1.13 Reibung Haftreibung und Gleitreibung

Größe: px
Ab Seite anzeigen:

Download "1.13 Reibung Haftreibung und Gleitreibung"

Transkript

1 1.13 eibung Haftreibung und leitreibung Wir betrachten einen Quader mit ewicht auf einer rauhen Unterlage, an dem eine waagerechte Kraft angreift. us dem Freischnitt wird klar, dass die Unterlage eine ormalkraft und eine Tangentialkraft aufbringen muss, damit der Körper im eichgewicht bleiben kann. F g Lageplan mit Freischnittkontur Freischnitt Kraftplan F F ϕ ϕ F Die ormalkraft hält dem ewicht das leichgewicht (esultierende einer Druckverteilung auf die rundfläche des Körpers). Kein utschen des Körpers: Tangentialkraft von der röße der Kraft F in entgegengesetzter ichtung notwendig. Die Tangentialkraft wird durch eibung zwischen Körper und Unterlage möglich. esultierende Kraft. Winkel φ zur enkrechten wächst mit höherer Belastung F. Bei gegebenem F liegt φ fest. Es gilt: Der Winkel hängt nicht davon ab, aus welcher ichtung die Kraft F gegen den Körper drückt. Die tellung von passt sich jeweils an. Deshalb lässt sich der Winkel auch als Öffnungswinkel eines eibkegels ansehen. Die resultierende uflagerkraft muss für leichgewicht mit ewichtskraft und belastender Kraft ein zentrales Kraftsystem bilden (Drei-Kräfte-atz). Damit liegt auch der ngriffspunkt der uflagerkraft fest (omentengleichgewicht am Quader!). 53

2 Erfahrung: Für leichgewicht kann die Kraft F und damit der Winkel φ nicht beliebig anwachsen renzwinkel φ max Diese renze hängt von den dhäsions- und Kohäsionskräfte zwischen den aterialien, der Oberflächenbeschaffenheit des Quader und der Unterlage und anderen Faktoren ab. Die theoretischen Zusammenhänge zur Bestimmung von φ max sind äußerst kompliziert, und auch die essung im Experiment ist hinreichend komplex; Fachgebiet Tribologie. Für eine erste Betrachtung kann jedoch der nsatz von Coulomb hereangezogen werden, nachdem bei trockenen Oberflächen mit wachsender ormalkraft auch die übertragbare eibkraft proportional wächst: Coulombsches eibungsgesetz für Haftreibung: Der Proportionalitätsfaktor µ H wird Haftreibungskoeffizient genannt. Bestehen die Kontaktflächen aus tahl mit üblicher Oberflächenbeschaffenheit so variiert µ H in den renzen 0, 1 bis 0, 2. Der Winkel des eibkegels φ ist für leichgewicht stets kleiner oder gleich dem maximalen eibwinkel: Coulomb hat auch für gleitende Bewegung trockener Oberflächen ein eibgesetz formuliert. Demnach ist die eibkraft bei gleitender Bewegung trockener Oberflächen unabhängig von der leitgeschwindigkeit und unabhängig von der Kraft F immer proportional zum Betrag der ormalkraft und vom ichtungssinn her entgegengesetzt zum ichtungssinn der Kraft F. Im llgemeinen ändert der Körper beim leiten seinen Bewegungszustand (kein leichgewicht(, so dass uns leitreibung neben Haftreibung erst wieder bei dynamischen Problemen begegnet. Coulombsches eibunggesetz für leitreibung: Der Parameter µ wird leitreibungskoeffizient genannt. Es zeigt sich in Experimenten, dass µ < µ H ist. 54

3 Übung - Berechnen ie den Kraftangriffspunkt der uflagerkraft als Funktion der Höhe des Kraftangriffspunktes der Kraft F über der uflagefläche! Erstes Beispiel zur eibung g Körper auf einer rauhen schiefen Ebene mit Haftreibungskoeffizient µ H, belastet durch sein Eigengewicht. Wie gross ist der maximale Winkel, so dass gerade noch kein utschen eintritt? α Lösung Lageplan mit Freischnittkontur Freischnitt Kraftplan α us der grafischen Lösung sieht man sofort, dass wegen + = 0 und = + Folgendes gilt: Da max = µ H folgt unmittelbar: Experimente an schiefen Ebenen können demnach zur essung des Haftreibungskoeffizienten herangezogen werden, indem der eigungswinkel α der Ebene so lange erhöht wird, bis utschen eintritt. 55

4 Zweites Beispiel zur eibung Eine Leiter lehnt an einer senkrechten Wand. Die Heiftreibkoeffizienten µ und µ B an den uflagepunkten sind bekannt. α Bis zu welcher Höhe h max darf die Leiter bestiegen werden bevor utschen eintritt? Lösung Da bei und B je zwei unbekannte Kraftkomponenten auftreten (zweiwertige Lager) ist das vorliegende ebene Problem einfach statisch unbestimmt. Trotzdem können interessante ussagen getroffen werden, ohne die Lagerkräfte im Detail zu bestimmen. B Wir wissen einerseits, dass die beiden uflagerkräfte, B und die ewichtskraft nur dann leichgewicht herstellen können, falls sich ihre Wirkungslinien in einem Punkt schneiden (Drei-Kräfte-atz). Wir wissen ferner, welchen pielraum die Wirkungslinien der Kräfte und B haben (eibkegel). α ϕ max, K Tragen wir die eibkegel an den Lagerstellen bei und B ein, so können wir das hellgrün dargestellte Bebiet abgrenzen, in dem sich die drei Wirkungslinien schneiden müssen. Liegt der chnittpunkt außerhalb des hellgrünen ebietes, so kann kein leichgewicht hergestellt werden. h max ϕ max,b Dies geschieht sobald die Wirkungslinie der ewichtskraft beim Hochsteigen den kritischen Punkt K überschreitet. B us der grafischen Konstruktion lässt sich h max ablesen bzw. eine Formel für die gesuchte Höhe als Funktion der eibkoeffizienten ableiten. an erkennt ferner, dass der kritische Punkt K bei verkleinertem nstellwinkel α nach links wandert. obald α < φ max,b kann die Leiter bis zum höchsten Punkt beschritten werden, ohne dass bei B utschen auftritt. Die Leiter ist zur icherheit so anzustellen, dass sie sich klar innerhalb des eibkegels von B befindet. Die getroffenen ussagen sind unabhängig von der röße der ewichtskraft. Dies liegt daran, dass die ormalkräfte und damit die eibkräfte proportional zur ewichtskraft anwachsen. Darin drückt sich ein elbsthemmmechanismus aus, der in vielen Fällen bei der nwendung von eibung in der Technik genutzt wird. Beispiele sind Unterlegkeile, chrauben (teigungswinkelbegrenzung der ewindeflanke), Hebevorrichtungen, Extensionshülsen und vieles mehr. 56

5 Drittes Beispiel zur eibung Bodenhaftung beim ad eines Kraftfahrzeuges bei bekannter chslast. Welches ntriebsmoment in bhängigkeit vom Haftreibungskoeffizient µ H ist für quietschende eifen nötig? Lageplan mit Freischnittkontur Lösung omentengleichgewicht um den admittelpunkt liefert: utschbeginn: Haftung auf der traße wird erhöht durch größeres ewicht und größeren addurchmesser. Das negative Vorzeichen weist darauf hin, dass die eibkraft in die entgegengesetzte ichtung wirkt. nfahren nach links erfordert eine schiebende eibkraft von der traße auf das Fahrzeug. Freischnitt Hinweis an achos: otorkraftreserve einkalkulieren, damit Quietschen auch noch dann eintritt, falls die irls zugestiegen sind. Evt. abgefahrene eifen verwenden (selbstverstärkend!). Übung - Warum ist diese Betrachtung nur eine bschätzung der wahren Verhältnisse, welcher achverhalt wurde gar nicht berücksichtigt? Wie stellt sich das Problem beim nfahren am Berg dar? 57

6 eilreibung Wir betrachten eine Umlenkrolle, über die ein eil gespannt ist, das die olle mit einem Winkel φ umschlingt. Zwischen eil und olle sollen Tangentialkräfte übertragen werden, due durch eibung entstehen. Die ormal- und eibkräfte zwischen eil und olle werden in den Freischnittpläne für eil und olle sichtbar. Durch die eibkräfte entsteht ein oment, das für leichgewicht an der chse der olle von einem egenmoment ausgeglichen wird. Entsprechend werden sich auch die eilkräfte 0 und 1 in ihrem Betrag unterscheiden. 1 ϕ dϕ Da die ormalkräfte und eibkräfte an jeder Position unterscheiden, müssen wir das leichgewicht eines kleinen eilstückes betrachten. 0 Lageplan mit Freischnittkonturen Freischnitt Umlenkrolle Freischnitt eil ϕ 0 Freischnitt eilelement mit Winkel ϕ Kraftplan (ϕ + ϕ) ϕ (ϕ) (ϕ) + ϕ (ϕ) y x leichgewicht in tangentiale und normale ichtung: Ft = 0 : Fn = 0 : +(φ) cos( φ ) + ((φ) + ) cos( φ 2 2 ) = 0 (φ) sin( φ ) + ((φ) + ) sin( φ 2 2 ) = 0 58

7 Linearisierung für kleine Winkel mit und renzübergang sin φ = φ 1 3! φ φ für φ << 1, cos φ = 1 1 2! φ für φ << 1 lim φ 0 φ = d dφ : Ft = 0 : d d = 0 Fn = 0 : d dφ = 0 4) d = d d = (φ) sin dφ aximale eibkraft am eilelement dφ: Differentialgleichungen diesen Typs werden durch Trennung der Variablen gelöst: Unbestimmte Integration liefert: wobei C eine freie Kontante ist. Bestimmung der Konstanten aus andbedingungen: Es gilt: Damit bestimmt sich die freie Konstante zu: Wir erhalten für die maximale Zunahme der eilkraft ohne das utschen auftritt: it anwachsendem Umschlingungswinkel nimmt die eilkraft exponentiell zu! Dazu ist eine Vorspannung des eiles mit 0 erforderlich Zahlenbeispiele für µ H = 0, 5 bei verschiedenen Umschlingungswinkeln: eilantrieb: φ = π / 0 = 4, 81 Vertäuen von chiffen: φ = 4π / 0 = 535, 5 4) Zum Vergleich siehe Krafteck 59

8 Beispiel iementriebtrieb it dem iementrieb nach kizze soll mit einem ntriebsmoment a ein oment übertragen werden. a r B Lösung Freischnitt ntriebsrolle Freischnitt mitgenommene olle y a 1 1 x B x B y y 2 2 x omentengleichgewicht an der mitgenommenen cheibe: aximale eilkraft: aximal übertragbares oment: Die eilkräfte ergeben sich zu 1 = r 1 e µ Hφ 1, 2 = r e µ Hφ e µ Hφ 1 60

9 Übung - Bestimmen ie das Verhältnis a! - Zeigen ie, dass die rbeit beider omente gleich groß ist 5)! Im tand muss eine indestvorspannung des iementriebs eingestellt werden, damit ein oment übertragen werden kann. = = 2r e µ Hφ +1 e µ Hφ 1 = 2r coth(µ Hφ 2 ) stehend - Zahlenbeispiel: a µ H = 0, 5, = r φ = π : = 0, 76 r laufend + Übung - Weisen ie mit Hilfe der Lagerkräfte bei und B nach, dass sich die iemenkraft im tand aus der gemittelten iemenkraft im laufenden Zustand ergibt! - Bei tillstand und unter Belastung ändert sich die elastische Verformung der oberen und unteren iemenstränge. ehmen ie ein lineares Belastungs-Dehnungs-esetz an und leiten ie daraus wiederum den Zusammenhang = her! 2 5) Zur Beantwortung dieser Frage können ie die omente durch Kräftepaare ersetzen und usnutzen, dass die rbeit W F einer Kraft durch das kalarprodukt aus Kraft und Verschiebung berechnet wird: W F = F d s 61

1.13 Reibung Haftreibung und Gleitreibung

1.13 Reibung Haftreibung und Gleitreibung 1.13 Reibung 1.13.1 Haftreibung und leitreibung Wir betrachten einen Quader mit ewicht auf einer rauhen Unterlage, an dem eine waagerechte Kraft angreift. us dem reischnitt wird klar, dass die Unterlage

Mehr

1. Haftung. Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift:

1. Haftung. Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift: Das Coulombsche Gesetz: Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift: g m F rau Die Erfahrung zeigt: Solange die Kraft F einen bestimmten Betrag nicht

Mehr

1.6 Nichtzentrale Kräftesysteme

1.6 Nichtzentrale Kräftesysteme 1.6 Nichtzentrale Kräftesysteme 1.6.1 Zusammensetzen von ebenen Kräften mit verschiedenen ngriffspunkten Je zwei Kräfte bilden ein zentrales Kräftesystem, wenn sie nicht gerade zueinander parallel verlaufen

Mehr

= Energiedichte Volumen G V, Kapillarkraft zwischen einer starren Ebene und einer Kugel FK r

= Energiedichte Volumen G V, Kapillarkraft zwischen einer starren Ebene und einer Kugel FK r ormelsammlung Kontaktmechanik & eibungsphysik WS 8/9 Prof Popov Elementare Behandlung des Kontaktproblems Elastische Energiedichte G ε, (G ist Schubmodul, ε - Scherdeformation) ε Elastische Energie Eel

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Universität für Bodenkultur

Universität für Bodenkultur Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

2. Sätze von Castigliano und Menabrea

2. Sätze von Castigliano und Menabrea 2. Sätze von Castigliano und Menabrea us der Gleichheit von äußerer rbeit und Formänderungsenergie kann die Verschiebung am Lastangriffspunkt berechnet werden, wenn an der Struktur nur eine Last angreift.

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Zusammenfassung: Dynamik

Zusammenfassung: Dynamik LÖ Ks Ph 10 Schuljahr 016/017 Zusaenfassung: Dynaik Wiederholung: Kraft, Masse und Ortsfaktor 1 Kraft Eine Kraft kann verschiedene Wirkungen auf einen Körper haben: Verforung Änderung des Bewegungszustands

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Kapitel 8. Haftung und Reibung

Kapitel 8. Haftung und Reibung Kapitel 8 Haftung und Reibung 8 192 Haftung Haftung (Haftreibung) ufgrund der Oberflächenrauhigkeit bleibt ein Körper im leichgewicht, solange die Haftkraft H kleiner ist als der renzwert H 0.Der Wert

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip

2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip 56 2 Statik des starren Körpers 2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip isher haben wir uns lediglich mit dem leichgewicht einzelner starrer Körper befaßt; in diesem Kapitel behandeln

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Vordiplom Mechanik/Physik WS 2010/2011

Vordiplom Mechanik/Physik WS 2010/2011 Vordiplo Mechanik/Physik WS / Aufgabe a Ein zentrales Kräftesyste besteht aus folgenden Kräften: Betrag Zwischenwinkel F 4 N α = 48 F 37 N β = F 3 37 N γ = 68 F 4 5 N δ = 37 F 5 N a) Erstelle eine grobassstäbliche

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F 1 Statik 1.1 Kraft Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F Einheit der Kraft: 1 Newton = 1 N = 1 kg m/s 2 Darstellung: Kraft F mit einem

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Kraftwinder S = a = a

Kraftwinder S = a = a Prof. Dr.-ng. Prof. E.h. P. Eberhard A Kraftwinder Der skizzierte Eckpfosten eines Gartenzaunes ist bei A fest im Boden verankert. Er wird in B durch die Kräfte, und belastet. Die Punkte B und C sind durch

Mehr

3. Seilhaftung und Seilreibung

3. Seilhaftung und Seilreibung 3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer

Mehr

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist.

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist. und Experimentelle Mechani Technische Mechani III aer, ee ZÜ 8. Aufgabe 8. B ω Bei einer Wirbelstrombremse wird das chwungrad Masse m, adius r durch einen Bremsmagnet B verzögert. Das hierbei wirende Bremsmoment

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Die Kraft. F y. f A. F x. e y. Institut für Mechanik und Fluiddynamik Festkörpermechanik: Prof. Dr. M. Kuna

Die Kraft. F y. f A. F x. e y. Institut für Mechanik und Fluiddynamik Festkörpermechanik: Prof. Dr. M. Kuna Institut für echanik und luiddnamik estkörpermechanik: Prof. Dr.. Kuna Technische echanik rbeitsblätter Die Kraft f e e T rbeitsblätter_7.0.00_neu.doc Institut für echanik und luiddnamik estkörpermechanik:

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE 1) Kräfte greifen in einem Punkt an a) Zusammensetzen (Reduktion) von Kräften -

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Dynamik Lehre von den Kräften

Dynamik Lehre von den Kräften Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 0 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 4.04.008 Aufgaben. Berechnen Sie, ausgehend vom Coulomb-Gesetz, das elektrische Feld um einen

Mehr

Lösungen zum Übungsblatt 1

Lösungen zum Übungsblatt 1 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Variationsrechnung ME), Prof Dr J Gwinner Übung: K Dvorsky 3 pril Lösungen zum Übungsblatt Das rachistochronenproblem

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Integration Flächenberechnungen Tet noch nicht fertig Vorabversion! Weitere Aufgaben folgen! Sammlung von Trainingsaufgaben Lösungen in 486 Datei Nr. 48 5 Stand 8. Dezember 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form 14 14.1 Einführung und Begriffe Gleichungen, in denen die Unbekannte in der zweiten Potenz vorkommt, heissen quadratische Gleichungen oder Gleichungen zweiten Grades. Beispiele: 4, t 3t, y y y 4, 5z 3z

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Lagebeziehung von Ebenen

Lagebeziehung von Ebenen M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig

7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig 7.6 Brechung Phasengeschwindigkeit ist von Wassertiefe abhängig Dreieckige Barriere lenkt ebene Welle ab Dispersion Brechung von Licht 7.7 Zusammenfassung Schwingungen und Wellen 7.1 Harmonische Schwingungen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt Algebra, Analytische Geometrie. 1. Sei 1, 0, 9 A := 1, 2, 3,. 2, 2, 2, Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Unregelmäßig geformte Scheibe Best.- Nr. MD02256

Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Momentenlehre Ziel Die unregelmäßig geformte Scheibe wurde gewählt, um den Statik-Kurs zu vervollständigen und um einige praktische Versuche durchzuführen.

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

2 Wirkung der Kräfte. 2.1 Zusammensetzen von Kräften Kräfte mit gemeinsamer Wirkungslinie

2 Wirkung der Kräfte. 2.1 Zusammensetzen von Kräften Kräfte mit gemeinsamer Wirkungslinie 2 Wirkung der Kräfte Kräfte, die auf einen Körper wirken, werden diesen verschieben, wenn kein gleichgroßer Widerstand dagegen wirkt. Dabei wird angenommen, dass die Wirkungslinie der Kraft durch den Schwerpunkt

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

Lineare Algebra - Übungen 1 WS 2017/18

Lineare Algebra - Übungen 1 WS 2017/18 Prof. Dr. A. Maas Institut für Physik N A W I G R A Z Lineare Algebra - Übungen 1 WS 017/18 Aufgabe P1: Vektoren Präsenzaufgaben 19. Oktober 017 a) Zeichnen Sie die folgenden Vektoren: (0,0) T, (1,0) T,

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1

Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1 Anwendung von N3 Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Die Beschleunigung a des Zuges Massen zusammen. Die Antwort Fig. 1 sei konstant, die Frage ist, wie

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 4.Übung Mechanik II 2008 9.05.2008. Aufgabe Ein rechteckiges Blech wird spiel- und spannungsfrei in eine undehnbare Führung eingepaßt. Dann wird die Temperatur des Blechs um

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Die harmonische Schwingung

Die harmonische Schwingung Joachim Stiller Die harmonische Schwingung Alle Rechte vorbehalten Die harmonische Schwingung Beschreibung von Schwingungen 1. Das Federpendel zeigt, worauf es ankommt Eine Kugel hängt an einer Schraubenfeder

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

11.3. Variablentrennung, Ähnlichkeit und Trajektorien

11.3. Variablentrennung, Ähnlichkeit und Trajektorien 3 Variablentrennung, Ähnlichkeit und Trajektorien Trennung der Veränderlichen (TdV) Es seien zwei stetige Funktionen a (der Variablen ) und b (der Variablen ) gegeben Die Dgl a( ) b( ) b( ) d d läßt sich

Mehr

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8.

Technische Mechanik. Technische Mechanik. Statik Kinematik Kinetik Schwingungen Festigkeitslehre. Martin Mayr. Martin Mayr. 8. 44570_Mayr_205x227_44570_Mayr_RZ 03.07.5 3:39 Seite Martin Mayr Das erfolgreiche Lehrbuch ermöglicht Studenten des Maschinenbaus, der Elektrotechnik und der Mechatronik einen leichten Einstieg in die Technische

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Zusammenfassung. Reale feste und flüssigekörper

Zusammenfassung. Reale feste und flüssigekörper Zusammenfassung Kapitel l6 Reale feste und flüssigekörper 1 Reale Körper Materie ist aufgebaut aus Atomkern und Elektronen-Hülle Verlauf von potentieller Energie E p (r) p und Kraft F(r) zwischen zwei

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Priv.-Doz. Dr. P. C. Kunstmann Dipl.-Math. Sebastian Schwarz SS 6.4.6 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Einführung in die Modellierung: Statische und dynamische Bilanzgleichungen

Einführung in die Modellierung: Statische und dynamische Bilanzgleichungen Einführung in die Modellierung: Statische und dynamische Bilanzgleichungen Mengenbilanzen: Beispiel 1: Kessel Wirkungsgraph Flussdiagramm Modellgleichungen Statische Mengenbilanz Deispiel 2: Chemische

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Algebra II SS 26 Blatt 7 3.5.26 Aufgabe 33: Die Funktion f : R R sei stetig. Betrachten Sie die durch x(t) : 1 k f(u) sin (k(t u)) du definierte Funktion.

Mehr

Kapitel 5 Weitere Anwendungen der Newton schen Axiome

Kapitel 5 Weitere Anwendungen der Newton schen Axiome Kapitel 5 Weitere Anwendungen der Newton schen Axiome 5.1 Reibung 5.2 Widerstandskräfte 5.3 Krummlinige Bewegung 5.4 Numerische Integration: Das Euler-Verfahren 5.5 Trägheits- oder Scheinkräfte 5.6 Der

Mehr