13 Rekonfigurierende binäre Suchbäume

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "13 Rekonfigurierende binäre Suchbäume"

Transkript

1 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf. Dmit knn mn sich zufrieden geen. Muß mn jedoch mit der Möglichkeit rechnen, dß der um in nicht zufälliger, sondern z.. in sortierter Reihenfolge gefüllt wird, so droht eine Degenertion zur Liste und dmit zu linerer Komplexität für die Huptopertionen. Mn knn Degenertion vermeiden, wenn mn die Degenertion durch explizite Umordnungen im um verhindert, d.h. die Teiläume möglichst usgewogen hält (Lstusgleich) Diese Umordnungen sollen effizient sein, d.h. mn möchte mit sowenig Opertionen wie nötig soviel usgleich wie möglich erzielen. Für diese Rekonfigurtion von inäräumen sind die sogennnten Rottionen ls Elementropertionen vorgesehen 13-1

2 13.1 Rottionen U.-P. Schroeder, Uni Pderorn Rottionen können n elieigen Knoten eines inären Suchumes stttfinden, sofern die etroffenen Teiläume existieren Einfchrottion linksherum () und rechtsherum (): { { { Eine Linksrottion m Knoten (ezugsknoten) erfordert die Existenz eines rechten Nchfolgers () Eine Rechtsrottion m Knoten (ezugsknoten) erfordert die Existenz eines linken Nchfolgers () 13-2

3 U.-P. Schroeder, Uni Pderorn Relisierung einer einfchen Linksrottion durch Änderung der Verzeigerung void s_rotte_left(element* &) { // performs single left rottion with regrd to node element * = ->right; ->right = ->left; ->left = ; = ; void s_rotte_right(element* &) { // performs single right rottion with regrd to node element * = ->left; ->left = ->right; ->right = ; = ; 13-3

4 Doppelrottion U.-P. Schroeder, Uni Pderorn Die Doppelrottion esteht us zwei Einfchrottionen: eispiel: Doppelrottion links (im Gegenuhrzeigersinn) ezugsknoten ezugsknoten c c D c D D 1. Schritt 2. Schritt Einfchrottion rechts m rechten Nchfolger Einfchrottion links m ezugsknoten 13-4

5 U.-P. Schroeder, Uni Pderorn Doppelrottion linksherum: { { { c {D ezugsknoten c c D D In ++: void d_rotte_left(element* &) { // performs doule rottion nticlockwise s_rotte_right(->right); s_rotte_left(); 13-5

6 U.-P. Schroeder, Uni Pderorn Doppelrottion rechtsherum { { { c {D c ezugsknoten D c D In ++: void d_rotte_right(element* &) { //performs doule rottion clockwise s_rotte_left(->left); s_rotte_right(); 13-6

7 U.-P. Schroeder, Uni Pderorn Mit diesen vier Spielrten der Rottion lssen sich Unsymmetrien der Lst us der Sicht des ezugsknotens usgleichen. J nch Lge des üerlsteten Teilums knn eine der vier Vrinten eingesetzt werden. ezugsknoten Üerlsteter Teilum Einfche Doppelte Doppelte Einfche Rechtsrottion Linksrottion 13-7

8 U.-P. Schroeder, Uni Pderorn Linksrottion nwendungsfll: Der rechte Teilum ist zu groß. Einfchrottion: Innerhl des rechten Teilums ist der rechte (äußere) Teilum zu groß 13-8

9 U.-P. Schroeder, Uni Pderorn Linksrottion Doppelrottion: Innerhl des rechten Teilums ist der linke (innere) Teilum zu groß ezugsknoten c c D D 13-9

10 U.-P. Schroeder, Uni Pderorn Rechtsrottion nwendungsfll: Der linke Teilum ist zu groß. Einfchrottion: Innerhl des linken Teilums ist der linke (äußere) Teilum zu groß 13-10

11 U.-P. Schroeder, Uni Pderorn Rechtsrottion Doppelrottion: Innerhl des linken Teilums ist der rechte (innere) Teilum zu groß c ezugsknoten D c D 13-11

12 U.-P. Schroeder, Uni Pderorn 13.2 VL-äume Um die logrithmische Komplexität der Opertionen zu erhlten, müssen Gleichgewichtsedingungen nicht nur für den Wurzelknoten, sondern für lle Knoten gelten. Gleichgewicht nur ezüglich der Wurzel: VL-äume sind inäre Suchäume, die eine gewisse Gleichgewichtsedingung zwischen Teiläumen einhlten. Sie sind ennnt nch ihren eiden Erfindern delson-velskii und Lndis (1962) Definition Ein VL-um ist ein inärer Suchum, in dem für jeden Knoten gilt: Die Höhen h des linken und des rechten Teilums unterscheiden sich um höchstens 1. Forml: h 1 mit h:= h L h R 13-12

13 U.-P. Schroeder, Uni Pderorn Minimler VL-um der Höhe

14 U.-P. Schroeder, Uni Pderorn Prinzip des VL-ums Um die Gleichgewichtsedingung einzuhlten und leicht üerprüfen zu können, ist es sinnvoll, in den Knoten zusätzlich die Höhe des jeweiligen Teilums speichern struct element { int height; vlue dt; element *left; element *right; ; //definition of VL node element //height of sutree defined y node //dt vlue //left successor (or child) //right successor (or child) Nch dem Einfügen oder Löschen von Elementen werden die Höhen ktulisiert und lle etroffenen Knoten entlng des Pfdes von der Wurzel is zur Einfüge- oder Löschstelle ezüglich der Gleichgewichtsedingung üerprüft. ei Verletzung der edingung wird durch Rottion ds Gleichgewicht wiederhergestellt

15 U.-P. Schroeder, Uni Pderorn Hilfsfunktionen für VL-um-Implementierung int Mx(int x, int y) { // returns mx of x nd y if (x<y) return y; else return x; int node_ht(element *node) { // returns height of node even if node is NULL if (node == NULL) return -1; else return node->height; void clc_height(element *node) {//updtes height of node ssuming correct height of successors node->height=1+mx(node_ht(node->left),node_ht(node->right)); element* get_min(element * node) { // returns pointer to minimum of sutree while (node->left!= NULL) node=node->left; return node; 13-15

16 U.-P. Schroeder, Uni Pderorn Rottionsfunktionen void s_rotte_right(element* &) { // performs single right rottion nd updtes heights element * = ->left; ->left = ->right; ->right = ; = ; clc_height(->right); clc_height(); void s_rotte_left(element* &) { // performs single left rottion nd updtes heights element * = ->right; ->right = ->left; ->left = ; = ; clc_height(->left); clc_height(); void d_rotte_left(element* &) { s_rotte_right(->right); s_rotte_left(); void d_rotte_right(element* &) { s_rotte_left(->left); s_rotte_right(); 13-16

17 U.-P. Schroeder, Uni Pderorn Einfügen Wir nehmen n, die Gleichgewichtsedingung sei vor dem Einfügen n llen Knoten erfüllt. Ds Einfügen eines Knotens in einem Teilum läßt seine Höhe unverändert oder erhöht sie um +1. h= h=2 h=0 30 h= h=3 h= h=1 h=0 90 h=0 10 h=2 20 h=1 40 h= h=3 h=0 h= h=1 h=2 80 h=0 90 Höhe ändert sich nicht Höhe ändert sich 13-17

18 U.-P. Schroeder, Uni Pderorn Höhenänderung eim Einfügen: Fllunterscheidung Flls eine Höhenänderung eintritt, können entlng des Einfügepfdes m jeweils etrchteten Knoten folgende Fälle unterschieden werden: ) Die Teiläume des Knotens wren gleich hoch Der neue Knoten ändert die Höhe eines der eiden Teiläume um +1. Die Gleichgewichtsedingung wird eingehlten ) Die Teiläume des Knotens wren ungleich hoch Der neue Knoten wird im kleineren Teilum eingefügt und ändert dessen Höhe um +1. Die eiden Teiläume hen jetzt gleiche Höhe. Die Gleichgewichtsedingung wird eingehlten c) Die Teiläume des Knotens wren ungleich hoch Der neue Knoten wird im größeren Teilum eingefügt und ändert dessen Höhe um +1. Die Höhen der eiden Teiläume unterscheiden sich jetzt um 2. Die Gleichgewichtsedingung ist verletzt und muß durch Rottion wiederhergestellt werden 13-18

19 Nur im Fll c) git es lso etws zu tun. etrchten wir lso wieder die möglichen Fälle. (Ds Gnze gilt nlog für die spiegelildliche Sitution) Gegeene Sitution (Gleichgewichtsverletzung in, rechter Teilum zu hoch: h = h + 2): U.-P. Schroeder, Uni Pderorn? Fll I: Sitution: ist schuld : h = h +1 Lösung: Linksrottion einfch 13-19

20 U.-P. Schroeder, Uni Pderorn Fll II: Sitution: ist schuld : h = h +1 Lösung: Linksrottion doppelt L R L R 13-20

21 U.-P. Schroeder, Uni Pderorn Wirkung der Einfchrottion uf die Höhen Nch Einfügen: h=x+3 Nch Rottion: h=x+2 h=x+2 x x+1 x+1 x+1 x x x Stelle der Lsterhöhung Wirkung der Doppelrottion uf die Höhe Nch Einfügen: h=x+3 Nch Rottion: h=x+2 h=x+2 D x c x+1 x+1 x c x+1 x x x-1 x-1 x D x x x-1 lterntiv mögliche Lsterhöhung x-1 x 13-21

22 Einfügen U.-P. Schroeder, Uni Pderorn void check_rot_left(element* &node) { if (node==null) return; // empty sutree else if (node->right!=null) // left rottion possile if (node_ht(node->right)-node_ht(node->left)==2) //rotte if (node_ht(node->right->left)>node_ht(node->right->right)) d_rotte_left(node); // doule rottion else s_rotte_left(node); // single rottion else clc_height(node); // updte node height else clc_height(node); // updte node height void check_rot_right(element* &node) { if (node==null) return; // empty sutree else if (node->left!=null) // right rottion possile if (node_ht(node->left) - node_ht(node->right)==2) if (node_ht(node->left->right)>node_ht(node->left->left)) d_rotte_right(node); // doule rottion else s_rotte_right(node); // single rottion else clc_height(node); // updte node height else clc_height(node); // updte node height 13-22

23 U.-P. Schroeder, Uni Pderorn void ins(element* &p, vlue v) { if (p == NULL) // insert position found: crete new node { p = new element; p ->height = 0; p ->left = NULL; p ->dt = v; p ->right = NULL; return; if (v < p->dt) // rnch to left sutree { ins(p->left, v); check_rot_right(p); if (v > p->dt) // rnch to right sutree { ins(p->right, v); check_rot_left(p); // else element is lredy in the tree: nothing is eing done 13-23

24 U.-P. Schroeder, Uni Pderorn eispiel Die Eigenschft des VL-ums läßt sich gut n Hnd eines sortierten Einfügens erkennen, ds ei einem normlen (freien) inärum eine Degenertion zur Folge hätte. eispiel: Einfügen der Werte 10, 20,..., 70 in einen m nfng leeren VL-um

25 Entfernen U.-P. Schroeder, Uni Pderorn Ds Entfernen verläuft ähnlich wie eim freien inärum (Kp. 12). Wir verwenden jedoch eine rekursive Formulierung. Nchdem der zu entfernende Knoten gefunden wurde, werden je nch Existenz von Nchfolgern vier Fälle unterschieden: Ht der Knoten keinen Nchfolger, knn er direkt gelöscht werden. Ht er nur einen linken Nchfolger, so wird sein linker Nchfolger n seinen Vorgänger gehängt (Üerrückung). Dnn knn er gelöscht werden. Ht er nur einen rechten Nchfolger, so wird sein rechter Nchfolger n seinen Vorgänger gehängt (Üerrückung). Dnn knn er gelöscht werden. Ht er zwei Nchfolger, so wird er durch den linkesten Knoten in seinem rechten Teilum (sein Nchfolger in In-Ordnung) ersetzt (Werttrnsfer). Dieser Knoten wird dnn durch einen weiteren (rekursiven) ufruf von remove gelöscht. ei jeder (rekursiven) Rückkehr us remove muß eine Rottionsprüfung durchgeführt werden, d eine Höhenänderung stttgefunden hen knn. Fllunterscheidung wie eim Einfügen

26 U.-P. Schroeder, Uni Pderorn void rem(element* &node, vlue v) { element *p; if (node == NULL) return; // (su)tree empty: not found else if (v < node->dt) rem(node->left, v); // go to left sutree else if (v > node->dt) rem(node->right, v); // go to right sutree else // element found { if (node->left!= NULL && node->right!= NULL) { // two children p=get_min(node->right); // min of right sutree node->dt = p->dt; // vlue trnsfer rem(node->right,node->dt);//remove min of right sutree check_rot_right(node); else { p=node; if (node->left==null && node->right==null) { delete p; node = NULL; else { if (node->left==null) // only right child { node=node->right; check_rot_right(node); else // only left child if (node->right==null) { node=node->left; check_rot_left(node); delete p; clc_height(node); 13-26

27 eispiel: U.-P. Schroeder, Uni Pderorn us dem folgenden VL-um () werden die Elemente 10, 15, 20, 25, 30, 35, 40, 45, 50 sukzessive entfernt () () (c) 55 (d)

28 U.-P. Schroeder, Uni Pderorn (e) (f) (g) 55 (h) (i) 55 (j) 13-28

29 U.-P. Schroeder, Uni Pderorn Komplexität der Opertionen im VL-um Von den Rottionen gesehen, verlufen die Opertionen Suchen Einfügen Entfernen wie ei den freien inäräumen, d.h. es muß ein Pfd von der Wurzel is mximl zu einem ltt gelufen werden. D der ufwnd für eine Rottion oder Doppelrottion konstnt ist (O(1)), d.h. nicht von der Größe des umes hängt, gilt - wie sonst uch in äumen - dß der ufwnd der drei Opertionen liner mit der Höhe des umes wächst. Es leit lso die Frge, wie die Höhe eines VL-umes mit seiner Knotenzhl zusmmenhängt

30 Höhe von VL-äumen U.-P. Schroeder, Uni Pderorn Um eine schätzung zu erhlten, etrchten wir den ungünstigsten Fll, d.h. VL-äume mit einer für die gegeene Knotenzhl mximlen Höhe, zw. VL-äume mit einer für eine gegeene Höhe minimlen Knotenzhl: Diese äume genügen offensichtlich einem gewissen ildungsgesetz 13-30

31 Höhe von VL-äumen U.-P. Schroeder, Uni Pderorn F 0 F 1... F h F h-2 F h-1 Der um F h der Höhe h setzt sich lso zusmmen us einem um der Höhe h-1 und einem um der Höhe h-2. Für die Entwicklung der Knotenzhlen n h = nf ( h ) gilt lso: n h = 1+ n h 1 + n h 2 mit n 0 = 1 und n 1 = 2 d.h. die Knotenzhlen der mximl symmetrischen VL-äume entsprechen (fst) den Fioncci- Zhlen. Die äume heißen dher uch Fioncci-äume. Ein VL-um der Höhe h ht dher mindestens f h+2-1 Knoten, woei f k die k-te Fioncci-Zhl meint

32 Höhe von VL-äumen U.-P. Schroeder, Uni Pderorn Für einen llgemeinen VL-um der Höhe h gilt demnch: n h f h+2 1 Für Fioncci-Zhlen gilt die schätzung des Goldenen Schnitts: f k > k 1 und dher n h f h+2 1 > h+2 2 zw. h < log 2 2 log 2 [ 5( n h + 2) ] 2 Im O-Klkül lso: h = O(log n) Die Grundopertionen in VL-äumen esitzen lso höchstens logrithmischen ufwnd

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen Kp. 4.2 inäre Schäme ff Kp. 4.: VL-äme Professor r. Lehrsthl für lgorithm Engineering, LS11 Fkltät für Informtik, TU ortmnd Motition Wrm soll ich hete hier leien? lncierte äme rchen Sie immer wieder! Ws

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Übung 5 Algorithmen II

Übung 5 Algorithmen II Yroslv Akhremtsev, Demin Hespe yroslv.khremtsev@kit.edu, hespe@kit.edu Mit Folien von Michel Axtmnn (teilweise) http://lgo2.iti.kit.edu/algorithmenii_ws17.php Institut für Theoretische Informtik - 0 Akhremtsev,

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederun 1. Motivtion / Grundlen 2. Sortierverfhren 3. Elementre Dtenstrukturen / Anwendunen 4. Bäume / Grphen 5. Hshin 6. Alorithmische Geometrie 3/1, Folie 1 2010 Prof. Steffen Lne - HD/FbI - Dtenstrukturen

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen Algorithmus von Dijkstr: 1. Es sei S ie Menge er enteckten Knoten. Invrinte: Merke optimle Lösung für S: Für lle v S sei [v] = δ(s,v) ie Länge es kürzesten Weges von s nch v 3. Zu Beginn: S={s} un [s]=

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Warum Bäume? Teil 1: Suchen. Bäume: Begriffe und Eigenschaften (2) Bäume: Begriffe und Eigenschaften (1)

Warum Bäume? Teil 1: Suchen. Bäume: Begriffe und Eigenschaften (2) Bäume: Begriffe und Eigenschaften (1) Wrum Bäume? Teil : Suhen Prolemstellung Elementre Suhverfhren Hshverfhren Binäre Suhäume (Wiederholung us Prog ) Bäume: Begriffe, Eigenshften und Trversierung Binäre Suhäume Gefädelte Suhäume Ausgeglihene

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

Programmieren in C/C++ und Matlab

Programmieren in C/C++ und Matlab Progrmmieren in C/C und Mtl Sine Schmidt & Sestin Buer Institut für Geowissenschften Christin-Alrechts-Universität zu Kiel Progrmmieren in C/C und Mtl CAU, SS 08 for- / while-schleifen: - numerische Integrlerechnung

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Algorithmentheorie. 15 Suchen in Texten (1)

Algorithmentheorie. 15 Suchen in Texten (1) Algorithmentheorie 15 Suhen in Texten (1) Prof. Dr. S. Alers Suhe in Texten Vershiedene Szenrien: Sttishe Texte Literturdtennken Biliothekssysteme Gen-Dtennken WWW-Verzeihnisse Dynmishe Texte Texteditoren

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Simulation von Störungen mit zeitlichen Schranken

Simulation von Störungen mit zeitlichen Schranken Simultion von Störungen mit zeitlichen Schrnken Die geräuchlichen sttistischen Verteilungen können elieig große Werte hervorringen, ws ei der Simultion von Störungen oft nicht erwünscht ist. Verwendet

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Übung 4: Die generische Klasse AvlBaum in Java 1

Übung 4: Die generische Klasse AvlBaum in Java 1 Übung 4: Die generische Klasse AvlBaum in Java 1 Ein binärer Suchbaum hat die AVL -Eigenschaft, wenn sich in jedem Knoten sich die Höhen der beiden Teilbäume höchstens um 1 unterscheiden. Diese Last (

Mehr

13-1 Funktionen

13-1 Funktionen 3- Funktionen 3 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten eine stetige Funktion f : I R und ds zugehörige Integrl f() d (dies ist

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Motivation. Vorlesung 10: Binäre Suchbäume

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Motivation. Vorlesung 10: Binäre Suchbäume Übersicht Datenstrukturen und lgorithmen Vorlesung : Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-/dsal/ 1 Suche Einfügen

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Klausur. Informatik 1 Wintersemester 2005/2006 Prof. Dr. Wolfgang May 4. April 2006, Uhr Bearbeitungszeit: 90 Minuten

Klausur. Informatik 1 Wintersemester 2005/2006 Prof. Dr. Wolfgang May 4. April 2006, Uhr Bearbeitungszeit: 90 Minuten Klusur Informtik 1 Wintersemester 2005/2006 Prof. Dr. Wolfgng My 4. April 2006, 11-13 Uhr Bereitungszeit: 90 Minuten Aufge erreichre erreichte Punkte Punkte 1 10 / 10 2 14 / 14 3 16 / 16 4 26(+8)* / 26(+8)*

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Eine endliche Folge von Operationen und Entscheidungen, die ein Problem in endlich vielen Schritten löst.

Eine endliche Folge von Operationen und Entscheidungen, die ein Problem in endlich vielen Schritten löst. Formle Methoen er Informtik WS 00/0 Lehrstuhl für Dtennken un Künstliche Intelligenz ProfDrDrFJRermcher H Ünver T Rehfel J Dollinger Aufgenltt Besprechung in en Tutorien vom 000 ( Üungstermin) is 000 (is

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1 Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik Prktikum Klssische Physik I Versuchsvorereitung: P-3, 40, 4: Geometrische Optik Christin Buntin Gruppe Mo- Krlsruhe, 09. Novemer 2009 Inhltsverzeichnis Brennweiten-Bestimmungen 2. Einfche Bestimmung der

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Üung Grundegriffe der Informtik 11. Üung Krlsruher Institut für Technologie Mtthis Jnke, Geäude 50.34, Rum 249 emil: mtthis.jnke ät kit.edu Mtthis Schulz, Geäude 50.34, Rum 247 emil: schulz ät ir.uk.de

Mehr