Erste 3D-Konstruktionen mit GeoGebra 5.0

Größe: px
Ab Seite anzeigen:

Download "Erste 3D-Konstruktionen mit GeoGebra 5.0"

Transkript

1 3D-Geometrie Erste 3D-Konstruktionen mit GeoGebra 5.0 Nach dem Start von GeoGebra kann man unter Ansicht/Graphik 3D ein 3D-Fenster öffnen und durch Klicken auf das Rechteck nach Wunsch in einem eigenen Fenster darstellen. Im 3D-Fenster kann man unter mit der Maus einen Punkt zunächst in der xy-ebene platzieren und dann nach Anklicken mit der linken Maustaste in z-richtung verschieben. Alternativ kann man die Koordinaten des Punktes in der Eingabezeile eingeben, z.b. (-2,2,1) und diesen dann nach Anklicken mit der linken Maustaste wahlweise parallel zur xy-ebene oder vertikal dazu verschieben. Nach Doppelklick kann man die Koordinaten direkt ändern. Nach Eingabe von 3 Punkte A, B, C kann man mit den bereitgestellten Tools das Dreieck ABC oder die Ebene e durch die 3 Punkte konstruieren und das Objekt von verschiedenen Seiten an sehen. Dabei wird deutlich, dass GeoGebra nur das anzeigt, was sich in einem Koordinatenquader befindet, der Rest wird abgeschnitten. Man kann aber Zoomen (ggf. mit dem Scroll-Rad der Maus oder Vergrößern/Verkleinern im Pulldown-Menü unter ) und das Koordinatensystem verschieben wahlweise (Anklicken mit der linken Maustaste) parallel zur xy-ebene oder in z-richtung. Weitere Optionen zur Eingabe von Ebenen findet man im Pulldown- Menü unter oder als Auswahl bei Eingabe von Ebe in der Eingabezeile. Nach Eingabe zweier weiterer Punkte S und R kann man mit 1 / 4 den Strahl von S durch R eingeben und mit direkt den Schnittpunkt D mit dem Dreieck konstruieren. Im Algebra- Fenster werden die Koordinaten von D aber auch der Strahl in Punkt-Richtungsform sowie die Ebene in Koordinatenform dargestellt. Direkte Eingabe einer Gerade durch X=S+ (R-S) in der Eingabezeile. Für Ebenen ist die Punkt-Richtungsform leider (noch) nicht verfügbar.

2 3D-Geometrie Mit einem Schieberegler im parallel angezeigten 2D-Fenster kann man auf dem Strahl d den Punkt T=S+ (R-S) eintragen und feststellen, dass T für =1.5 im Dreieck/in der Ebene liegt. Didaktisch kann man hier unterschiedliche Berechnungen des Schnittpunkts D ansprechen. Erstens über das Einsetzen der Punktrichtungs-Form der Geraden in die Koordinatenform der Ebene, womit man eine lineare Gleichung für und damit D erhält. Zweitens das Gleichsetzen der Punkt-Richtungs-Formen der Geraden und der Ebene e: X=A+ (B-A)+ (C-A). Letzteres führt auf ein Lineares Gleichungssystem, dessen Lösung im Fall, dass >0 und >0, >0, + <1 ist, angibt, dass D innerhalb des Dreiecks ABC liegt. Dies erkennt man aber auch, wenn man die Ansicht in Blickrichtung der Geraden wählt. Erkunde nun weitere 3D-Befehle in der Werkzeugleiste und in der in der Eingabehilfe ( rechts unten) sowie die möglichen Einstellungen unter Eigenschaften insbesondere die Deckkraft der Ebene unter Farbe, vgl. 1-3D-SchnittGeradeDreieck.ggb. Betrachte z.b. den Schnitt eines Kegels mit einer Ebene, vgl. Kegelschnitt-3D.ggb. Man kann auch eigene Werkzeuge als Makros definieren, z.b. die Mittellotebene zu zwei Punkten A und B. Konstruiere dazu zunächst die Mittellotebene zu A und B senkrecht zur Stecke AB durch den Mittelpunkt von A und B. Klicke in der Menüleiste Werkzeuge/Neues Werkzeug erstellen, wähle die Ausgabeobjekte (Ebene), die Eingabeobjekte (A,B), einen Werkzeugnamen und ggf. ein Symbol sowie Werkzeughilfen und klicke auf Fertigstellen. Dann steht das Werkzeug in der Werkzeugleiste zur Verfügung und kann ggf. unter Werkzeuge/Werkzeuge verwalten als Makro abgespeichert werden. Das Makro Mittellotebene.ggt kann durch Drag&Drop in ein neu geöffnetes GeoGebra-Fenster gezogen werden und steht dann auch dort zur Verfügung, vgl. Mittellotebene.ggb. Beachte: Das Grafik-Fenster stellt die xy-ebene des 3D-Fensters dar. Um Objekte nur in einem Fenster anzuzeigen, wählt man unter Einstellungen/Erweitert das gewünschte. Erzeuge z.b. ein Makro für die Umkugel/Inkugel eines Tetraeders. GeoGebra kann mit Vektoren und Matrizen rechnen, z.b. über ein Lineares Gleichungssystem den Schnitt Gerade-Ebene oder über das Vektorprodukt der Richtungen die Normale einer Ebene und damit über das Skalarprodukt die Koordinatengleichung der Ebene sowie den Winkel zwischen den Richtungsvektoren, vgl. 2-3D-Ebenendarstellungen.ggb. 2 / 4

3 3D-Geometrie Matrizen werden als Listen von Listen eingegeben M={{-2,1,-1}{2,-2,-2},{0,1,-1}} und können im Grafikfenster als Objekt unter LaTeX-Formel ausgegeben werden (allerdings leider nicht unter HTML5 im Browser). Die Lösung des Linearen Gleichungssystem Ml = a mit einer nn- Matrix (hier n=3) erhält man direkt als l = M -1 a, vgl. bei Wahl von Schnitt den Lösungsvektor l des LGS im Algebrafenster. Zur einfacheren Eingabe der Matrix M=(u,v,w) kann man ein Makro definieren, vgl. Matrix33-Makro.ggb bzw. Matrix33.ggt. Wählt man Q in e?, so wird die Aufgabe gestellt, die Parameter (, ) im Grafik-Fenster so zu wählen, dass P = Q gilt. Die Lage von Q = A + λ1 u + μ1 v kann man durch Anklicken der Schaltfläche über GeoGebra-Skript mit Hilfe von Zufallszahlen neu setzen, vgl. Eigenschaften von Schaltfläche1: Zur Berechnung des Skalarprodukts und des Vektorprodukts bei Wahl von Normale gibt man einfach in der Eingabezeige ein: vgl. im Algebrafenster den Vektor n und die Zahl sp. Damit kann man die Koordinatenform der Ebene e als x(n)*x+y(n)*y+z(n)*z = n*a (leider im DGS-Teil noch nicht als n*(x,y,z) = n*a ) angeben oder den Winkel der Vektoren u und v bestimmen, vgl. im Algebrafenster die Zahl c und d Winkel. Beachte: Der Vektor n=u v hängt zunächst am Ursprung O. Um ihn in A anzuhängen, verschiebt man A mit um den Vektor n und definiert dann nʹ=vektor[a.aʹ]. In der Figur 3-3D-Schnittgerade-Schnittwinkel.ggb wird die Richtung der Schnittgeraden und den Winkel zweier Ebenen bestimmt, die über die Koordinatenform gegeben sind: 3 / 4

4 3D-Geometrie In der Figur 4-3D-Lage-zweier-Geraden.ggb werden die möglichen Lagebeziehungen zweier Geraden g: X = A + u und h: X = B + v dargestellt (Verzicht auf Vektorpfeile). Liegen g und h nicht parallel, so erhält man die Richtung des Gemeinlotes EF als n = u v und die Punkte E und F über die Vektorkette. Geometrisch erhält man die Ebene e durch B senkrecht zu n auch als Verbindungsebene von h mit der Parallelen zu g durch B und E als Schnitt von g mit der Ebene f durch B mit den Richtungen v und n (f e durch h). F ist dann der Lotfußpunkt von E auf die Ebene e. Betrachte auch weiterführende Beispiele z.b. aus der Geometrie die Polarität von Punkt und Ebene an der Kugel, vgl. 5-3D-Polar-zu-Kugel.ggb, oder die Umkugel eines Tetraeders. An diesen Beispielen wird deutlich, dass GeoGebra enormes Potential besitzt, aber auch, dass sich 3D-Bilder eigentlich erst durch das Drehen des Objektes erschließen, weshalb der haptische Umgang mit 3D-Objekten nicht durch eine 3D-Software ersetzt werden kann. 4 / 4

5 Konstruktionsprotokolle zu ersten 3D-Konstruktionen 1) Konstruktionsprotokoll zu 3D-SchnittGeradeDreieck.ggb: Die 3 Punkte A, B, C legen die Ebene e und ein Dreieck, das Vieleck1 fest. Die Punkte können im Bewegungsmodus durch Anklicken wahlweise parallel oder vertikal zur xy-ebene verschoben werden oder durch Vorgabe der xyz-koordinaten positioniert werden. Durch die Punkte S und R ist der Strahl d festgelegt, der bei geeigneter Wahl von S und R das Dreieck in D trifft. Mit der Zahl ist der Punkt T auf d über die Punkt-Richtungsform definiert und man kann feststellen, für welches der Punkt T in der Ebene e liegt. Ändere die Ansicht so, dass e projizierend als Gerade erscheint bzw. wähle die Ansicht parallel zu d. Über die Eingabezeile kann man den Kegel mit Basiskreis um S mit Radius 1 und Spitze R definieren. Im Algebra-Fenster werden das Volumen, die Oberfläche und die Parameterdarstellung des Basiskreises ausgegeben. Der Punkt E kann direkt in der Ebene e oder auf dem Kegelmantel positioniert werden. 1 / 8

6 2) Konstruktionsprotokoll zu 3D-Ebenendarstellung.ggb Den 3 Teilen dieser Figur liegt das gemeinsame File 3D-Ebenendarstellungen-Teil0.ggb mit folgendem Konstruktionsprotokoll zugrunde. Die 3 Punkte A, B, C legen im 3d-Fenster die Ebene e und die Vektoren a, u und v für die Punkt-Richtungsform für e fest, wobei im 3D-Fenster auf Vektorpfeile verzichtet wird, da diese dort (noch) nicht verfügbar sind. Im Grafik-Fenster 2 legen die xy-koordinaten eines Punktes mit der Bezeichnung Parameter den Punkt P im 3D-Fenster auf der Ebene e mittels der Punkt-Richtungsform fest. Mit dem Text0 werden die Werte für und ausgegeben. Dieser ist über Eigenschaften -> Position an den Punkt Parameter gebunden. Die Punkte P u, P v und die Vektoren p u, p uv, p v und p vu visualisieren die Definition von P über die Punkt-Richtungsform der Ebene e. Der Text1 gibt im Grafik-Fenster 2 die analytische Darstellung der Punkt-Richtungsform aus. 2 / 8

7 Im File 3D-Ebenendarstellungen-Teil1.ggb wird mit den Parametern 1 und 1 ein weiterer Punkt Q in der Ebene e festgelegt und die Frage gestellt, die Parameter (, ) für den Punkt P so zu bestimmen, dass P = Q ist, vgl. Text2. Mit der Schaltfläche1 Setze Q werden über GeoGebra-Skript die Paramater 1 und 1 zufällig im Raster 0.5 (n,m), n, m Z vorgegeben, siehe Eigenschaften -> Skripting: SetzeWert[λ1,0.5*Zufallszahl[-1,5]] ; SetzeWert[μ1,0.5*Zufallszahl[-1,5]]. Im File 3D-Ebenendarstellungen-Teil2.ggb werden durch die Punkte S und T die Gerade d und die Vektoren s, r und rʹ = -r für die Punkt-Richtungsform für d und die analytische Berechnung des Schnittpunkts D festgelegt. Die Koeffizientenmatrix M des LGS wird als Liste von Listen definiert und damit das LGS (vgl. Text3) gelöst als l = (M^(-1)(s-a) (bei nicht invertierbaren Matrizen treten Probleme auf). Mit der Schaltfläche2 Setze P = D werden die Paramater (, ) (der Punkt Parameter) des Punktes P auf (x(l), y(l)) über GeoGebra-Skript gesetzt, siehe Eigenschaften -> Skripting: SetzeWert[Parameter,(x(l),y(l))] 3 / 8

8 Im File 3D-Ebenendarstellungen-Teil3.ggb wird der Vektor n als Vektorprodukt von u und v bestimmt (Das Sonderzeichen findet man im Tableau, das durch Anklicken des Buttons in der Eingabezeile erscheint). Er erscheint zunächst als Vektor von O aus. Durch Verschiebe[A, n] (bzw,. das Werkzeug oder Aʹ = A + n ) erhält man den Punkt Aʹ und damit den Vektor nʹ. Text5 gibt die Normale und die Koordinatengleichung von e analytisch aus. Winkel α gibt den mit dem Werkzeug gemessenen Winkel aus. Mit dem Skalarprodukt sp = u v erhält man den Winkel φ mit Hilfe der Formel für cos φ, wobei man ihn zunächst im Bogenmaß erhält und daher in Gradmaß umrechnen muss. Unter Eigenschaften -> Erweitert kann man die Winkeleinheit wählen und die Arcusfunktion direkt im Gradmaß ausgeben lassen. Im File 3D-Ebenendarstellungen.ggb sind alle drei Teile zusammengefasst und können mit Hilfe von Kontrollkästchen wechselweise ausgewählt werden, siehe Wahrheitswerte w1, w2, w3 und die Eintragungen bei den Objekten unter Eigenschaften -> Erweitert. 3) Konstruktionsprotokoll zu 3D-Schnittgerade-Schnittwinkel.ggb 4 / 8

9 Mit dem Aufpunkt A 1 und dem Normalenvektor n 1 (festgelegt über den Punkt N 1 ) definiert man die Ebene e 1 durch Eingabe der Koordinatengleichung in der Eingabezeile und legt den Normalenvektor nʹ1 in A 1 mit Hilfe des Punktes Nʹ1 fest (Beschriftung mit n 1 ). Analog legt man eine zweite Ebene e 2 fest. Die Richtung r der Schnittgeraden c, die mit Hilfe des Werkzeugs erzeugt wird, erhält man mit dem Vektorprodukt r = n 1 n 2 und gibt sie nach Wahl eines Punktes G von g mit Hilfe des Punktes R als Vektor rʹ aus, entsprechend auch die Vektoren nʹʹ1 und nʹʹ2. Den Schnittwinkel der Ebenen kann man analog zu obigem Beispiel mit dem GeoGebra- Werkzeug messen oder mit Hilfe des Skalarprodukt n 1 n 2 analytisch bestimmen. 5 / 8

10 Zusatz : Konstruktionsprotokoll zu 3D-Kegelschnitt.ggb Der Befehl Kegel[A,B,2] erzeugt den Kegel samt Mantel und Basiskreis und gibt das Volumen und den Inhalt der Mantelfläche sowie eine Parameterdarstellung des Basiskreises aus. Die Schnittkurve des Kegels mit der Ebene e wird als parametrisierte Kurve bestimmt. 6 / 8

11 4) Konstruktionsprotokoll zu 3D-Lage-zweier-Geraden.ggb ohne Eingabefelder und erklärenden Text. Die Punkte A und B bestimmen mit den Vektoren u und v und den Punkten Aʹ und Bʹ die Geraden g und h, wobei man auf die Punkte Aʹ und Bʹ verzichten könnte, indem man z.b. u_a = Vektor[A, A+u] und g = Gerade[A, u] setzt. Als Bezeichnung von u_a wähle u. Der Normalenvektor n = u v wird als Vektor n_b = Vektor[B, B+n] in B angetragen. Bestimme mit die Zahlen det und, die wegen det,, übereinstimmen. Im Fall n o (Nullvektor) liefert d_0 den Abstand der windschiefen/schneidenden Geraden, Beachte: Das Skalarprodukt der Vektorkette w = u + n + v mit n liefert w n = (n n). Im Fall n = o liefert d_0 = Abstand[A, h] den Abstand der parallelen/identischen Geraden. 7 / 8

12 Das Skalarprodukt der Vektorkette w = u + n + v mit u oder v liefert das LGS: (u u) + (v u) = w u und (u v) + (v v) = w v mit der Koeffizientenmatrix M in Zeile 18, die im Fall n o invertierbar ist. Identität von Lagrange: n 2 = (u v) 2 = u 2 v 2 (u v) 2 = det(m). Da GeoGebra im Fall n = o bei der inversen Matrix M^(-1) in einen Bug läuft, wurde der Vektor l direkt mit det(m) M^(-1) bestimmt und dann die Koeffizienten zur Bestimmung der Lösungen und durch det(m) geteilt. Diese legen dann (falls definiert, d.h. det(m) 0 n o) die Punkte E und F und im Fall d_0 0 das Gemeinlot d =EF fest. Im Fall d_0 = 0 schneiden sich g und h im Punkt S = E = F und haben das Lot in S auf die Ebene e als Gemeinlot. Im Fall det(m) = 0, sind g und h parallel oder identisch und jedes Lot auf g auch Lot auf h. Mit den Wahrheitswerten in Zeile kann man die vorliegende Lage der Geraden als Text (vgl. Zeilen 32 33) ausgeben und z.b. im Fall, dass die Geraden einander schneiden, S einblenden (Bedingung schneidend unter Eigenschaften -> Erweitert von S). 8 / 8

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht.

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Vorlesung 2 : Do. 10.04.08 Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Einführung in GeoGebra: Zunächst eine kleine Einführung in die Benutzeroberfläche

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 0 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 446 455 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

5 Konstruktion der Winkelhalbierenden als Makro

5 Konstruktion der Winkelhalbierenden als Makro 5 Winkelhalbierende 5 Konstruktion der Winkelhalbierenden als Makro Gegeben ist der Winkel =

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge. 1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen

Mehr

GeoGebra Quickstart. Eine Kurzanleitung für GeoGebra 3.0

GeoGebra Quickstart. Eine Kurzanleitung für GeoGebra 3.0 GeoGebra Quickstart Eine Kurzanleitung für GeoGebra 3.0 Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige

Mehr

Arbeiten mit dem Geometrieprogramm GeoGebra

Arbeiten mit dem Geometrieprogramm GeoGebra Fachdidaktik Modul 1, WS 2012/13 Didaktik der Geometrie III: Konstruieren Planarbeit Arbeiten mit dem Geometrieprogramm GeoGebra I. Erstes Erkunden der Programmoberfläche: Grund- und Standardkonstruktionen

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website  und klicken Sie auf der Startseite auf Download. 1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

GeoGebra. Desktop Version. Was ist GeoGebra?

GeoGebra. Desktop Version. Was ist GeoGebra? GeoGebra Desktop Version Was ist GeoGebra? Dynamische Mathematiksoftware in einem einfach zu bedienenden Paket. Vereint interaktive 2D- und 3D-Geometrie, Algebra, Tabellen, Grafiken, Analysis und Statistik.

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Wahlteil: Analytische Geometrie II 1

Wahlteil: Analytische Geometrie II 1 Abitur Mathematik: Wahlteil: Analytische Geometrie II Baden-Württemberg 202 Aufgabe II a). SCHRITT: AUFSTELLEN DER KOORDINATENGLEICHUNG FÜR E Die Verbindungsvektoren AB und AP von je zwei der drei vorgegebenen

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite von 9 Unterlagen für die Lehrkraft Abiturprüfung 00 Mathematik, Leistungskurs Aufgabenart Lineare Algebra/Geometrie ohne Alternative Aufgabenstellung siehe Prüfungsaufgabe 3 Materialgrundlage Fotografie

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Mögliche Lösung. Ebenen im Haus

Mögliche Lösung. Ebenen im Haus Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung

Mehr

Kurzanleitung zum Einsatz von Geogebra

Kurzanleitung zum Einsatz von Geogebra Kurzanleitung zum Einsatz von Geogebra Günter Seebach Vorbemerkung: Im Folgenden werden nur die wichtigsten Bedienhinweise für Geogebra in Kurzform dargestellt. Weitergehende Informationen finden sich

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Geometrie Q11 und Q12

Geometrie Q11 und Q12 Skripten für die Oberstufe Geometrie Q und Q. E: x + 3x 4 = 0 A 3 H. Drothler 0 www.drothler.net Geometrie Oberstufe Seite Inhalt 0. Das räumliche Koordinatensystem... 0. Vektoren...3 03. Vektorketten...4

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

GEOGEBRA. Willkommen bei GeoGebra

GEOGEBRA. Willkommen bei GeoGebra GEOGEBRA Willkommen bei GeoGebra GeoGebra ist eine für LehrerInnen und SchülerInnen interaktive, freie, mehrfach ausgezeichnete Unterrichtssoftware für Mathematik, welche von der Grundschule bis zur Universität,

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

aus: Exemplarische, beziehungsreiche Aufgaben, Februar 2006 Arbeite mit dem Geometrieprogramm GeoGebra.

aus: Exemplarische, beziehungsreiche Aufgaben, Februar 2006 Arbeite mit dem Geometrieprogramm GeoGebra. ÜBERWACHUNGSKAMERA Arbeite mit dem Geometrieprogramm GeoGebra. Du kannst grundlegende Elemente des Programms kennen lernen, indem du die Aufgaben auf dem Arbeitsblatt löst. Screenshots sollen dir dabei

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Vektoren mit GeoGebra

Vektoren mit GeoGebra Vektoren mit GeoGebra Eine Kurzanleitung mit Beispielen Markus Hohenwarter, 2005 In GeoGebra kann mit Vektoren und Punkten konstruiert und gerechnet werden. Diese Kurzanleitung gibt einen Überblick über

Mehr

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra GeoGebra Quickstart Eine Kurzanleitung für GeoGebra Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige

Mehr

Das Grafikfenster ist dein Zeichenfeld. In das Eingabefenster kannst du mathematische Ausdrücke eingeben, zb die Koordinaten eines Punktes.

Das Grafikfenster ist dein Zeichenfeld. In das Eingabefenster kannst du mathematische Ausdrücke eingeben, zb die Koordinaten eines Punktes. Körper und Figuren Eigenschaften von Figuren So zeichnest du Figuren mit der Geometrie-Software Geogebra Wenn du Geogebra startest, siehst du drei Fenster: das Grafikfenster, das Algebrafenster und das

Mehr

Beispiel mit Hinweisen 1 1/3 Dreieck

Beispiel mit Hinweisen 1 1/3 Dreieck Beispiel mit Hinweisen 1 1/3 Dreieck Zeige für das Dreieck ABC [ A(5/5), B(29/15), C(5/15) ] die Richtigkeit von folgender Behauptung: Die drei Verbindungsstrecken der Eckpunkte mit den Berührungspunkten

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015 Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 3: Analytische Geometrie Das Modell einer Gartenlaterne kann als Stumpf einer regelmäßigen quadratischen

Mehr

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Name und des Einsenders

Name und  des Einsenders Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec Andreas.Ulovec@univie.ac.at Verwenden von Dynamischer

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel

Mehr

1. Lineare Funktionen und lineare Gleichungen

1. Lineare Funktionen und lineare Gleichungen Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Vorkurs Mathematik Teil III. Lineare Algebra

Vorkurs Mathematik Teil III. Lineare Algebra Vorkurs Mathematik Teil III. Lineare Algebra Inhalt 0. Inhalt 1. Lineare Gleichungssysteme und Gauß-Verfahren. Vektorrechnung 3. Lagebestimmungen von Punkt, Geraden und Ebenen 4. Skalarprodukt, Längen

Mehr

GeoGebra - Kurzanleitung Eine aufgabenorientierte Einführung in GeoGebra

GeoGebra - Kurzanleitung Eine aufgabenorientierte Einführung in GeoGebra GeoGebra - Kurzanleitung Eine aufgabenorientierte Einführung in GeoGebra Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels

Mehr

Markus' Formelsammlung für die Vektorgeometrie

Markus' Formelsammlung für die Vektorgeometrie Markus' Formelsammlung für die Vektorgeometrie Markus Dangl.4. Zusammenfassung Dieses Dokument soll eine Übersicht über die Vektorgeometrie für die Oberstufe am Gymnasium geben. Ich versuche hier möglichst

Mehr

Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten:

Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: Die Ebenenformen 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: P (4/7/3); Q(1/1/1); R(2/-2/) Ein Punkt dient als Stützvektor, die anderen beiden werden von diesem abgezogen und dienen

Mehr

und spannen die folgende Ebene auf: E = a + Ru + Rv.

und spannen die folgende Ebene auf: E = a + Ru + Rv. .5. Geraden und Ebenen Parameterdarstellungen von Geraden und Ebenen gewinnt man, indem man einen Ortsvektor (mit Spitze auf der Geraden oder Ebene und einen bzw. zwei Richtungsvektoren wählt, welche die

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

2.5. Geraden und Ebenen

2.5. Geraden und Ebenen .5. Geraden und Ebenen Parameterdarstellungen von Geraden und Ebenen gewinnt man, indem man einen Ortsvektor (mit Spitze auf der Geraden oder Ebene und einen bzw. zwei Richtungsvektoren wählt, welche die

Mehr

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt.

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 6 4. Darstellung der Ebene 4. Die Parametergleichung der Ebene einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 0 2 r uuur

Mehr

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 ) Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Quickstart. Mit GeoGebra können SchülerInnen Mathematik durch Ziehen von Objekten und Verändern von Parametern interaktiv erkunden.

Quickstart. Mit GeoGebra können SchülerInnen Mathematik durch Ziehen von Objekten und Verändern von Parametern interaktiv erkunden. Quickstart Was ist GeoGebra? Dynamische Mathematiksoftware in einem einfach zu bedienenden Paket Zum Lernen und Lehren in allen Schulstufen Vereint Geometrie, Algebra, Tabellen, Grafiken, Analysis und

Mehr

Lösungen der 1. Lektion

Lösungen der 1. Lektion Lektionen der Vektorrechnung in Aufgaben Lösungen Schickt mir bei Entdeckung eines Fehlers oder Unklarheiten bitte eine e-mail! Lösungen der 1. Lektion Es ist hier unerheblich, wie Vektoren definiert werden.

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Umkreis eines Dreiecks

Umkreis eines Dreiecks Umkreis eines Dreiecks Zeichne mit GeoGebra ein Dreieck mit den Eckpunkten A (-5-1), B (4-2), C (2 3) und konstruiere dessen Umkreis. Mit Werkzeugleiste 1 Konstruiere mit dem Werkzeug Vieleck das Dreieck

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

5.4 Vektorgeometrie. 1 Repetition der Vektorgeometrie I Freie Vektoren, Ortsvektoren Die skalare Multiplikation eines Vektors...

5.4 Vektorgeometrie. 1 Repetition der Vektorgeometrie I Freie Vektoren, Ortsvektoren Die skalare Multiplikation eines Vektors... 5.4 Vektorgeometrie Inhaltsverzeichnis Repetition der Vektorgeometrie I. Freie Vektoren, Ortsvektoren................................... Die skalare Multiplikation eines Vektors.............................3

Mehr

Box. Mathematik. Δ y = 1. Analytische Geometrie ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Box. Mathematik. Δ y = 1. Analytische Geometrie ZU DEN KERNCURRICULUM-LERNBEREICHEN: Box Mathematik Schülerarbeitsbuch 4 y C Δ x = 1 B 3 Δ y = 3 2 C Δ y = 1 1 A Δ x = 3 B x Niedersachsen 1 2 3 4 Analytische Geometrie ZU DEN KERNCURRICULUM-LERNBEREICHEN: Raumanschauung und Koordinatisierung

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Damit haben wir schon die Koeffizienten der Gleichung gefunden, in dem wir n noch durch 6 teilen. 5x 2y + 13z = C. (2) = 36 = C.

Damit haben wir schon die Koeffizienten der Gleichung gefunden, in dem wir n noch durch 6 teilen. 5x 2y + 13z = C. (2) = 36 = C. Aufgabenblatt 6 0 Punkte Aufgabe 1 (Pyramide) Gegeben ist eine Pyramide P mit dem Dreieck ABC als Grundfläche und Spitze D. Es sei A(2 0 2), B(10 7 0), C(0 8 ) und D(8 1 10). a) Gib eine (möglichst einfache)

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Studiengänge) Beispiele

Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. DETERMINANTEN Determinanten

Mehr

(3+2). Klausur Lösung

(3+2). Klausur Lösung EI M5 2011-12 MATHEMATIK (3+2). Klausur Lösung 1. Aufgabe (2 Punkte) Bilde die erste Ableitung der Funktion f mit für reelle Zahlen x. Dies ist eine Verkettung von e-funktion und sin(x). Also Kettenregel

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

SEK I - Geogebra Lösungen

SEK I - Geogebra Lösungen Einführung Algebrafenster, Menüleiste Eingabezeile Zeichenfenster Trennungslinie zwischen Algebra- und Zeichenfenster erkennst du dort? 12 Hier sind die und ihre Kurzbeschreibung etwas durcheinander geraten.

Mehr

Dynamische Geometrie Software in der Oberschule Teil 2

Dynamische Geometrie Software in der Oberschule Teil 2 Landesinstitut für Schule - Bremen Hauptseminar 31 - Fachdidaktisches Seminar für Mathematik Dynamische Geometrie Software in der Oberschule Teil 2 Heinz-Jürgen Harder Fachleiter für Mathematik Januar

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr