Warum Bäume? Teil 1: Suchen. Bäume: Begriffe und Eigenschaften (2) Bäume: Begriffe und Eigenschaften (1)

Größe: px
Ab Seite anzeigen:

Download "Warum Bäume? Teil 1: Suchen. Bäume: Begriffe und Eigenschaften (2) Bäume: Begriffe und Eigenschaften (1)"

Transkript

1 Wrum Bäume? Teil : Suhen Prolemstellung Elementre Suhverfhren Hshverfhren Binäre Suhäume (Wiederholung us Prog ) Bäume: Begriffe, Eigenshften und Trversierung Binäre Suhäume Gefädelte Suhäume Ausgeglihene Bäume B-Bäume Digitle Suhäume M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Hshverfhren erluen Suhe, Einfügen und Löshen in konstnter Zeit, er: Opertionen, für die die Reihenfolge der Dten wihtig ist, werden niht unterstützt. e: finde Minimum, Mximum Anlyse/Ausge der Dten in der korrekten Reihenfolge Binäre Suhäume erluen sortierte Bereitung in O(n log n), Suhe, Einfügen, Finden von Mxim und Minim und Löshen immerhin in durhshnittlih O(log n). M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Bäume: Begriffe und Eigenshften () Wurzel Elternknoten zu s und t Bäume: Begriffe und Eigenshften () Höhe eines Bums Mximle Anzhl von Knten von seiner Wurzel zu einem Bltt. Linkes Kind von k; Wurzel des linken Teilums Knte s k t Rehtes Kind von k; Wurzel des rehten Teilums 0 Höhe für jeden Teilum Linker Teilum von k Rehter Teilum von k 0 Binärum: Bum: Bltt Knoten Jeder Knoten ht Kinder (linkes und rehtes Kind), oder Kind (linkes oder rehtes Kind) oder keine Kinder. Jeder Knoten knn elieig viele Kinder hen Behte Ein Bum, der nur us einem Knoten esteht, esitzt die Höhe 0. Aus tehnishen Gründen wird die Höhe eines leeren Bums (d.h. Anzhl Knoten = 0) ls - definiert. M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume -

2 Bäume: Begriffe und Eigenshften () Vollständiger Binärum Ein vollständiger Binärum ist ein Binärum, ei der jeder Eene (is uf die letzte) vollständig gefüllt und die letzte Eene von links nh rehts gefüllt ist. e Bäume: Begriffe und Eigenshften () Implementierung von Binäräumen mit verketteten Knoten Jeder Knoten ht jeweils einen Zeiger für ds linke zw. rehte Kind. 0 root 0 Eigenshften: Ein vollständiger Binärum mit n Knoten ht die Höhe h = log n. Vollständige Binäräume sind (ei einer gegeenen Knotenzhl) Binäräume mit einer minimlen Höhe. strut Node int dt; Node* left; // linkes Kind Node* right; // rehtes Kind ; M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Trversierung von Bäumen () Trversierung von Bäumen () Ziel Ds Besuhen ller Knoten in einer estimmten Reihenfolge ist eine oft enötigte Opertion. Durhlufreihenfolgen PreOrder: esuhe Wurzel, esuhe linken Teilum; esuhe rehten Teilum; PostOrder: esuhe linken Teilum; esuhe rehten Teilum; esuhe Wurzel; InOrder: esuhe linken Teilum; esuhe Wurzel; esuhe rehten Teilum; LevelOrder: esuhe Knoten eenenweise PreOrder-Trversierung void preorder(node* p) if (p!= 0) ereite(p->dt); preorder(p->left); preorder(p->right); // Definition eines Bums: strut Node int dt; Node* left; // linkes Kind Node* right; // rehtes Kind ; Node* root; Bemerkungen Die Präfixe Pre, Post zw. In edeuten vorher, nhher und dzwishen. Gemeint ist dmit der Zeitpunkt, zu dem die Wurzel esuht wird. InOrder-Durhluf ist nur für Binäräume sinnvoll. // Aufruf von preorder preorder(root); Bereitungsreihenfolge: * - M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume -

3 Diretory-Liste durh Preorder-Trversierung Trversierung von Bäumen () PostOrder-Trversierung void postorder(node* p) if (p!= 0) postorder(p->left); postorder(p->right); ereite(p->dt); Bereitungsreihenfolge: (Weiss, ) * (Entspriht der sog. Postfix-Nottion für rithmetishe Ausdrüke) M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume -0 Size(diretory) durh Postorder-Trversierung Trversierung von Bäumen () InOrder-Trversierung void inorder(node* p) if (p!= 0) inorder(p->left); ereite(p->dt); inorder(p->right); Durhlufreihenfolge: (Weiss, ) * (ls mthemtisher Ausdruk interpretiert, erhält mn ( - ) * ) M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume -

4 Trversierung von Bäumen () Level-Order-Trversierung Die Knoten werden eenenweise in einer Shlnge (Queue) gespeihert und in einer while-shleife gereitet. void levelorder(node* p) Queue<Node*> queue; queue.push(p); // Eene 0 while (!queue.empty() ) Node* q; // Shreie vorderstes Element us Shlnge // nh q und löshe Element us Shlnge: queue.front(q); queue.remove(); if (q!= 0) ereite(q->dt); queue.insert(q->left); queue.insert(q->right); M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Durhlufreihenfolge: * Definition von inären Suhäumen Vorussetzung Alle Knoten in einem Bum enthlten einen Shlüssel (Key) und Nutzdten (vlue). Definition Ein inärer Suhum ist ein Binärum, ei dem für lle Knoten k folgende Eigenshften gelten: () Alle Shlüssel im linken Teilum sind kleiner ls der Shlüssel im Knoten k () Alle Shlüssel im rehten Teilum sind größer ls der Shlüssel im Knoten k e strut Node KeyType key; VlueType vlue; Node* left; // linkes Kind Node* right; // rehtes Kind ; In den Bäumen sind nur die Shlüssel drgestellt. M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Degenerierter Suhum Suhen in inären Suhäumen Opertion serhr ool serhr(keytype k, VlueType& v, onst Node* p); Suhe nh einem Knoten mit Shlüssel k im Teilum p. Flls gefunden, wird der im Knoten speiherte Dtenwert v und der Rükgewert true zurükgeliefert. Flls niht gefunden, wird der Rükgewert flse zurükgeliefert. Algorithmus ool serhr(keytype k, VlueType& v, onst Node* p) R steht für rekursiv if (p == 0) return flse; else if (k < p->key) return serhr(k, v, p->left); else if (k > p->key) return serhr(k, v, p->right); else // k gefunden v = p->vlue; return true; serhr(,v,p) M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - p Einfügen in inären Suhäumen () Idee Um einen Shlüssel k einzufügen, wird zunähst nh dem Shlüssel k gesuht. Flls der einzufügende Shlüssel k niht ereits im Bum vorkommt, endet die Suhe erfolglos ei einem 0-Zeiger. An dieser Stelle wird dnn ein neuen Knoten mit Shlüssel k eingefügt. : füge ein Suhe von endet ei 0-Zeiger Ersetzte 0-Zeiger durh Zeiger uf Knoten : füge ein M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Suhe von endet ei 0-Zeiger Ersetzte 0-Zeiger durh Zeiger uf Knoten

5 Einfügen in inären Suhäumen () Opertion insertr ool insertr(keytype k, VlueType v, Node*& p); Fügt im Teilum p neuen Knoten mit Shlüssel k und Dtenwert v ein. Flls Shlüssel shon vorhnden, wird kein neuer Knoten eingefügt. Behte: Der Prmeter p ist ein Ein/Ausgeprmeter und dher ls Referenzprmeter relisiert. Der Teilum wird gelesen und geändert. Algorithmus ool insertr(keytype k, VlueType v, Node*& p) if (p == 0) p = new Node; p->key = k; p->vlue = v; return true; else if (k < p->key) return insertr(k,v,p->left); else if (k > p->key) return insertr(k,v,p->right); else // k ereits vorhnden return flse; M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - p p insert(, v, p) Idee Löshen in inären Suhäumen () Um einen Shlüssel k zu löshen wird zunähst nh dem Shlüssel k gesuht. Es sind dnn Fälle zu untersheiden: Fll Niht vorhnden : Shlüssel k kommt niht vor: dnn ist nihts zu tun. Fll Keine Kinder : Der Shlüssel kommt in einem Bltt vor (keine Kinder): dnn knn der Knoten einfh entfernt werden. Fll Ein Kind : Der Knoten mit dem gefundenen Shlüssel ht genu ein Kind: s. nähste Folie Fll Zwei Kinder : Der Knoten mit dem gefunden Shlüssel ht zwei Kinder s. üernähste Folie M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Löshen in inären Suhäumen () Fll Ein Kind Der zu löshende Knoten k ht genu ein Kind. Üerrüke den Knoten k, indem der Elternknoten von k uf Kind von k verzeigert wird (Bypss) und löshe k. : löshe Knoten mit Shlüssel Löshen in inären Suhäumen () Fll Zwei Kinder : Der zu löshende Knoten k ht zwei Kinder.. Ersetze den Knoten k durh den kleinsten Knoten k min im rehten Teilum von k.. Löshe dnn k min. D der kleinste Knoten k min im linken Teilum kein linkes Kind ht, knn ds Löshen von k min wie im Fll Ein Kind zw. Keine Kinder ehndelt werden. : löshe Knoten mit Shlüssel Suhe Knoten wird üerrükt und gelösht M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Knoten wurde gelösht Suhe Suhe kleinsten Knoten in rehten Teilum von M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume -0 Knoten wurde durh kleinsten Knoten ersetzt kleinster Knoten wurde gelösht

6 Löshen in inären Suhäumen () ool remover(keytype k, Node*& p) if (p == 0) // k niht vorhnden return flse; else if (k < p->key) return remover(k,p->left); else if (k > p->key) return remover(k,p->right); else if (p->left == 0 p->right == 0) Node* temp = p; if (p->left!= 0) p = p->left; else p = p->right; delete temp; return true; // Bypss zu linkes Kind // Bypss zu rehtes Kind else // Min. im rehten Teilum suhen: Node* min = serhminr (p->right); // Zu löshender Knoten durh Min. ersetzen p->dt = min->dt; p->key = min->key; // Min. in rehtem Teilum löshen: return remover (min->key, p->right); Opertion remover Lösht im Teilum p Knoten mit Shlüssel k. Der Prmeter p ist ein Ein/Ausgeprmeter und dher ein Referenzprmeter. Knoten ht ein Kind oder kein Kind Knoten ht zwei Kinder M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Löshen in inären Suhäumen () Opertion serhminr Suht im Teilum p nh dem kleinsten Knoten und liefert Zeiger uf Minimum zurük. Node* serhminr(keytype k, onst Node* p) if (p == 0) // k niht vorhnden return 0; else if (p->left == 0) // Minimum gefunden return p; else return serhminr (k, p->left); Bemerkung Behten Sie, dss in der Opertion remover im Fll Knoten ht zwei Kinder der Aufruf von serhminr und der rekursive Aufruf von remover edeuten, dss zweiml vom rehten Kind p->right zum kleinsten Knoten gelufen wird. Diese Ineffizienz lässt sih jedoh eheen, indem serhminr noh zusätzlih ds Löshen des kleinsten Elements üernimmt. Der rekursive Aufruf von remover ist dnn üerflüssig. Diese Vrinte findet sih in der Quell-Code-Smmlung zur Vorlesung. M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Gefädelte Suhäume () Prolem In inären Suhäumen git es für einen Knoten im llgemeinen keinen effizienten Zugriff uf seinen InOrder-Vorgänger zw. -Nhfolger. Sollen Suhäume eispielsweise für ssozitive STL-Continer eingesetzt werden, ist jedoh eine effiziente Vorwärts- und Rükwärtstrversierung mit Itertoren notwendig. Lösung Ersetze in jedem Knoten den Links- zw. Rehts-Zeiger mit dem Wert 0 durh einen Zeiger uf seinen InOrder-Vorgänger zw. Nhfolger (Fädelung). O ein Zeiger uf ein Kind oder ein Vor- zw. Nhfolger zeigt, knn durh zusätzlihe oolshe Vrile vermerkt werden (siehe nähste Aufge). 0 Gefädelte Suhäume () Aufge. Ein gefädelter Suhum lässt sih eispielsweise durh folgenden Strukturdtentyp relisieren. strut Node int dt; Node* left; // linkes Kind zw. Vorgänger Node* right; // rehtes Kind zw. Nhfolger ool leftthred; // true, flls left uf InOrder-Vorgänger zeigt ool rightthred; // nlog. ; Shreien Sie für gefädelte Suhäume niht-rekursive C++-Funktionen für folgende Aufgen: ) Bestimme den In-Order-Nhfolger zu einem Knoten. ) Bestimme den In-Order-Vorgänger zu einem Knoten ) Ausge ller Knoten in In-Order-Reihenfolge. M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume -

7 Anlyse von inären Suhäumen Worst-Cse D im shlehtesten Fll ein inärer Suhum mit n Knoten zu einem Bum der Höhe n- entrten knn (Bsp?), hen die Opertionen zum Suhen, Einfügen und Löshen eine mximle Suhlänge von n. Dmit: T mx (n) = O(n) Averge-Cse In [Ottmnn und Widmyer 00] wird gezeigt, dss die durhshnittlihe Lufzeit um eine Größenordnung esser ist. Es werden zwei Ergenisse hergeleitet, die sih drin untersheiden, welhe Verteilung der Bäume ngenommen wird: Bäume mit n Knoten entstehen durh eine Folge von Einfüge-Opertionen von n untershiedlihen Elementen. Es wird ngenommen, dss jede der n! möglihen Anordnungen der Elemente gleihwhrsheinlih ist. Gemittelt wird dnn üer die n! viele uf diese Weise erzeugten Bäume. Mn erhält dnn für die Suh-Opertion eine mittlere Suhlänge von ungefähr. log n. Dmit: T mit (n) = O(log n) Es wird ngenommen, dss lle strukturell vershiedenen inären Suhäume mit n Knoten gleihwhrsheinlih sind. Mn erhält dnn für die Suh-Opertion eine mittlere Suhlänge von ungefähr *n Dmit: T mit (n) = O( n) M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Zufällig erzeugter Bum 00 Zufllszhlen in inären Suhum eingefügt => Tiefe ist ttsählih nhe n log n (us Weiss, ) M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume - Proleme ei inären Suhäumen Die Annhme von zufällig verteilten Shlüsseln zw. gleihwhrsheinlihen Bumstrukturen ist niht immer erfüllt: oft werden Dten unsihtlih in geordeneter Form eingegeen delete fvorisiert Bäume mit tieferen linken Unteräumen, d ein gelöshter Knoten immer durh den minimlen Knoten des rehten Unterums ersetzt wird. Binärer Suhum nh N Pren von insert und remove (us Weiss, ) M.O.Frnz, Oktoer 00 Algorithmen und Dtenstrukturen - Binäräume -

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1 Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene

Mehr

Suche in Texten: Suffix-Bäume

Suche in Texten: Suffix-Bäume Suhe in Texten: Suffix-Bäume Prof. Dr. S. Alers Prof. Dr. Th. Ottmnn 1 Suhe in Texten Vershiedene Szenrios: Dynmishe Texte Texteditoren Symolmnipultoren Sttishe Texte Literturdtennken Biliothekssysteme

Mehr

Algorithmentheorie. 15 Suchen in Texten (1)

Algorithmentheorie. 15 Suchen in Texten (1) Algorithmentheorie 15 Suhen in Texten (1) Prof. Dr. S. Alers Suhe in Texten Vershiedene Szenrien: Sttishe Texte Literturdtennken Biliothekssysteme Gen-Dtennken WWW-Verzeihnisse Dynmishe Texte Texteditoren

Mehr

Algorithmen auf Sequenzen Volltext-Indexdatenstrukturen: Suffixbäume

Algorithmen auf Sequenzen Volltext-Indexdatenstrukturen: Suffixbäume Algorithmen uf Sequenzen Volltext-Indexdtenstrukturen: Suffixäume Sven Rhmnn Genominformtik Universitätsklinikum Essen Universität Duisurg-Essen Universitätsllinz Ruhr Motivtion Bei wiederholten Suhen

Mehr

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1 Aufge 1 () Anmerkung: Der Punkt in den Bäumen t keinerlei Bedeutung und ist nur d, um drstellen zu können, ws linkes und retes Kind eines Elternteils sein soll Einfügen von,,,,,,, 0, 17 : : : Rottion :

Mehr

Wurzelbäume. Definition 1

Wurzelbäume. Definition 1 Wurzeläume Definition 1 Ein Wurzelum (oer uh gerihteter Bum) ist ein gerihteter zyklisher Grph, in em genu ein Knoten w Eingngsgr 0 esitzt un lle neren Knoten Eingngsgr 1 esitzen. Knoten w heißt ie Wurzel

Mehr

Graphen vielseitig verwendbar zur Repräsentation von Zusammenhängen, etwa:

Graphen vielseitig verwendbar zur Repräsentation von Zusammenhängen, etwa: 7. Grphentheorie Grphen vielseitig verwenr zur Repräsenttion von Zusmmenhängen, etw: Stäte Personen Aktionen... Verinungswege Reltionen zwishen ihnen zeitlihe Ahängigkeiten Def. 7.1: Ein gerihteter Grph

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

Suche in Texten. Naiver Algorithmus. Knuth-Morris-Pratt-Algorithmus. Karp-Rabin-Algorithmus

Suche in Texten. Naiver Algorithmus. Knuth-Morris-Pratt-Algorithmus. Karp-Rabin-Algorithmus Suhe in Texten Niver Algorithmus Knuth-Morris-Prtt-Algorithmus Krp-Rin-Algorithmus M.O.Frnz; Jnur 2008 Algorithmen und Dtenstrukturen - Textsuhe 2-1 Suhe in Texten Niver Algorithmus Knuth-Morris-Prtt-Algorithmus

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung m 29.11.2012 Algorithmishe Geometrie: Shnitte von Streken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Lndes Bden-Württemberg und

Mehr

Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel

Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel Algorithmen und Datenstrukturen Bäume M. Herpers, Y. Jung, P. Klingebiel 1 Lernziele Baumstrukturen und Ihre Verwendung kennen Grundbegriffe zu Bäumen anwenden können Baumstruktur in C anlegen können Suchbäume

Mehr

Motivation Binäre Suchbäume

Motivation Binäre Suchbäume Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in

Mehr

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen Algorithmus von Dijkstr: 1. Es sei S ie Menge er enteckten Knoten. Invrinte: Merke optimle Lösung für S: Für lle v S sei [v] = δ(s,v) ie Länge es kürzesten Weges von s nch v 3. Zu Beginn: S={s} un [s]=

Mehr

Polynominterpolation (Varianten)

Polynominterpolation (Varianten) HTL Slfelden Polynominterpoltion Seite von Wilfried Rohm Polynominterpoltion (Vrinten) Mthemtishe / Fhlihe Inhlte in Stihworten: Lösen von Gleihungssysteme, Mtrizenrehnung, Mthd-Progrmm Kurzzusmmenfssung

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtishes Institut Prof. Dr. F. Vllentin ufge ( + 7 = 0 Punkte) Einführung in die Mthemtik des Opertions Reserh Sommersemester 0 en zur Klusur (7. Juli 0). Es seien M = {,..., n },

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

18. Natürliche Suchbäume

18. Natürliche Suchbäume Wörterbuchimplementationen 1. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Hashing: Implementierung von Wörterbüchern mit erwartet sehr schnellen Zugriffszeiten. Nachteile

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Editierdistanz Autor: Sven Schuierer

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Editierdistanz Autor: Sven Schuierer Algorithmen und Dtenstrukturen (Th. Ottmnn und P. Widmyer) Folien: Editierdistnz Autor: Sven Schuierer Institut für Informtik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg 1 Editier-Distnz Gegeben:

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Verfhren Mthemtik für Studierende der Biologie und des Lehrmtes Chemie Dominik Shillo Universität des Srlndes 6. Vorlesung, 4..7 (Stnd: 4..7, 4:5 Uhr) Shreibe,,n.......... n, n,n Führe den Guÿlgorithmus

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44 Technische Universität München Winter 08/9 Prof. J. Esprz / Dr. M. Luttenerger, C. Welzel 08//0 HA- TA- Diskrete Strukturen Tutorufgenltt Besprechung in KW Bechten Sie: Soweit nicht explizit ngegeen, sind

Mehr

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht.

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht. /0 Areitsltt Wurzel edeutet: Suhe die Zhl, die mit sih selst multipliziert gerde die Zhl ergit, die unter der Wurzel steht. Also: - suhe eine Zhl, die mit sih selst multipliziert, genu ergit. Die Lösung

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

9. Natürliche Suchbäume

9. Natürliche Suchbäume Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Übung 5 Algorithmen II

Übung 5 Algorithmen II Yroslv Akhremtsev, Demin Hespe yroslv.khremtsev@kit.edu, hespe@kit.edu Mit Folien von Michel Axtmnn (teilweise) http://lgo2.iti.kit.edu/algorithmenii_ws17.php Institut für Theoretische Informtik - 0 Akhremtsev,

Mehr

Anwendungsbeispiel MinHeap

Anwendungsbeispiel MinHeap Anwendungsbeispiel MinHeap Uns seien n ganze Zahlen gegeben und wir möchten darin die k größten Zahlen bestimmen; zudem gelten, dass n deutlich größer als k ist Wir können das Problem mit Laufzeit in O(n

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit.

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. Gruppe A Bitte trgen Sie SOFORT und LESERLICH Nmen und Mtrikelnr. ein, und legen Sie Ihren Studentenusweis ereit. 1. Leistungsüerprüfung AUS DATENMODELLIERUNG (184.685) GRUE A 16.04.2013 Mtrikelnr. Fmiliennme

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden.

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden. Termnlyse Mthemtik. Klsse Ivo Blöhliger Terme Ein wihtiger Teil es mthemtishen Hnwerks esteht rin, Terme umzuformen. Dzu müssen einerseits ie Rehengesetze er reellen Zhlen verinnerliht sein, un nererseits

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

5.2 Quadratische Gleichungen

5.2 Quadratische Gleichungen Mthemtik mit Mthd MK..0 0_0_Qud_Gleih.xmd Einfhe qudrtishe Gleihungen. Qudrtishe Gleihungen ef.: Eine Gleihung, in der x höhstens qudrtish (in der zweiten Potenz) vorkommt, heißt qudrtishe Gleihung. Gewöhnlihe

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

15. Kürzeste Wege. SS 2017 DuA - Kapitel 15 1

15. Kürzeste Wege. SS 2017 DuA - Kapitel 15 1 5. Kürzeste Wege t s SS DuA - Kpitel 5 Gewichtete Grphen Ein gewichteter Grph G ist ein Pr (V,E) zusmmen mit einer Gewichtsfunktion w, woei E V V un w: E IR. Für e E heißt w(e) s Gewicht von e. Für einen

Mehr

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16 Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 12 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 29 Ferur 2012

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 5 Prof. J. Esprz Tehnishe Universität Münhen S. Sikert, J. Krämer KEINE ABGABE Einführung in die theoretishe Informtik Sommersemester 07 Üungsltt 5 Üungsltt Wir untersheiden zwishen Üungs- und Agelättern.

Mehr

SS 2018 Torsten Schreiber

SS 2018 Torsten Schreiber SS 08 orsten Shreier 8 Beim inneren Produkt ) wird komponentenweise multipliziert und die entstehenden Produkte nshließend. Somit hndelt es sih um keine d nur eine Zhl Sklr) ls Lösung heruskommt. Ds Sklrprodukt

Mehr

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch.

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. Einführung in die Theoretishe Informtik I/ Grundlgen der Theoretishen Informtik SS 2007 Jun.-Prof. Dr. Bernhrd Bekert Ulrih Koh Nhklusur 25. 09. 2007 Persönlihe Dten itte gut leserlih usfüllen! Vornme:...

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Kapitel 11: Bäume. Beispiele Definition und Eigenschaften Implementierungen Durchlaufen von Bäumen Binäre Suchbäume

Kapitel 11: Bäume. Beispiele Definition und Eigenschaften Implementierungen Durchlaufen von Bäumen Binäre Suchbäume Kapitel 11: Bäume Beispiele Definition und Eigenschaften Implementierungen Durchlaufen von Bäumen Binäre Suchbäume Prof. Dr. O. Bittel, HTWG Konstanz Programmiertechnik II Bäume WS 17/18 11-1 Beispiele

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Lösungshinweise/-vorschläge zum Übungsblatt 2: Software-Entwicklung 1 (WS 2015/16)

Lösungshinweise/-vorschläge zum Übungsblatt 2: Software-Entwicklung 1 (WS 2015/16) Dr. Annette Bienius Mthis Weer, M.. Peter Zeller, M.. T Kiserslutern Fhereih Informtik AG oftwretehnik Lösungshinweise/-vorshläge zum Üungsltt 2: oftwre-entwiklung 1 (W 2015/16) Die Hinweise und orshläge

Mehr

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt:

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 2.2 Rot-Schwarz-Bäume Definition 15 Rot-Schwarz-Bäume sind externe Binäräume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 1 alle Blätter hängen an schwarzen Kanten (durchgezogene

Mehr

Trees. November 14, Algorithms & Datastructures 2 Exercises WT 2017

Trees. November 14, Algorithms & Datastructures 2 Exercises WT 2017 Trees November 14, 2017 Algorithms & Datastructures 2 Exercises WT 2017 Dipl.-Ing. University Linz, Institute for Pervasive Computing Altenberger Straße 69, A-4040 Linz anzengruber@pervasive.jku.at Binärbaum

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Trees. November 13, Algorithms & Datastructures 2 Exercises WT 2017

Trees. November 13, Algorithms & Datastructures 2 Exercises WT 2017 Trees November 13, 2018 Algorithms & Datastructures 2 Exercises WT 2017 Dipl.-Ing. University Linz, Institute for Pervasive Computing Altenberger Straße 69, A-4040 Linz anzengruber@pervasive.jku.at Binärbaum

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

Programmieren in C/C++ und MATLAB. Programmieren in C/C++ und MATLAB. Sebastian Bauer Sven Willert Sabine Schmidt

Programmieren in C/C++ und MATLAB. Programmieren in C/C++ und MATLAB. Sebastian Bauer Sven Willert Sabine Schmidt Progrmmieren in C/C und MATLAB Sestin Buer Sven Willert Sine Schmidt Institut für Geowissenschften Christin-Alrechts-Universität zu Kiel Sestin Buer Institut für Geowissenschften Progrmmieren in C/C und

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederun 1. Motivtion / Grundlen 2. Sortierverfhren 3. Elementre Dtenstrukturen / Anwendunen 4. Bäume / Grphen 5. Hshin 6. Alorithmische Geometrie 3/1, Folie 1 2010 Prof. Steffen Lne - HD/FbI - Dtenstrukturen

Mehr

Relationen: Verkettungen, Wege, Hüllen

Relationen: Verkettungen, Wege, Hüllen FH Gießen-Frieerg, Sommersemester 00 Lösungen zu Üungsltt 9 Diskrete Mthemtik (Informtik) 9./. Juni 00 Prof. Dr. Hns-Ruolf Metz Reltionen: Verkettungen, Wege, Hüllen Aufge. Es ezeihne R ie Reltion {(,

Mehr

Diplomarbeit. Experimentelle Untersuchung von String B-Trees bezüglich ihrer Anwendbarkeit in Genom-Datenbanken und im Information Retrieval

Diplomarbeit. Experimentelle Untersuchung von String B-Trees bezüglich ihrer Anwendbarkeit in Genom-Datenbanken und im Information Retrieval Diplomreit Experimentelle Untersuhung von String B-Trees ezüglih ihrer Anwendrkeit in Genom-Dtennken und im Informtion Retrievl Mnuel Sholz Betreuer: Prof. Dr. H. Shweppe, Prof. Dr. J. Stoye, Z. Knev Institut

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 10 (28.5.2018) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Auswertung von Operatorbäumen Huffman-Code

Auswertung von Operatorbäumen Huffman-Code Datenstrukturen: Bäume 4 Bäume 4. Terminologie und Grundlagen: Modelle für Graphen und Bäume 4.. Spezifikation und einfahe Algorithmen 4. Anwendungen - 4.. Auswertung von Operatoräumen - 4.. Huffman-Code

Mehr

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung Anleitung Online Fhrzeug-Registrierung 1. Vorussetzung Ihr Unternehmen muss ereits ei Toll Collet ls Kunde registriert sein. Den Antrg finden Sie unter www.toll-ollet.de/registrierung 2. Erstmlig nmelden

Mehr

Binäre Suchbäume. Organisatorisches. VL-10: Binäre Suchbäume. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger.

Binäre Suchbäume. Organisatorisches. VL-10: Binäre Suchbäume. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Organisatorisches VL-10: inäre Suchbäume (Datenstrukturen und lgorithmen, SS 17) Gerhard Woeginger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11: 12:00 Übungen: Tim Hartmann,

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung ehnishe niversität Münhen ommer 2016 Prof. J. Esprz / Dr. M. Luttenerger,. ikert 18. Juni 2016 HA-Lösung A-Lösung Einführung in die theoretishe Informtik Aufgenltt 8 Behten ie: oweit niht explizit ngegeen,

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen...

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen... Bäume und Graphen In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. Inhalt 1. Bäume... 1.1. Grundlagen... 1.. Repräsentation von Binärbäumen... 9 1..1.

Mehr

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. )

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. ) Shritte 1/2 interntionl Hinweise für die Kursleiter Film 3:»Die Josuhe«Mteril zu Film 3 Die Josuhe : Film 3,. 05:00 Min. Zustzmteril: Mein Beruf,. 01:30 Min., 5 kurze Sttements zum Them 5 Areitslätter

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017 Prof. Dr. Jvier Esprz Grching. München, den 10.08.17 Klusur Einführung in die theoretische Informtik Sommer-Semester 2017 Bechten Sie: Soweit nicht nders ngegeen, ist stets eine Begründung zw. der Rechenweg

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V.

Lineare Algebra. Übungsblatt November Aufgabe 1. (4=2+2 Punkte) Sei V ein K-Vektorraum und seien v 1,..., v n V. Goethe-Univesität Fnkfut Institut fü Mthemtik Linee Alge Wintesemeste 28/9 Pof. D. Jko Sti Mtin Lütke Üungsltt 5 3. Noveme 28 Aufge. (42+2 Punkte) Sei V ein K-Vektoum un seien v... v n V. () Sei K α n

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer)

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchbäume Autor: Stefan Edelkam Institut für Informatik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg 1 Bäume Idee: Bäume

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

18. Natürliche Suchbäume

18. Natürliche Suchbäume Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten

Mehr

Einfache binäre Suchbäume können entarten, so dass sich die Tiefen ihrer Blattknoten stark unterscheiden

Einfache binäre Suchbäume können entarten, so dass sich die Tiefen ihrer Blattknoten stark unterscheiden 5.6.2 AVL-Bäume Einfache binäre Suchbäume können entarten, so dass sich die Tiefen ihrer Blattknoten stark unterscheiden AVL-Bäume, benannt nach ihren Erfindern G. M. Adelson- Velskii und E. M. Landis,

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automten un formle Sprhen Notizen zu en Folien 1 Grunlgen un formle Beweise Venn-Digrmme (Folie 6) Im oeren Digrmm er Folie 6 sin zwei Mengen ngegeen: A un B. Es ist explizit ein Element von A ngegeen,

Mehr

Theoretische Informatik ITI

Theoretische Informatik ITI Institut für Theoretishe Informtik ITI Dr. Jürgen Koslowski Theoretishe Informtik 2 Aufgenltt 6, 2015-06-11 Üungsufge 1 Weisen Sie die N P -Vollständigkeit des E-Prolem Clique nh (vergl. Bltt 5, Aufge

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Elementare Datenstrukturen Array Linked List Stack Queue Tree (Feld) (Verkettete Liste) (Stapel) (Warteschlange) (Baum) Einschub:

Mehr