aneizniveu in einem Vegütungvetg? ntcheidungviblen und Pmete : gebni, Output : bolute Riikoveionkoeffizient de Pincipl G(): Nutzenfunktion de Pincipl : Aktion de Agenten (Abeiteintz, ntcheidung) : unichee Umweltzutnd (): ntlohnung n den Agenten in Abhängigkeit von : fie ntlohnungbetndteil : vible ntlohnungnteil : bolute Riikoveionkoeffizient de Agenten (,): Nutzenfunktion de Agenten V(): Dinutzen de Agenten (Abeitleid) : Reevtionnutzen de Agenten (Mindetnutzen) Contolling WS /3 3 Gunthe Fiedl

9 5. Beziehungen zwichen Contolling und Peonlfühung Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (/9) Annhmen de LN-Modell Linee ntlohnungchem (L) mit, ponentielle Nutzenfunktionen () Pincipl: Agent: G e V, e Nomlveteilung de Umweltzutände θ (N) und dditive Poduktionfunktion (, ), wobei θ nomlveteilt it gemäß N, Rechentechniche Veeinfchungen Riikoneutle Pincipl (line ttt eponentiell): G Konkete Funktion fü Dinutzen de Agenten: V Contolling WS /3 Gunthe Fiedl

10 Gunthe Fiedl Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (3/9) Stuktu de LN-Modell Zielfunktion de Pincipl: Nebenbedingungen. Ptiziptionbedingung de Agenten:. Nutzenmimieung de Agenten unte Beückichtigung de Abeitleid: De Agent mimiet einen wtungnutzen duch Whl de Abeiteintze Contolling WS /3 m G, e ' gm e 5. Beziehungen zwichen Contolling und Peonlfühung ku: Rechenegeln V b V b b 5

11 Gunthe Fiedl Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (/9) Veeinfchung de Beechnung duch Vewendung de Sicheheitäquivlent (SÄ) ntelle de wtungwete de Nutzenfuktion: Sttt beechne SÄ fü eponentielle Nutzenfunktion und nomlveteilte Zufllviblen: inetzen egibt: Contolling WS /3 V SÄ V V SÄ SÄ 5. Beziehungen zwichen Contolling und Peonlfühung, e 6

12 5. Beziehungen zwichen Contolling und Peonlfühung Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (5/9) Au de Veeinfchung duch Vewendung de Sicheheitäquivlent (SÄ) egibt ich fü die Nebenbedingungen:. Ptiziptionbedingung de Agenten: De Auduck, e wid eetzt duch SÄ. Nutzenmimieungbedingung de Agenten: De Auduck gm ' gm ' ' ' e wid eetzt duch ewtete ntlohnung Abeitleid Riikopämie Contolling WS /3 7 Gunthe Fiedl

13 Gunthe Fiedl Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (6/9) Löung de LN-Modell Nutzenmimieung de Agenten unte Whl de Abeiteintze: Die liefet den optimlen Abeiteintz: inetzen in Ptiziptionbedingung (Agent wid uf Mindetnutzen gedückt, lo Sicheheitäquivlent = Reevtionnutzen): Auflöen nch de Fivegütung liefet die ete Teillöung: Contolling WS /3 * 5. Beziehungen zwichen Contolling und Peonlfühung m! 8

14 Gunthe Fiedl Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (7/9) inetzen in die Zielfunktion de Pincipl: Mimieen (Ableiten und Nulletzen) de Zielfunktion: Auflöen nch dem Aneizpmete liefet: Contolling WS /3 * m G 5. Beziehungen zwichen Contolling und Peonlfühung G * 9

15 Gunthe Fiedl Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (8/9) ieu egibt ich fü den optimlen Abeiteintz und die Fivegütung: inetzen in liefet den optimlen Aneizvetg Contolling WS /3 * * 5. Beziehungen zwichen Contolling und Peonlfühung

16 5. Beziehungen zwichen Contolling und Peonlfühung Fetlegung de optimlen Vegütungvetge übe einen gencytheoetichen Antz: LN-Modell (9/9) Gundugen de LN-Modell: Je göße die Riikoveion de Agenten, deto geinge de optimle Abeiteintz Je göße die Vinz de Umwelt, deto geinge de optimle Abeiteintz (influ de Abeiteintze geing eltiv zu Umwelteinflüen) Die öhe de Fivegütung ht keinen influ uf den Pmete fü die vible ntlohnung (liegt n de Annhme de eponentiellen Riikonutzenfunktion) Riikoveteilung: Totz Riikoveion de Agenten und Riikoneutlität de Pincipl wid dem Agenten Riiko ufgebüdet Notwendigkeit, Aneize zu etzen (d Abeiteintz nicht beobchtb), efodet ineffiziente Riikoufteilung. Wäe de Abeiteintz beobchtb ( fit bet ), wüde de Agent mit fiem Gehlt vegütet weden Contolling WS /3 Gunthe Fiedl

Controlling Wintersemester 2014/2015

Controlling Wintersemester 2014/2015 Techniche Univeität München Contolling Winteemete /5 Pof. D. Gunthe Fiedl Lehtuhl fü Contolling Techniche Univeität München Mitchift de Voleung vom 9.. 5. Beziehungen zwichen Contolling und Peonlfühung

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Grundwissen 9. Jahrgangsstufe (G 8) Mathematik. In der Jahrgangsstufe 9 erwerben die Schüler folgendes Grundwissen:

Grundwissen 9. Jahrgangsstufe (G 8) Mathematik. In der Jahrgangsstufe 9 erwerben die Schüler folgendes Grundwissen: Gundwien 9. Jhgngtufe (G 8) Mthemtik In de Jhgngtufe 9 eweben die Schüle folgende Gundwien: Sie ind ich de Notwendigkeit von Zhlenbeeicheweiteungen bewut und können mit Wuzeln und Potenzen umgehen. Sie

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Rechnen mit Vektoren im RUN- Menü

Rechnen mit Vektoren im RUN- Menü Kael 09.. CASIO Teach & talk Jügen Appel Einen deidimenionalen Vekto kann man al Matix mit dei Zeilen und eine Spalte auffaen. Daduch kann man mit Vektoen echnen. D.h. konket, man kann Vektoen addieen

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

1. lst die Mutter psychisch krank? lst der Vater psychisch krank? Sind beide Elternteile psychisch krank?

1. lst die Mutter psychisch krank? lst der Vater psychisch krank? Sind beide Elternteile psychisch krank? 1. lst die Mutte psychisch kank? lst de Vate psychisch kank? Sind beide Eltenteile psychisch kank? 2. Handelt es sich um eine akute Kankheitsphase? Wie lange dauet diese Phase schon an? 3. lst die Ekankung

Mehr

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen Sympoium EME 2005 5. - 7. Septembe 2005 d Titel de Beitage: Namen de Autoen: Name de Votagenden Fima, Dienttelle: Anchift: Emailadee: Numeiche Feldbeechnung im VCC EME - aktuelle Sachtand und zukünftige

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Analytische Geometrie

Analytische Geometrie Anlytiche eometie Intention: Eeitung eine Vefhen, mit deen Hilfe mn jede geometiche Aufge duch echnung löen knn. I Vektoen und Vektoäume Pfeile und Vektoen Vektoen ind geichtete ößen. Phyik: Kft, echwindigkeit,

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell Abeitsgemeinschaft Copoate Finance 3. Feb 2011 RKU Heidelbeg David Dell Gundpinzipien de Finanzieung Investition = Entscheidung fü eine bestimmte Vewendungsmöglichkeiten von Kapital Aufgaben de Finanzieung

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule Bildelement: Jugendliche in der Schule Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE So schaffst du deine Ausbildung Bildelement: Logo SO SCHAFFST DU DEINE AUSBILDUNG Schließ deine Ausbildung

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife MATHEMATIK Aufgabenestellung und Bewetung von Klausuen und Püfungen fü den Eweb de Fachhochschuleife in beuflichen Bildungsgängen im Rahmen duale ode vollqualifizieende Bildungsgänge, in de Beufsobeschule

Mehr

Ohne Anspruch auf Vollständigkeit!!!

Ohne Anspruch auf Vollständigkeit!!! Mhemik Veuch eine Zummenfung de Abiu-Soffe Ohne Anpuch uf Volländigkei!!! ANALYSIS: Funkionuneuchung Funkionen: gnzionle Funkionen b e-funkionen c igonomeiche Funkionen Tngenen- und Nomlenbeimmung Okuven

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Affine Geometrie 11. Jahrgang

Affine Geometrie 11. Jahrgang Affine Geomeie. Jhgng Gliedeung. Vekoen. Dellung von Vekoen. Rechnen mi Vekoen. Linee Ahängigkei. Geden- und Eenengleichungen. Gedengleichungen. Eenengleichungen in Pmeefom. Inzidenzpoleme. Punk und Gede

Mehr

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen Mthemtik in eigenen Woten Abeitsblätte und Kopievolgen Abeitsblätte und Kopievolgen stehen unte www.klett.ch/spektumschule kostenlos ls Downlod zu Vefügung. Ihe Vewendung fü den eigenen Unteicht wid vom

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde,

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde, dessaue st. 5 I 06862 dessau-oßlau email info@pobaufi.de I www.pobaufi.de Kundenanschift Ih Anspechpatne Vovetagliche Eläuteungen zum Dalehensantag Name alle Dalehensnehne übe insgesamt Dalehensbetag Seh

Mehr

Verschaffe dir den Durchblick!

Verschaffe dir den Durchblick! Veschaffe di den Duchblick! Kennst du schon das geheimnisvolle Vitamin A? Mit folgenden «Duchblicken» tauchst du tiefe in die vebogene Welt de Vitamine und besondes des Vitamins A. Du kannst sowohl alle

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

ISBN 978-3-00-052134-8. Schriftenreihe Institut der Deutschen Messewirtschaft Edition 44

ISBN 978-3-00-052134-8. Schriftenreihe Institut der Deutschen Messewirtschaft Edition 44 Bibliogafische Infomation de Deutschen Bibliothek Die Deutsche Bibliothek vezeichnet diese Publikation in de Deutschen Nationalbibliogafie; detailliete bibliogafische Daten sind im Intenet unte t http://dnb.d-nb.de

Mehr

Einführung in die Aussagenlogik

Einführung in die Aussagenlogik Einfühung in die Aussagenlogik D. 1. (Aussage) Eine Aussage ist ein Satz, de genau einen de genau einen de Wahheitswete wah (W) ode falsch (F) hat. B. 1. Die sog. zweiwetige Logik basiet auf folgenden

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

Generalthema: Ausgewählte Fragen der Fremdfinanzierung

Generalthema: Ausgewählte Fragen der Fremdfinanzierung Institut fü Geld- und Kaitalvekeh de Univesität Hambug Pof. D. Hatmut Schmidt Semina zu llgemeinen Betiebswitschaftslehe und Bankbetiebslehe Wintesemeste 1999/2000 Zuständige Mitabeite: Dil.-Kfm. Dik Niedeeichholz

Mehr

3. SDS-Jahreskongress. 9. /10. Mai 2014. Konstanz am Bodensee, Hotel Riva

3. SDS-Jahreskongress. 9. /10. Mai 2014. Konstanz am Bodensee, Hotel Riva 3. SDS-Jaheskongess 9. /10. Mai 2014 Konstanz am Bodensee, Hotel Riva 3 8 SDS 2.0 Keine Patienten velieen Weiß implantieen! 4 5 Editoial D. Ulich Volz 1. Konstanze Konzil Seh geehte, liebe Kolleginnen

Mehr

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009 Mustetexte Auftag nach 11 BDSG Gegenstand Auftag nach 11 BDSG 2009 Soweit die DMC ode eine ihe Efüllungsgehilfen als Datenschutzbeauftagte i.s. des 4f Abs. 2 Satz 3 BDSG bestellt und tätig ist, beziehen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Pof. Anes Hez, D. Stefn Häusle emil: heusle@biologie.uni-muenchen.e Deptment Biologie II Telefon: 89-8-748 Goßhenest. Fx: 89-8-7483 85 Plnegg-Mtinsie

Mehr

Ergänzungen zur Integrationstheorie, SS2009 von Siegfried Echterhoff

Ergänzungen zur Integrationstheorie, SS2009 von Siegfried Echterhoff Es gilt dnn R [,] f()d =. Egänzungen zu Integtionstheoie, SS9 von Siegfied Echtehoff Wi wollen hie die wichtigsten Eigenschften und Definitionen zum Riemnn-Integl wiedeholen und einige wichtige Egänzungen

Mehr

Magische Zaubertränke

Magische Zaubertränke Magische Zaubetänke In diese Unteichtseinheit waten auf Ihe SchüleInnen magische Zaubetänke, die die Fabe wechseln. Begiffe wie Säue, Base, Indikato und Salz können nochmals thematisiet bzw. wiedeholt

Mehr

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine Veuch 5: Unteuchunen zu Bechleuniun n de Atwoodchen Fllchine Theoetiche Gundlen: I. Ekläun de Modell Mepunkt : Auedehnte Köpe weden duch einen Punkt detellt, in de n ich die ete Me de Köpe veeinit denkt.

Mehr

21.02.2011. ...als ein gründergeführtes Unternehmen. Roth & Rau stellt sich vor... ... zur internationalen AG. Von der nationalen GmbH...

21.02.2011. ...als ein gründergeführtes Unternehmen. Roth & Rau stellt sich vor... ... zur internationalen AG. Von der nationalen GmbH... Responsibility fo a sunny futue. 1 Wetschöpfungskette Wettbewebeanalyse SWOT - 2 Roth & Rau stellt sich vo... Gündungsjah 1990 Kenmäkte Euopa Asien USA Hauptsitz Hohenstein- Enstthal Wetschöpfungskette

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN Mtemtik: Mg. Wolfgng Smid beitsbltt 11 6. Semeste BEITSBLTT 11 EXTEMWETUFGBEN In diesem beitsbltt befssen wi uns mit ufgben, bei denen einem gegebenen Köpe ein ndee Köpe eingesieben ode umsieben wid. Beispiel:

Mehr

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz Lösungen II. / selbe Länge:,, 7;,, ;,, ;, ;, 9 selbe Tanslation:, ;, ;,, ;, Lösungen II. / a b a b c c d d s u v s u v b) ein Pfeil de Länge /7 a b ; y b a b) Kommutativgesetz / u a b ; v b c b) w u c

Mehr

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme.

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme. of. D.-ng. Hezig Voleung "Gundlagen de Elektotechnik " 4 etv. Biot-Savatche Geetz Biot, Jean Baptite 774-86 Savat, Felix 79-84.. Duchflutunggeetz, Beechnung de Feldtäke H d = Θ = ν O. Maxwellche Geetz:

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Das Ski-Rental-Problem

Das Ski-Rental-Problem Da Ski-Rental-Poblem (Voläufige Veion, 15. Mai 212) Pof. D. Hanno Lefmann Fakultät fü Infomatik, TU Chemnitz, D-917 Chemnitz, Gemany lefmann@infomatik.tu-chemnitz.de 1 Da Ski-Rental-Poblem Bei dem Ski-Rental-Poblem

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Mathematik Vektorrechnung

Mathematik Vektorrechnung Mthemti Vetoechnng Definitionen Rechnen mit Vetoen Linee Ahängigeit nd Unhängigeit on Vetoen Geden Gegeneitige Lge on Geden 9 Betg eine Veto Winel zwichen zwei Vetoen Eenendtellng mit Vetoen 9 Gegeneitige

Mehr

Vergleich von stochastischen Optimierungsstrategien mit Hilfe der Monte-Carlo-Simulation

Vergleich von stochastischen Optimierungsstrategien mit Hilfe der Monte-Carlo-Simulation UNIVERSITÄT SIEGEN FACHBEREICH - MASCHINENTECHNIK INSTITUT FÜR SYSTEMTECHNIK Lehstuhl fü Simulationstechnik und Infomatik im Maschinenbau Pof. D. Wolfgang Wiechet STUDIENARBEIT ST Vegleich von stochastischen

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel Zahnaztangst? Wege zum entspannten Zahnaztbesuch. Mit eine von Mac A. Pletze konzipieten und gespochenen Tance Beabeitet von Lea Höfel 1. Auflage 2012. Taschenbuch. 136 S. Papeback ISBN 978 3 7945 2870

Mehr

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter Bioignalveabeitung Studiengang Medizin-Infomatik Inhalt Gundlagen de Elektizitätlehe Signale Fouieanalye Digitaliieung von Signalen lineae zeitinvaiante Syteme (LTI-Syteme) digitale Filte adaptive Filte

Mehr

Consulting & Private Equity eine strategische Symbiose?

Consulting & Private Equity eine strategische Symbiose? Matin Fanssen Inteim Management Consulting & Pivate Equity eine stategische Symbiose? Untenehmen: Ot: Name: Funktion: Telefon: Bitte schicken Sie uns den ausgefüllten Fagebogen pe Fax ode Post zuück an:

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19 Fachbeeich Mathematik/Infomatik Optimieung de Lagehaltung im Kaftfahzeugteile-Gohandel Diplomabeit beabeitet von Diete Stumpe beteut von Pof. D. Olive Vonbege 2. Apil 1996 Diete Stumpe Am Gewenkamp 19

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Institut fü Mechnische Vefhenstechni und Mechni Beeich Angewndte Mechni Vopüfung Technische Mechni III (Dynmi) Dienstg, 09.03.00, 9:00 :00 Uh Bebeitungseit: h Aufgbe (0 Punte) Fü die Bewegung eines Puntes

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen

Mehr

Wien Tullnerbach-Pressbaum Neulengbach St. Pölten

Wien Tullnerbach-Pressbaum Neulengbach St. Pölten : : St. Pölten Fahpl 2016 gültig 13. 1 2015 In 20 Minuten dem Tullnefeld bis Westbahnhof Schnellee Fahzeiten mit REX und Taktvekeh - Umsteigeknoten in Stadt Bauabeiten im Abschnitt - : 15.0-19.06.2016

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln Peise, Fom und Fabe: Fallsticke zwischen Veodnung und Einnahme von Azneimitteln Seit Jahen ist die Tendenz im Gesundheitswesen unvekennba, dass andee Akteue imme meh ökonomische und egulatoische Ringe

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Entdecke die Welt! Australien USA

Entdecke die Welt! Australien USA Entdecke die Welt! Die Feien sind zu Ende endlich sieht Leon seine Feunde wiede! Jede von ihnen w im Ulub in einem ndeen Lnd. Sie hben lle Postkten geschieben und etws mitgebcht. Die blonde Nicole w in

Mehr

Wien Stockerau Absdorf-Hippersdorf / Hollabrunn Retz Znojmo

Wien Stockerau Absdorf-Hippersdorf / Hollabrunn Retz Znojmo Wien / Hollunn Fahpl 205 gültig 4. 204 Sofotige Zug-Echtzeitinfo am Hdy! Einge: "at Stationsname" pe SMS 0828 20200 Zustieg in REX, R- und S-Bahn-Züge nu mit gültige Fahkate, auße Stationen ohne Ticketvekauf.

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

Proseminar Hydrologie WS 2005/2006. Die ungesättigte hydraulische Leitfähigkeit: Mualem - Van Genuchten Modell

Proseminar Hydrologie WS 2005/2006. Die ungesättigte hydraulische Leitfähigkeit: Mualem - Van Genuchten Modell oemina Hydologie WS 005/006 Die ungeättigte hydauliche Leitfähigkeit: Mualem - Van Genuchten Modell 08..005 Albet Ludwig - Univeität Feibug Intitut fü Hydologie Dozent: D. Chitoph Küll Refeent: Matthia

Mehr

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011 Einige Gundlagen de magnetischen Nahfeld-Kopplung Volesung Michael Gebhat TU Gaz, Sommesemeste Inhalt Übeblick Methode des Magnetischen Moments Biot-Savat Gesetz zu Bestimmung de H-Feldstäke Koppelsystem:

Mehr

Ouvertüre: Kreise in gotischem Maßwerk

Ouvertüre: Kreise in gotischem Maßwerk Ouvetüe: Keise in gotischem Maßwek 1 Wi beginnen unseen Spaziegang duch die Keisgeometie mit de Konstuktion einige inteessante und in de Kunst vielfach auftetende Figuen, die sich aus Keisbögen zusammensetzen.

Mehr

n r 3 5 3 9 0 G ie s s en 14.06. bis 15.06.2014 ti o n en 4 7 w o r k o u ts m it D En B T r a in in g

n r 3 5 3 9 0 G ie s s en 14.06. bis 15.06.2014 ti o n en 4 7 w o r k o u ts m it D En B T r a in in g in B d e z e n t u m RGiniegssle n lee G u tf le is c h s t s s e 2 4 3 5 3 9 0 G ie s s en 14.06. bis 15.06.2014 ti o n en N 10 s u n te en es P N TE ES 4 7 w o k o u ts m it D En B c i m n E B e D N

Mehr

R. Brinkmann Seite f 2 ( x)

R. Brinkmann  Seite f 2 ( x) R. Brinkmnn http://brinkmnn-du.de Seite 08.0.0 Löungen linere Funktionen Teil XII Ergebnie: E Aufgbe f = + ;P( );D = { 0 6} Die Gerde mit der Funktion f () wird von einer zweiten Gerden mit der Funktion

Mehr

Übungen zu Ingenieurmathematik I

Übungen zu Ingenieurmathematik I Otbyeriche Techniche Hochchule Regenburg Fkultät Infortik / Mthetik Prof Dr M Leitz WS 2013/14 Bltt 1 / II Übungen zu Ingenieurthetik I (Bchelor-Studiengänge: Mikroytetechnik / Senorik und Anlytik) Theengebiet:

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

VR-Bank Mittelsachsen eg

VR-Bank Mittelsachsen eg N. 3 / Septembe 2012 Bötewitz Ostau Lommatzsch Leisnig Döbeln Hatha Waldheim Miltitz Roßwein Nossen Dittmannsdof Goßvoigtsbeg Wi fü Sie - Vebunden mit den Menschen in unsee Region Feibeg Band-Ebisdof Obebobitzsch

Mehr

«Samariter im Netz» Praxisleitfaden zur Nutzung der neuen Medien

«Samariter im Netz» Praxisleitfaden zur Nutzung der neuen Medien «Samaite im Netz» Paxisleitfaden zu Nutzung de neuen Medien Leitfaden_RZ_2010_03_26.indd 1 26.03.2010 15:01:25 2 Inhaltsvezeichnis 1 2 Einleitung 4 1.1 Intenet: Ein Ekläungsvesuch 4 1.2 Web 2.0 Plattfomen

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsvewaltung fü Bildung, Wissenschaft und Foschung Fach Name, Voname Klasse Abschlusspüfung an de Fachobeschule im Schuljah / Mathematik (B) Püfungstag.. Püfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

Aufgaben Ladungen im elektr. und mag. Feld

Aufgaben Ladungen im elektr. und mag. Feld Aufgaben Ladungen i ekt. und ag. Fd 85. Elektonen teten au eine Glühkathode K au und weden duch ein Fd zwichen ih und de Anode A (Spannung zwichen K und A betägt U = 5, V) zu letztee hin bechleunigt. Duch

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr