Seminar: Finanzmathematik. Bewertung von Barriere Optionen im Black-Scholes Modell sowie die Symmetrie von P. Carr

Größe: px
Ab Seite anzeigen:

Download "Seminar: Finanzmathematik. Bewertung von Barriere Optionen im Black-Scholes Modell sowie die Symmetrie von P. Carr"

Transkript

1 Seminar: Finanzmathematik Bewertung von Barriere Optionen im Black-Scholes Modell sowie die Symmetrie von P. Carr Deniz Atug 4. April 2010 Zusammenfassung Die vorliegende Arbeit gibt eine Einführung in die hematik der Barriere Optionen Down and Out Calls und Down and In Calls. Dazu werden zum einen Preisparitäten hergestellt, zum anderen findet eine Bewertung des Down and In Calls statt. Zuletzt wird die Symmetrie von P. Carr erläutert und in Beziehung zum Down and In Call gesetzt. i

2 Inhaltsverzeichnis 1 Barriere Optionen Einführung Down and Out Optionen Down and In Optionen Preisparität Bewertung des Down and In Calls Maßwechsel Berechnung des DIC Die Symmetrie von P. Carr Beispiel Satz Beziehung zum DIC ii

3 1 Barriere Optionen 1.1 Einführung Barriere Optionen sind Optionen, bei denen die Auszahlung nicht wie üblich vom Endkurs, sondern vom gesamten Aktienpfad abhängen. Für diesen yp von Optionen wird neben dem Strike eine Barrierenschranke L festgelegt. In der vorliegenden Arbeit werden Call Optionen betrachtet, die jedoch verfallen, wenn die Barrierenschranke L erreicht bzw. nicht erreicht wird. Vorausgesetzt wird, dass der aktuelle urs S 0 > L ist. 1.2 Down and Out Optionen Der äufer einer Down and Out Option verliert sein Ausübungsrecht, falls der Preis des Basisgutes S t ) 0 t unterhalb der Barrierenschranke L vor Laufzeitende fällt. Andernfalls entsteht eine Auszahlung in Höhe von φs ), d.h. im Falle eines Calls gilt φx) = x ) +. Sei L die Stopzeit, an dem der Aktienkurs zum ersten Mal die Barriere bricht, definiert durch L := inf{t S t L} = inf{t S t = L), dann lässt sich der Preis eines Down and Out Calls DOC) mittels dem diskontierten Erwartungswert bestimmen: DOCS 0,, L) := E Q e r S ) + 1 {L > }), wobei Q das risikolose Wahrscheinlichkeitsmaß darstellt. 1.3 Down and In Optionen Der äufer eines Down and In Calls DIC) erhält die Auszahlung S ) +, sofern der Aktienkurs die Schranke L vor Laufzeitende mindestens einmal durch- 1

4 laufen hat. Der Preis dieser Option ist: DICS 0,, L) := E Q e r S ) + 1 {L < }). 1.4 Preisparität Geht man die Positionen Long im DOC und Long im DIC mit identischem Strike, Schranke L und Laufzeitende ein, entsteht eine Auszahlung von S ) +, welche einer Auszahlung eines Calls mit Strike und Laufzeitende entspricht. Aus dem Replikationsprinzip folgt DICS,, L) + DOCS,, L) = CS, ), wobei CS, ) dem Preis einer Call Option mit Strike und Anfangskurs S entspricht. Aufgrund dieser Parität genügt die Beschränkung auf eine Bewertung des DIC. 2 Bewertung des Down and In Calls Ziel ist, den Preis DICS 0,, L) := E Q e r S ) + 1 {L < }) zu bestimmen. Diese Bewertung findet im Black-Scholes Modell statt und wird in einige Schritte unterteilt. Zu Beginn wird ein entsprechender Maßwechsel durchgeführt, der im Folgenden beschrieben wird. 2.1 Maßwechsel Sei B t ) 0 t ein Q-Wiener Prozess, wobei Q das risikolose Wahrscheinlichkeitsmaß im Black-Scholes Modell ist. Für den Aktienpreisprozess S t ) t 0 gilt: S t := S 0 e rt exp σb t 1 ) 2 σ2 t = S 0 expσw t ) 2

5 mit W t := B t + mt für t und m := 1 σ umgeformt werden zu einer Funktion von W: r σ2 2 ). Die Stopzeit L kann L = inf {t S t L} = inf {t S 0 expσw t ) L} = inf {t W t 1σ } ln LS0 = inf{t W t l} =: l, wobei l := 1 ln L σ S 0 ). Um den Preis des DIC zu bestimmen, wird mittels Girsanov ransformation W t ) 0 t in einen Wiener Prozess transfomiert. Dazu wird ein Wahrscheinlichkeitsmaß R definiert: dr dq = exp mb 1 ) 2 m2 und dq dr = exp mb + 1 ) 2 m2 = exp mw 1 ) 2 m2. Somit ist nach Girsanov W t = B t + mt ein R-Wiener Prozess. 2.2 Berechnung des DIC Der Preis des DIC lässt sich durch den Maßwechsel umformen zu: ) DICS 0,, L) = e r E Q S ) + 1 {L < } = e r E R expmw m2 2 ) S 0 e σw ) ) + 1{l < }. Umformungen der Auszahlung ergeben: S 0 e σw ) + = S 0 e σw )1 {S0 e σw } = S 0 e σw 1 {W 1 σ ln S 0 } 1 {W 1 σ ln S 0 } = S 0 e σw 1 {W k} 1 {W k}, 3

6 wobei k := 1 σ ln S 0. Setzt man die oben) umgeformte Auszahlung in die Formel für den DIC ein, erhält man: ) e r DICS 0,, L) = E R expmw m2 2 )S 0e σw 1 {W k} 1 {W k})1 {l < } = e m2 2 E R e mw S 0 e σw 1 {W k} 1 {W k})1 {l < } = e m2 2 [S 0 E R e σ+m)w 1 {W k}1 {l < }) E R e mw 1 {W k}1 {l < })] = e m2 2 [S 0 Ψσ + m) Ψm)] ) mit Ψy) := E R e yw 1 {W k}1 {l < }). Sei m Gleichung: := inf s W s, dann gilt folgende { l < } = {m l}. Um Ψy) := E R e yw 1 {W k}1 {l < }) = E R e yw 1 {W k}1 {m l}) zu berechnen, wird zwischen zwei Fällen unterschieden. Der erste Fall ist, dass der Strike kleiner gleich der Schranke L ist k l) und der zweite Fall ist, dass der Strike größer gleich L ist k l). 1. Fall k l : Ψy) = E R e yw 1 {W k}1 {m l}) = E R e yw 1 {k W l}1 {m l}) + E R e yw 1 {W l}1 {m l}) = E R e yw 1 {k W l}) + E R e yw 1 {W l}1 {m l}). Die Berechnung des linken Summanden ist klar, da W N0, ). Für die des rechten Summanden wird das Spiegelungsprinzip benutzt. Zur Erinnerung: RW x, m y) = RW 2y x), für y 0, x y. 4

7 Daraus folgt: Ψy) = E R e yw 1 {k W l}) + E R e yw 1 {W l}1 {m l}) l = 1 e yx e 1 2 x2 dx + e yx e 1 2π k l l = 1 ) 2 e y2 2 e 1 x y 2 dx + 1 2π 2π k 2 2l x)2 dx l e y2 2 +2yl e 1 2 ) 2 x 2l y dx. Das letzte Gleichheitszeichen ist mittels quadratischer Ergänzung entstanden. Substituiert man nun im linken Summanden x 1 := 1 x y ) dx = dx 1 ) und im rechten x 2 := 1 x 2l y ) Ψy) = e y2 2 1 l y ) 1 2π 1 k y ) dx = dx 2 ), folgt: e 1 2 x2 1 dx1 + e y2 2 +2yl 1 2π = e y2 2 [N y1 ) N y 2 )] + e y2 2 +2yl N y 3 ) 1 l y ) e 1 2 x2 2 dx2 mit y 1 := 1 l y ), y 2 := 1 k y ), y 3 := 1 l + y ). Setzt man alle vorher berechneten und definierten Werte, Ψy), m = 1 σ l = 1 σ ln L S 0 r σ2 2 und k = 1 σ ln S 0, in die Preisformel des DIC ein, erhält man zusammenfassend für L: DICS 0,, L) = e r e m2 2 [S 0 Ψσ + m) Ψm)] ) ] 2r L σ = S 0 [N z 1 ) N z 2 ) N z 3 ) S 0 [ L e r N z 4 ) N z 5 ) + S 0 ) ] 2r σ 2 1 N z 6 ) ), 5

8 mit z 1 : = 1 [ σ r σ2 ) + ln S ] 0 L z 2 : = 1 [ σ r σ2 ) + ln S ] 0 ] z 3 : = 1 σ [ r σ2 ) ln S 0 L z 4 := z 1 + σ z 5 := z 2 + σ z 6 := z 3 σ. 2. Fall k l : Ψy) = E R e yw 1 {W k}1 {m l}) = 1 e yx e 1 2 2l x)2 dx 2π k = 1 2π k e y2 2 +2yl e 1 2 = e y2 2 +2yl 1 2π = e y2 2 +2yl N y 4 ) 1 k 2l y ) ) 2 x 2l y dx e 1 2 x2 3 dx3 mit y 4 := 1 2l + y k) und der Substitution x 3 := 1 x 2l y ). Setzt man analog alle Werte ein, erhält man für den Fall L : DICS 0,, L) = e r e m2 2 [S 0 Ψσ + m) Ψm)] ) 2r L σ = S 2 +1 ) 2r L 0 N z 7 ) e r σ 2 1 N z 8 ) S 0 S 0 mit z 7 : = 1 σ [ln L2 S 0 + r + 1 ] 2 σ2 ) z 8 := z 7 σ. Die Preisformel für den DIC L) lässt sich umschreiben zu L DICS 0, L, ) = S 0 ) 2r σ 2 +1 [ ] S 0 N z 7 ) e r S2 0 L N z 8) 2 6

9 oder falls CS 0, ) den Preis eines Calls mit Strike und Anfangskurs S 0 bezeichnet, zu: L DICS 0, L, ) = S 0 ) 2r σ 2 +1 ) C S 0, S2 0. L 2 3 Die Symmetrie von P. Carr Ziel ist, die Preisformel für den DIC mit Hilfe der Symmetrie Formel zu bestimmen. Zunächst wird die Symmetrie Formel von Carr durch ein Beispiel erläutert, anschließend wird die Beziehung zum DIC hergestellt. 3.1 Beispiel Gegeben sei ein Wechselkurs mit folgender Dynamik: dx t = X t [r d r f )dt + σdw t ], wobei r d den inländischen Zinssatz und r f den ausländischen Zinssatz darstellt. Im Beispiel wird der Wechselkurs X t zwischen dem Euro und dem US-Dollar betrachtet. X t = 0.7EUR bedeutet beispielsweise, dass man für 0.7EUR einen Dollar erhält. Dies ist äquivalent dazu, dass der Wechselkurs zwischen dem US- Dollar und dem Euro 1 X t für 1 X t = beträgt, ansonsten gäbe es Arbitragemöglichkeiten. D.h. 1.42USD erhält man einen Euro. Im Folgenden wird ein Call auf die ausländische Währung USD mit Laufzeit und Strike betrachtet. Der Payoff dieses Calls beträgt in EUR: X ) EUR falls X X ) + = 0 sonst. In USD beträgt dieser: X ) X ) + X = = 1 1 X ) USD falls X 0 sonst. 7

10 Der Preis dieser Call Option beträgt zum Zeitpunkt t: Call d t, X t,,, r d, r f ) EUR = Call d t, X t,,, r d, r f )X 1 t USD. Nimmt nun ein ausländischer Investor die Position Long Puts auf die Euro- Währung mit Wechselkurs 1 X t, Laufzeit und Strike 1 von Put f t, 1 X t, 1,, r f, r d ) USD ein, hat dieser einen Preis und damit einen USD Payoff von 1 1 ) + 1 = 1 X ) USD falls 1 1 X 0 sonst. X X Aus dem Replikationsprinzip folgt, dass die Preise identisch sind, da der Payoff des Calls dem der Puts entspricht, d.h. Call d t, X t,,, r d, r f )X 1 t = Put f t, 1 X t, 1,, r f, r d ) Call d t, X t,,, r d, r f ) = X t Put f t, X 1 t, 1,, r f, r d ). Betrachtet man nun den Fall r d = r f und die Eigenschaft des Puts, erhält man folgenden Satz. aputt, X t,, ) = Putt, ax t, a, ) 3.2 Satz Falls das Basisgut die Dynamik ds t = S t σdw t unter dem risikoneutralen Wahrscheinlichkeitsmaß besitzt, gilt folgende Symmetrie Formel: Callt, S t,, ) = S t Putt, S 1 t, 1, ) = Putt,, S t, ), wobei die Notation Putt, x, y, ) für den Putpreis zum Zeitpunkt t, aktuellem urs x, Strike y und Laufzeitende steht. 8

11 3.3 Beziehung zum DIC Sei für den DIC > L und ein Aktienpreisprozess S t ) t 0, welches ein Martingal unter dem risikoneutralen Wahrscheinlichkeitsmaß ist, gegeben, dann ist DICx,, L) = E[S ) + 1 {L < }] = E[ES ) + 1 {L < } F L )] = E[1 {L < }ES ) + F L )]. Der erm E[S ) + F L ] entspricht dem Preis eines Calls mit Strike, Anfangskurs L und Laufzeit L. Wendet man darauf die Symmetrie Formel an, ist dieser erm äquivalent zu Put L,, L, ). Daraus folgt: E[1 {L < }ES ) + F L )] = E [ 1 {L < }Put L,, L, ) ] [ ] = E 1 {L < } L Put L, L, L2, ). ) + Die Auszahlung dieses Puts mit Strike L2 beträgt L 2 S und ist nur dann positiv, wenn das Basisgut unter L2 liegt, somit auch unter L liegt, sofern > L. Falls also die Auszahlung nicht Null ist, muss die Barriere L erreicht worden sein und es gilt für den Preis des DIC: ] [1 L E {L< }Put L, L, L2, ) = L [ E 1 {L < }E [ L2 = [1 L E {L < }E [ L2 = L E [E = L E [E = L E [ L2 [ L2 S ) + F L ]] S )1 { L 2 >S } F L S )1 { L 2 1 >S } { L < } F L ]] [ L2 S )1 { L 2 F >S } L ] S )1 { L 2 = [ ] L E L2 S ) + = L Put x, L2 9 ). >S } ]] ]]

12 Mit Hilfe der Symmetrie Formel ist dann DICx,, L) = ) L Put x, L2 = Call L, x ). L 10

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Die Bewertung von amerikanischen Basketoptionen

Die Bewertung von amerikanischen Basketoptionen Die Bewertung von amerikanischen Basketoptionen Seminararbeit von Henning Katerkamp 0. April 010 1 Inhaltsverzeichnis 1 Einführung 3 Bewertung des Perpetual Put mit der sogenannten Beibel/Lerche - Methode

Mehr

Wie Derivate die Finanzwelt veränderten

Wie Derivate die Finanzwelt veränderten Franz Reiter 16. Dezember 2016 Aufbau Grundlagen Exotische Optionen Capital Asset Pricing Model Black-Scholes-Formel Derivat Derivat ist ausgestelltes Recht zum Kauf bzw. Verkauf von bestimmten Basiswerten

Mehr

Das Black-Scholes-Merton Modell

Das Black-Scholes-Merton Modell Agenda Lehrstuhl für Volkswirtschaftstheorie Westfälische Wilhelms-Universität Münster May 12, 2006 Teil I Agenda 2 Zur Erinnerung Das Lemma von Ito Die vereinfachten Annahmen an den Finanzmarkt Teil II

Mehr

Optionspreistheorie Seminar Stochastische Unternehmensmodelle

Optionspreistheorie Seminar Stochastische Unternehmensmodelle Seminar Stochastische Unternehmensmodelle Lukasz Galecki Mathematisches Institut Universität zu Köln 1. Juni 2015 1 / 30 Inhaltsverzeichnis 1 Was ist eine Option? Definition einer Option Übersicht über

Mehr

ONLINE-SEMINAR REIHE. Devisenoptionen. Schwabe, Ley & Greiner

ONLINE-SEMINAR REIHE. Devisenoptionen. Schwabe, Ley & Greiner ONLINE-SEMINAR REIHE Devisenoptionen Warum gibt es Optionen? Begriff un Wesen... Absicherung gegen Währungskursänerungen. Käufer einer Devisenoption: Recht,...... eine bestimmte Währung... zu einem bestimmten

Mehr

Kalibrierung eines ökonomischen Szenariengenerators. Albert Meeser und Wiebke Burdag

Kalibrierung eines ökonomischen Szenariengenerators. Albert Meeser und Wiebke Burdag Kalibrierung eines ökonomischen Szenariengenerators Albert Meeser und Wiebke Burdag Übersicht Einführung Vasicek Modell Black Scholes mit Vasicek Optimierungsalgorithmen Implementierung Ergebnisse der

Mehr

Bewertung von exotischen Optionen im CRR-Modell

Bewertung von exotischen Optionen im CRR-Modell Seminararbeit Bewertung von exotischen Optionen im CRR-Modell Stefanie Tiemann 08.06.2010 Inhaltsverzeichnis Einführung 1 1 Asiatische Optionen 3 2 Lookback Optionen 7 3 zweiseitige knock-out Barriere

Mehr

Inhaltsverzeichnis. Teil I

Inhaltsverzeichnis. Teil I Inhaltsverzeichnis Teil I Ein-Perioden-Wertpapiermärkte 3 1.1 Ein-Perioden-Modelle 4 1.2 Portfolios 7 1.3 Optionen und Forward-Kontrakte 9 1.3.1 Optionen 10 1.3.2 Forward-Kontrakte 12 1.4 Die Bewertung

Mehr

Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten

Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten Jürgen Kremer Portfoliotheorie, Risikomanagenient und die Bewertung von Derivaten Zweite, vollständig überarbeitete und erweiterte Auflage 45J Springer Inhaltsverzeichnis Teill Ein-Perioden- Wertpapiermärkte

Mehr

7 Der Satz von Girsanov

7 Der Satz von Girsanov 7 Der Satz von Girsanov Der Satz von Girsanov wird uns eine neue Perspektive auf die Rolle des Drifts liefern. Die Prozesse Brownsche Bewegung B t, Brownsche Bewegung mit Drift X t = B t + µt haben wir

Mehr

Prof. Dr. Georg Schlüchtermann Ludwig-Maximilians Universität München und Hochschule München

Prof. Dr. Georg Schlüchtermann Ludwig-Maximilians Universität München und Hochschule München Finanzmärkte und Mathematik tik Prof. Dr. Georg Schlüchtermann Ludwig-Maximilians Universität München und Hochschule München Inhalt Bewertung von Finanzprodukten Welche mathematischen Modelle werden verwendet?

Mehr

Nikolay Kachakliev Volatilitätsprodukte Eigenschaften, Arten und Bewertungen

Nikolay Kachakliev Volatilitätsprodukte Eigenschaften, Arten und Bewertungen Nikolay Kachakliev Volatilitätsprodukte Eigenschaften, Arten und Bewertungen IGEL Verlag Nikolay Kachakliev Volatilitätsprodukte Eigenschaften, Arten und Bewertungen 1.Auflage 2009 ISBN: 978 3 86815 358

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Inhaltsverzeichnis. 2 Portfoliotheorie Rendite und Risiko Die erwartete Rendite... 74

Inhaltsverzeichnis. 2 Portfoliotheorie Rendite und Risiko Die erwartete Rendite... 74 1 Ein-Perioden-Wertpapiermärkte........................... 1 1.1 Portfolios............................................... 5 1.2 Optionen und Forward-Kontrakte......................... 8 1.2.1 Optionen.........................................

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

Risikoneutrale Wahrscheinlichkeit

Risikoneutrale Wahrscheinlichkeit Risikoneutrale Wahrscheinlichkeit M. Gruber 11. 6 214 Rev.3 Zusammenfassung Diskontierter Aktienpreisprozess, Risiko-Marktpreis, Risikoneutralität; Verschiebung des Erwartungswerts einer Zufallsvariablen,

Mehr

Vollständige Märkte. Mathias Krämer Mathematisches Institut - Universität zu Köln

Vollständige Märkte. Mathias Krämer Mathematisches Institut - Universität zu Köln Vollständige Märkte Mathias Krämer Mathematisches Institut - Universität zu Köln 13.05.2016 Gliederung Vorstellung Grundlagen Grundlegende Denitionen Preise von bedingten Claims Bedingte Claims Preise

Mehr

Die Bewertung der eingebetteten Optionen in der Lebensversicherung

Die Bewertung der eingebetteten Optionen in der Lebensversicherung Die Bewertung der eingebetteten Optionen in der Lebensversicherung Prüfungskolloquium 19.11.2010 Beat Wäfler Eingebettete Optionen In Lebensversicherungsprodukten können für den Versicherungsnehmer beispielsweise

Mehr

Portfoliotheorie, Risikomanagement und die Bewertung von Derivaten

Portfoliotheorie, Risikomanagement und die Bewertung von Derivaten Springer-Lehrbuch Portfoliotheorie, Risikomanagement und die Bewertung von Derivaten Bearbeitet von Jürgen Kremer 1. Auflage 2011. Taschenbuch. xvi, 471 S. Paperback ISBN 978 3 642 20867 6 Format (B x

Mehr

Seminar: Finanzmathematik. Portfoliooptimierung im vollständigen Finanzmarktmodell. Katharina Hasow

Seminar: Finanzmathematik. Portfoliooptimierung im vollständigen Finanzmarktmodell. Katharina Hasow Seminar: Finanzmathematik Portfoliooptimierung im vollständigen Finanzmarktmodell Katharina Hasow 11. Mai 2010 1 Inhaltsverzeichnis 1 Einführung 1 1.1 Nutzenfunktion............................ 1 1.2 Formulierung

Mehr

Einführung in die Diskrete Finanzmathematik

Einführung in die Diskrete Finanzmathematik Jürgen Kremer Einführung in die Diskrete Finanzmathematik Mit 37 Abbildungen /IS 4y Springer Ein-Perioden- Wertpapiermärkte 1 1.1 Portfolios 5 1.2 Optionen und Forward-Kontrakte 8 1.2.1 Optionen 8 1.2.2

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

2 Das Marktmodell C1(WS08/09) [2] 1

2 Das Marktmodell C1(WS08/09) [2] 1 2 Das Marktmodell 2.1 Ein allgemeines Finanzmarktmodell 2.2 Aufsteigende Systeme von σ-algebren und adaptierte Prozesse 2.3 Elementare Handelsstrategien im Finanzmarktmodell 2.4 Die σ-algebra der previsiblen

Mehr

Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen

Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen Kapitel 6 Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen Übungsaufgabe 6-1a 6-1a) Welche Typen von Zinsstrukturkurven kennen Sie? Stellen Sie die Typen graphisch dar und erläutern Sie diese.

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen

Mehr

Einführung in die Diskrete Finanzmathematik

Einführung in die Diskrete Finanzmathematik Springer-Lehrbuch Einführung in die Diskrete Finanzmathematik Bearbeitet von Jürgen Kremer 1. Auflage 2005. Taschenbuch. XVI, 500 S. Paperback ISBN 978 3 540 25394 5 Format (B x L): 15,5 x 23,5 cm Gewicht:

Mehr

FINANZMATHEMATIK. Toker Claudia, Hackner Denise

FINANZMATHEMATIK. Toker Claudia, Hackner Denise FINANZMATHEMATIK Toker Claudia, Hackner Denise AKTIEN Aktien Ökonomische Grundlagen Graphische Darstellung von Aktienkursverläufen Aktienkurs und Aktienindex Die Rendite einer Aktie Statistik der Aktienmärkte

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Lösungen zur 1. Klausur Diskrete Stochastische Finanzmathematik ( , SoSe 2014) am , Zeit: 10-12, Raum: W

Lösungen zur 1. Klausur Diskrete Stochastische Finanzmathematik ( , SoSe 2014) am , Zeit: 10-12, Raum: W Prof. Dr. Dietmar Pfeifer Institut für Mathematik Lösungen zur. Klausur Diskrete Stochastische Finanzmathematik (5..862, SoSe 24 am 5.8.24, Zeit: - 2, Raum: W--6 Name:... Matr.-Nr.:... Geb.-Datum:... Studiengang:...

Mehr

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut Martingal-Maße Manuel Müller 29.04.2016 Mathematisches Institut Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Seite 2 Martingal-Maße 29.04.2016 Inhaltsverzeichnis

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen Optionen 3. Vortrag - Mathematische Analyse / Beweise und Numerische Resultate Technische Universität Berlin Institut für Mathematik 1. Februar 2008 Inhaltsverzeichnis

Mehr

Die Stochastische Integralgleichung X(t) = a + t

Die Stochastische Integralgleichung X(t) = a + t Die Stochastische Integralgleichung X(t) = a + µ(s, X(s))ds + σ(s, X(s))dW (s) Simon Keller 4.12.26 1 Mathematische Grundlagen und Herleitung 1.1 Normalverteilung Eine normalverteilte Zufallsvariable X

Mehr

Analytische Behandlung von Ungleichungen mit Beträgen

Analytische Behandlung von Ungleichungen mit Beträgen Abbildungsverzeichnis Inhaltsverzeichnis Analytische Behandlung von Ungleichungen mit Beträgen 1 Aufgabe 1: < 1 Link: Schematische Darstellung des Lösungsweges Die folgenden Abhandlungen bieten zusätzliche

Mehr

Zur Bewertung von Exchange-Optionen

Zur Bewertung von Exchange-Optionen Masterarbeit Thema: Zur Bewertung von Exchange-Optionen von: Tobias Ontrup im Fachbereich Mathematik an der Westfälischen Wilhelms-Universität Münster Betreuer: PD Dr. Volkert Paulsen Plagiatserklärung

Mehr

Value at Risk. Sandra Radl Sandra Radl Value at Risk / 31

Value at Risk. Sandra Radl Sandra Radl Value at Risk / 31 Value at Risk Sandra Radl 24.01.2018 Sandra Radl Value at Risk 24.01.2018 1 / 31 Inhaltsverzeichnis 1 Definition Zeithorizont 2 Berechnungsmethoden Historische Simulation Lineares Modell Quadratisches

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 3 6439 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 25/6 Klausur Derivate und Bewertung Wintersemester 25/6 Aufgabe : Statische Optionsstrategien

Mehr

WäHRUNGSOPTIONEN ALS ZENTRALBANKINSTRUMENT?

WäHRUNGSOPTIONEN ALS ZENTRALBANKINSTRUMENT? WäHRUNGSOPTIONEN ALS ZENTRALBANKINSTRUMENT? 1. Fragestellung 2. Definition der Währungsoption 3. Preisschranken der Kaufsoption 4. Preisschranken der Verkaufsoption 5. Einsatz von Währungsoptionen 2 1.

Mehr

4. Leistungs- und Kreuzleistungsdichtespektren

4. Leistungs- und Kreuzleistungsdichtespektren 4. Leistungs- und Kreuzleistungsdichtespektren 23.4.18 Die bereits in Kapitel 1.2 einführten Leistungsdichtespektren werden nun genauer untersucht. Zudem werden Kreuzleistungsdichtespektren eingeführt.

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation

ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation Aspekte des 2-Faktor-Hull-White-Modells 8. November 2012 Inhalt Weshalb ein Mehrfaktor Modell? 2-Faktor-Modelle Das ursprüngliche

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=.

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=. Lösungen zu Übungsblatt (Integralrechnung) Zu Aufgabe ) Berechnen Sie das Integral e x dx n! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! näherungsweise nach der rapezformel für n, n5, Wir zerlegen

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 2 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 127/2005, Der Wert von Optionen NORBERT BRUNNER

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 127/2005, Der Wert von Optionen NORBERT BRUNNER Wissenschaftliche achrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 17/005 9-31 Der Wert von Optionen OBET BUE Finanzderivate sollen gegen unverhoffte Kursschwankungen versichern. Wir geben

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Alle aufgezeigten Lösungswege gelten für Gleichungen, die schon vereinfacht und zusammengefasst wurden. Es darf nur noch + vorhanden sein!!! (Also nicht + und auch nicht 3 ; bitte

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Lösungen zum Arbeitsblatt: y = mx + b Alles klar???

Lösungen zum Arbeitsblatt: y = mx + b Alles klar??? I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) Institut für Analysis Priv.-Doz. Dr. Peer Kunstmann Markus Antoni WS 22/23 Bachelor Modulprüfung Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

( ) ( ). Dann heißt die Zahl

( ) ( ). Dann heißt die Zahl Der Euklidische Abstand Seite 1 von 6 Der Euklidische Abstand Der Abstand zweier Punkte P und Q in der Modellebene ist eine Zahl, die von den Koordinaten der Punkte abhängt. Der Term, mit dem die Berechnung

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs Exponentialgleichungen: Teil 1 1-E Mathematik, Vorkurs Exponentialgleichungen: Aufgaben 1, 2 Aufgabe 1: Berechnen Sie mithilfe der Potenzgesetze [ 36 2 3 6 ] : 1 3 6 ; [ 35 : 2 2 ] 3 2 5 3 Aufgabe 2: Fassen

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, (13.58) Test 1 Gruppe A (Mo, 8.4.14) (mit Lösung ) Unterlagen: eigenes

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

3 2 = 3 = 6. = lim. ln(n) ln(n+1) = ln(3) ln(n) = 1

3 2 = 3 = 6. = lim. ln(n) ln(n+1) = ln(3) ln(n) = 1 Stroppel Musterlösung.0.06, 80min Aufgabe 5 Punkte Bestimmen Sie die folgenden Grenzwerte. Falls die untersuchte Reihe nicht konvergiert, begründen Sie dies. 3 a n b c n! 3 n ln n n+ lnn+ lnn a Umformen

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Lösungen der Probleme aus der dritten bis fünften Werkstatt

Lösungen der Probleme aus der dritten bis fünften Werkstatt Die WURZEL Werkstatt Mathematik Lösungen der Probleme aus der dritten bis fünften Werkstatt Es ist eine Binsenweisheit: Man kann nicht allein durch Zuschauen Mathematik erlernen. Nur im Umgang mit komplexen

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Musterlösung der Ferienserie 13

Musterlösung der Ferienserie 13 D-MAVT, D-MAT Analysis I HS Prof. Dr. Paul Biran Nicolas Herzog Musterlösung der Ferienserie 3. Durch partielle Integration erhält man die Rekursionsformel A n x n e x x n e x x x + n x n e x e + na n

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: integral.tex,v.0 009//0 :4:35 hk Exp $ Integrale von Funktionen in mehreren Variablen.3 Integration über Jordan-meßbare Mengen Als ein zweites Beispiel der Integration über Jordan-meßbare Mengen wollen

Mehr

OPTIONSHANDEL. Die Griechen- The Greeks (Kennzahlen zur Optionsbewertung) DER WEG ZUM GEREGELTEN EINKOMMEN AN DER BÖRSE REFERENT: SIMON BETSCHINGER

OPTIONSHANDEL. Die Griechen- The Greeks (Kennzahlen zur Optionsbewertung) DER WEG ZUM GEREGELTEN EINKOMMEN AN DER BÖRSE REFERENT: SIMON BETSCHINGER OPTIONSHANDEL DER WEG ZUM GEREGELTEN EINKOMMEN AN DER BÖRSE REFERENT: SIMON BETSCHINGER Die Griechen- The Greeks (Kennzahlen zur Optionsbewertung) Wir werden verstehen was die 3 Griechen Delta, Theta und

Mehr

Maximalität und Globalität von Lösungen

Maximalität und Globalität von Lösungen Gewöhnliche Differentialgleichungen Florian Wörz SoSe 205 Maximalität und Globalität von Lösungen Maximale Lösungen Sei Ω : T U R R n ein Gebiet, f : Ω R n stetig und (t 0, u 0 ) Ω. Im Folgenden betrachten

Mehr

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken 25. Juni 2015 1 / 37 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Finanzmathematik I Lösung der übriggebliebenen Aufgaben

Finanzmathematik I Lösung der übriggebliebenen Aufgaben Prof Dr T Meyer-Brandis H Hoffmann Winter term 05/6 Lösung des letzten Teils von 83: Finanzmathemati I Lösung der übriggebliebenen Aufgaben iv log S log S 0 + R R }{{} :Y +RG R 8 Da der mittlere Teil eine

Mehr

ODAX Call / Put Open Interest Übersicht

ODAX Call / Put Open Interest Übersicht ODAX Call / Put Open Interest Übersicht Alle Verfallsmonate 05.2017 -- 12.2021 23 Kalendertage bis kleiner Verfall (19.05.17) D Hedge S Fut. Basis Veränd. 26.04.17 25.04.17 24.04.17 21.04.17 20.04.17 19.04.17

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl.

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl. Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2012/13 26.2.2013 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Bonuszertifikate II: Konstruktion, Kursverhalten und Produktvarianten

Bonuszertifikate II: Konstruktion, Kursverhalten und Produktvarianten Bonuszertifikate II: Konstruktion, Kursverhalten und Produktvarianten 20.01.2015 Martin Szymkowiak 2 Reverse-Bonus Zertifikate Rendite Optimierung für fallende Märkte Rückzahlung in EUR Bonus Zertifikate

Mehr

Trigonometrische Substitutionen

Trigonometrische Substitutionen Trigonometrische Substitutionen Mit Hilfe der folgenden Substitutionen lassen sich eine Reihe von elementaren algebraischen Integranden explizit berechnen: x = a sin t : x = a tan t : x = a/ cos t : =

Mehr

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008 Übungen zu Numerische Mathemati (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Übungsblatt 1 Abgabe: 24. April 2008 Aufgabe 1 Zur Berechnung der Quadratwurzel

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

Mathematik 1 Probeprüfung 1

Mathematik 1 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 1 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

ODAX Call / Put Open Interest Übersicht

ODAX Call / Put Open Interest Übersicht ODAX Call / Put Open Interest Übersicht Alle Verfallsmonate 05.2017 -- 12.2021 2 Kalendertage bis kl. Verfall Nur Frontmonat 05/2017 (bis 19.05.2017) D Hedge S Fut. Basis Veränd. 17.05.17 16.05.17 15.05.17

Mehr

ODAX Call / Put Open Interest Übersicht

ODAX Call / Put Open Interest Übersicht ODAX Call / Put Open Interest Übersicht Alle Verfallsmonate 05.2017 -- 12.2021 14 Kalendertage bis kl. Verfall Nur Frontmonat 05/2017 (bis 19.05.2017) D Hedge S Fut. Basis Veränd. 05.05.17 04.05.17 03.05.17

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr