Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig 25. Juli 2016

Größe: px
Ab Seite anzeigen:

Download "Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig 25. Juli 2016"

Transkript

1 Institut für Mechani Prüfung Prof. Dr.-Ing. habil. P. Betsch Bauynai Prof. Dr.-Ing. habil. Th. Seelig 25. Juli 206 Aufgabe Ein asseloser un starrer Stab ist i Punt B rehbar gelagert un wir a Punt A urch eine Feer er Steifigeit gehalten. A Punt C ist ein Däpfer er Däpfungsonstante vorhanen. A Punt D greift eine Puntasse un eine zeitlich veränerliche Last F(t) an. F(t) 2a a 2a A B C D Bearbeiten Sie folgene Teilaufgaben: a) Wählen Sie ein geeignetes Koorinatensyste i Punt B un schneien Sie as Syste frei. b) Stellen Sie ie Bewegungsgleichung ittels er synthetischen Methoe auf c) Linearisieren Sie ie Bewegungsgleichung für leine Deforationen ) Berechnen Sie as Lehr sche Däpfungsaß sowie ie Eigenreisfrequenz Gegeben: a,,,, Ω, t, F(t) F 0 cos(ωt)

2 Institut für Mechani Prüfung Prof. Dr.-Ing. habil. P. Betsch Bauynai Prof. Dr.-Ing. habil. Th. Seelig 25. Juli 206 Aufgabe 2 Das gegebene Syste it zwei Freiheitsgraen besteht aus eine asselosen Rahen un eine Klotz it er Masse, ie it reibungsfreien Rollen verbunen sin. Ein Penel er Masse 2 ist über einen starren un asselosen Stab it e Klotz verbunen. Angeregt wir as Syste urch eine zeitlich veränerliche Verschiebung u(t) u 0 cos(ωt). e y e x u(t) x L g 2 Die Bewegungsgleichungen sollen it er Methoe nach Lagrange bestit weren. a) Führen Sie generalisierte Koorinaten ein, eritteln Sie ie nichtlinearen Ortsvetoren un ie nichtlinearen Energien T un V. b) Geben Sie ie Berechnungsvorschriften er Lagrange schen Energie sowie es Lagrange schen Foralisus zweiter Art an. Aus e Lagrange schen Foralisus erhält an nun ie folgenen nichtlinearen Bewegungsgleichungen. ( + 2 )ẍ + 2 L cos() + x 2 L 2 sin() ( + 2 )u 0 Ω 2 cos(ωt) 2 L cos()ẍ + 2 L gl sin() 2 L cos()u 0 Ω 2 cos(ωt) c) Linearisieren Sie ie gegebene Bewegungsgleichungen für leine (x, ẋ,, ) un geben Sie iese in Matrixschreibweise an. ) Bestien Sie ie Eigenreisfrequenzen es Systes. e) Eritteln Sie ie Schwingungsaplituen i eingeschwungengen Zustan für ie gegebene Erregung u(t) u 0 cos(ωt). f) Die Masse 2 soll als Schwingungstilger wiren. Bei welcher Erregerfrequenz Ω befinet sich er Klotz in Ruhe? Gegeben: u 0, u(t) u 0 cos(ωt),, 2,, L, g

3 Moulprüfung Bauynai a 25. Juli 206 Bauynai Lösungen Nae:... Vornae:... Matr.-Nr:... Stuiengang:... Hinweise: Bitte schreiben Sie eutlich un lesbar. Zeichnungen üssen sauber un übersichtlich sein. Die Benutzung roter un grüner Farbstifte ist nicht zugelassen. Aufgaben weren nur gewertet, wenn sie auf er ausgegebenen Lösungsvorlage bearbeitet wuren. Abgegebene Forelsalungen weren als nicht vorhanen betrachtet. Beginnen Sie jee Aufgabe auf eine neuen Blatt. Beschriften Sie ie Blätter er Lösungsvorlagen nur auf er Vorerseite. Der Lösungsweg er Aufgaben uss eineutig erennbar sein. Ein Ergebnis ohne Lösungsweg wir nicht gewertet. Sollten für eine Aufgabe ehrere wiersprüchliche Lösungen angegeben sein, so wir eine gewertet. Streichen Sie eshalb falsche Rechenschritte oer Zeichnungen urch. Aufgabe 2 Punte Korretor (Eintrag erfolgt urch Institut)

4 Institut für Mechani Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Klausur Bauynai 25. Juli 206. Aufgabe a) Koorinatensyste Einführen + Freischnitt F(t) 2a a 2a A B C D Syste F y x F(t) F Freischnitt F 2asin() F y acos() F(t) F 0 cos(ωt) it y asin() y acos() acos() asin() a Abb..3: Geoetrie b) Drallsatz: (Positiv in -Richtung) ΣM B J B J B (3a) 2 9a 2

5 F 2acos() F acos()+f(t)3acos() J B 2a2asin()cos() acos() acos()+f 0 cos(ωt)3acos() 9a 2 4a 2 sin()cos() a 2 cos 2 () +F 0 3acos(Ωt)cos() 9a 2 9a 2 +a 2 cos 2 () +4a 2 sin()cos() 3F 0 acos(ωt)cos() + cos2 () 9 4sin()cos() + 9 F 0cos(Ωt)cos() 3a c) Linearisierung DGL it: sin() cos() F 0cos(Ωt) 3a ) Mit Eigenreisfrequenz un Lehr sches Däpfungsaß: ω ω Dω D 8ω

6 Institut für Mechani Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Klausur Bauynai 25. Juli Aufgabe a) Generalisierte Koorinaten: [ ] x q Ortsvetoren: [ ] [ ] u(t)+x u0 cos(ωt)+x r [ 0 ] 0 [ ] u(t)+x+sin() u0 cos(ωt)+x+lsin() r 2 lcos() lcos() Zeitableitung Ortsvetoren: [ ] u0 Ωsin(Ωt)+ẋ ṙ [ 0 ] u0 Ωsin(Ωt)+ẋ+l cos() ṙ 2 l sin() l lcos() lsin() Abb. 2.: Geoetrie Quarate er Geschwinigeiten: v 2 ( u 0 Ω sin(ωt)+ẋ) 2 u 2 0 Ω2 sin 2 (Ωt) 2u 0 Ω sin(ωt)ẋ+ẋ 2 v 2 2 ( u 0 Ω sin(ωt)+ẋ+l cos()) 2 +( l sin()) 2 u 2 0 Ω2 sin 2 (Ωt)+ẋ 2 +l 2 2 cos 2 ()+2( u 0 Ω sin(ωt)ẋ u 0 Ω sin(ωt)l cos() +ẋl cos())+l 2 2 sin 2 () u 2 0Ω 2 sin 2 (Ωt)+ẋ 2 +l 2 2 (cos 2 ()+sin 2 ()) }{{} 2u 0 Ω sin(ωt)(ẋ+l cos())+2ẋl cos() u 2 0Ω 2 sin 2 (Ωt)+ẋ 2 +l 2 2 2u 0 Ω sin(ωt)(ẋ+l cos())+2ẋl cos() u 2 0 Ω2 sin 2 (Ωt)+ẋ 2 +l l cos()(ẋ u 0 Ω sin(ωt)) 2u 0 Ω sin(ωt)ẋ

7 Energien: T 2 v v (u 2 0 Ω2 sin 2 (Ωt) 2u 0 Ω sin(ωt)ẋ+ẋ 2 )+ 2 2(u 2 0 Ω2 sin 2 (Ωt)+ẋ 2 +l l cos()(ẋ u 0 Ω sin(ωt))) 2u 0 Ω sin(ωt)ẋ 2 ( + 2 )(u 2 0Ω 2 sin 2 (Ωt) 2u 0 Ωsin(Ωt)ẋ+ẋ 2 ) + 2 2(l l cos()(ẋ u 0 Ωsin(Ωt)) V 2 x2 + 2 gl( cos()) lcos() l l l( cos()) Abb. 2.2: Geoetrie b) Lagrange Foralisus it L T V ( ) L L 0 (α,2) t q α q α c) Linearisierung er gegebenen DGL en für leine Auslenungen it: sin() cos() sin() 2 0 [ ] l 2 2 l 2 } {{ } M ( + 2 )ẍ+ 2 l +x ( + 2 )u 0 Ω 2 cos(ωt) 2 lẍ+ 2 l gl 2 lu 0 Ω 2 cos(ωt) [ẋ ] }{{} q [ gl } {{ } K ][ [ ] x ( + 2 )u 0 Ω ] 2 cos(ωt) 2 lu 0 Ω 2 cos(ωt) }{{}}{{} q F

8 ) Eigenfrequenz charateristische Gleichung: et(k ω 2 M)! 0 ( ω et 2 ( + 2 ) ω 2 2 l ω 2 2 l 2 gl ω 2 2 l ) ( ω 2 ( + 2 ))( 2 gl ω 2 2 l) ( ω 2 2 l)( ω 2 2 l) 2 gl ω 2 2 l 2 ω 2 ( + 2 ) 2 gl+ω 4 ( + 2 ) 2 l 2 ω l2 0 : l 2 g ω 2 2 l ω 2 ( + 2 ) 2 g +ω 4 ( + 2 ) 2 l ω l 0 : 2 g ω 2 (l +( + 2 )g)+ω 4 (( + 2 )l 2 l) 0 g ω 2 (l +( + 2 )g)+ω 4 l 0 lω 4 (l+( + 2 )g)ω 2 +g 0 Lösung er quaratischen Gleichung in ω 2 : ω 2 l +( + 2 )g+ (l+( + 2 )g) 2 4 lg 2 l ω 2 2 l +( + 2 )g (l +( + 2 )g) 2 4 lg 2 l e) Schwingungsaplituen: Lösungsansatz: x p a cos(ωt) ẍ p a Ω 2 cos(ωt) b a 2 cos(ωt) b a 2 Ω 2 cos(ωt) einsetzen in DGL en: ( + 2 )( a Ω 2 cos(ωt))+ 2 l( a 2 Ω 2 cos(ωt))+a cos(ωt) ( + 2 )u 0 Ω 2 cos(ωt) 2 l( a Ω cos(ωt))+ 2 l 2 ( a 2 Ω 2 cos(ωt))+ 2 gla 2 cos(ωt) 2 lu 0 Ω 2 cos(ωt) ( ( + 2 ) + )a + 2 lω 2 a 2 ( + 2 )u 0 Ω 2 Ω 2 a +(g lω 2 )a 2 u 0 Ω 2 Lineares Gleichungssyste: [ ][ ] [ ] ( + 2 )Ω 2 2 lω 2 a ( + Ω 2 g lω 2 2 )u 0 Ω 2 a 2 u 0 Ω 2 }{{} A [ ] [ ][ ] a g lω 2 2 lω 2 ( + 2 )u 0 Ω 2 a 2 et(a) Ω 2 ( + 2 )Ω 2 u 0 Ω 2

9 et(a) ( ( + 2 )Ω 2 )(g lω 2 ) ( Ω 2 )( 2 lω 2 ) g lω 2 ( + 2 )Ω 2 g +( + 2 )lω 4 2 lω 4 g + lω 4 [l+( + 2 )g]ω 2 Aplituen: a et(a) ((g lω2 )( + 2 )u 0 Ω lω 2 u 0 Ω 2 ) et(a) (g( + 2 )u 0 Ω 2 lω 2 ( + 2 )u 0 Ω lω 2 u 0 Ω 2 ) et(a) (g( + 2 ) lω 2 )u 0 Ω 2 (g( + 2 ) lω 2 )u 0 Ω 2 g + lω 4 [l+( + 2 )g]ω 2 a 2 et(a) Ω2 ( + 2 )u 0 Ω 2 +( ( + 2 )Ω 2 )u 0 Ω 2 ) et(a) (Ω2 ( + 2 )+ ( + 2 )Ω 2 )u 0 Ω 2 et(a) u 0Ω 2 u 0 Ω 2 g + lω 4 [l+( + 2 )g]ω 2 f) Schwingungstilgung: Klotz in Ruhe wenn gilt a! 0. et(a) (g( + 2 ) lω 2 )u 0 Ω 2 0 g( + 2 ) lω 2 0 Ω 2 g( + 2 ) l g( + 2 ) Ω l

1. Aufgabe: (ca. 13% der Gesamtpunkte)

1. Aufgabe: (ca. 13% der Gesamtpunkte) Institut für Mechani Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynami 3. Juli 07. Aufgabe: (ca. 3% der Gesamtpunte) a) Was versteht man unter stationärer Lösung einer

Mehr

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise:

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise: Technische Mechanik III WiSe 0 6.0.0 Nae : Vornae : Matrikelnuer : Klausurnuer : Aufgabe Punkte 9 0 50 Allgeeine Hinweise: alle Blätter it Naen und Matrikelnuer beschriften! keine grüne oder rote Farbe

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Klausur mit Lösung. Baudynamik. 17. Februar 2014

Klausur mit Lösung. Baudynamik. 17. Februar 2014 Klausur mit Lösung Bauynamik 7. Februar 04 Aufgabe (ca. 5 % er Gesamtpunktzahl) a) Die freien Schwingungen eines -FHG-Systems sollen in einem Phaseniagramm argestellt weren. Zeichnen Sie zu iesem Zweck

Mehr

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Prof. Dr. Schön un Dr. Eschrig Wintersemester 004/005 Aufgabe 38 6 Punkte Für ϕ = 0 gilt: e ϑ = e x cos ϑ e z sin ϑ un e r = e x sin ϑ + e z cos

Mehr

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV ZÜ 3. Aufgabe 3. Ein Wagen Masse M) kann eibungsfei auf eine waagechten Bahn fahen. An eine Achse uch seinen Schwepunkt S que zu Fahtichtung hängt eibungsfei gelaget ein Massenpenel Masse, Länge l, Stab

Mehr

Festigkeitslehre. Modulprüfung in Technischer Mechanik am 11. August Aufgaben. Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise:

Festigkeitslehre. Modulprüfung in Technischer Mechanik am 11. August Aufgaben. Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Modulrüfung in Technischer Mechanik am. August 205 Festigkeitslehre Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutlich lesbar. Zeichnungen müssen sauber und übersichtlich

Mehr

1. Aufgabe: (ca. 15% der Gesamtpunkte)

1. Aufgabe: (ca. 15% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. h. Seelig Prüfung in Baudynaik. Februar 8. Aufgabe: (ca. 5% der Gesatpunkte) a) Was versteht an unter aktiver und passiver Schwingungsisolierung?

Mehr

Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig. Prüfung in Dynamik 12. August 2015

Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig. Prüfung in Dynamik 12. August 2015 Institut fü Mechanik Pof. D.-Ing. habil. P. Betsch Pof. D.-Ing. habil. Th. Seelig Püfung in Dynaik 12. August 2015 Aufgabe 1 (ca. 18 % e Gesatpunkte) g l θ In e Abbilung ist ein otieenes Kaussell skizziet.

Mehr

die Eigenfrequenz des Systems für Drehschwingungen um den Punkt A und 20 m

die Eigenfrequenz des Systems für Drehschwingungen um den Punkt A und 20 m ufgabensalung Dynaik ufgabe Der nachfolgen argestellte Einassenschwinger soll untersucht weren. Das Syste besteht aus eine en Balken it er Masse, eine Stab un eine viskosen Däpfer. Berechnen Sie a.) ie

Mehr

Technische Mechanik III

Technische Mechanik III INSTITUT FÜR MECHANIK Technische Universität Darstadt Prüfung Technische Mechanik III Prof. W. Becker Prof. D. Gross Prof. P. Hagedorn Prof. R. Markert Jun. Prof. R. Müller a 27. Februar 2006 (Nae) (Vornae)

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014 Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 24 Dr. Sebastian ieel 2. Juli 24 Klausur Mathematik II für Wirtschaftswissenschaftler Name:.......................................

Mehr

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2 Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................

Mehr

Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen

Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Denys Sutter, 25. September 217 Allgemeine Fragen 1. Dimensionsanalyse ist eine nützliche Methoe sich avon zu überzeugen, ass eine physikalische

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

dt L q, q,t 3. Lagrange-Formalismus 3.1. Hamilton'sches Prinzip

dt L q, q,t 3. Lagrange-Formalismus 3.1. Hamilton'sches Prinzip 3. Lagrange-Formalismus 3.1. Hamilton'sches Prinzip Die Lagrange-Funktion L eines mechanischen Systems ist efiniert als Differenz er kinetischen Energie T un er potenziellen Energie U L = T U Das Wirkungsfunktional

Mehr

1. Aufgabe: (ca. 14% der Gesamtpunkte)

1. Aufgabe: (ca. 14% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynamik 23. Juli 2018 1. Aufgabe: (ca. 14% der Gesamtpunkte) a) Geben Sie Amplitude, Frequenz und Phasenverschiebung

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018 Institut für Technische und Num. Mechanik Maschinendynamik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P 1 20. März 2018 Prüfung in Maschinendynamik Nachname, Vorname Aufgabe 1 (6 Punkte) Bestimmen

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Beachten sie bitte die Punkteverteilung

Beachten sie bitte die Punkteverteilung Tutor oer Tutorium: Semester: Fachrichtung: Beachten sie bitte ie Punkteverteilung Aufgabe Punkte 1 9 2 7 3 7 4 7 5 10 Gesamt 40 Nützliche Formeln un Konstanten: Erbeschleunigung: g = 10 m/s 2 Kleine Winkelnäherung:

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.:

Maschinendynamik. Klausur Frühjahr Name: Matrikel-Nr.: Maschinendynamik Klausur Frühjahr 2009 Name: Matrikel-Nr.: Punkte Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 erreichte Punkte mögliche Punkte 60 Maschinendynamik Klausur Frühjahr 2009

Mehr

Lösung zu Übungsblatt 11

Lösung zu Übungsblatt 11 PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Festigkeitslehre. Aufgaben

Festigkeitslehre. Aufgaben Modurüfung in Technischer Mechanik am 8. März 06 Festigkeitsehre Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutich esbar. Zeichnungen müssen sauber und übersichtich

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1 Prof.. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physi 2 Lösungen zu Blatt 1 Aufgabe 1: Differentialoperatoren der Vetoranalysis (a) Aus der Definition des Nabla-Operators folgt

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Lösungen zu Kapitel 6

Lösungen zu Kapitel 6 Lösungen zu Kapitel 6 Lösung zu Aufgabe : Es ist T (a) = {b b 0, b a}. Wir erhalten Es folgt un amit T (54) = {, 2, 3, 6, 9, 8, 27, 54}, T (72) = {, 2, 3, 4, 6, 8, 9, 2, 8,.24, 36, 72}. T (54) T (72) =

Mehr

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: Technische Mechanik III Übung WS 004 / 005 Klausur Teil Institut für Robotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer Tel.: +43/73/468-9786 Fax: +43/73/468-979 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Allgemeine Mechanik Musterlösung 5.

Allgemeine Mechanik Musterlösung 5. Allgemeine Mechanik Musterlösung 5. HS 014 Prof. Thomas Gehrmann Übung 1. Rotierende Masse. Eine Punktmasse m rotiere reibungslos auf einem Tisch (siehe Abb. 1). Dabei ist sie durch einen Faden der Länge

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

Eigen-Kreisfrequenz ω ω 0

Eigen-Kreisfrequenz ω ω 0 Hochschule Esslingen Prof. Dr.-Ing. Rolan Mastel Schwingungslehre - Maschinenynai orelzeichen (ie in er Vorlesung benutzt weren) Anlehnung an Auch übliche Bezeichnung DIN 3. (/) Aplitue, y requenz f f

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Repetitorium A: Newtonsche Mechanik, Schwingungen

Repetitorium A: Newtonsche Mechanik, Schwingungen Faultät für Physi T: Klassische Mechani, SoSe 5 Dozent: Jan von Delft Übungen: Katharina Stadler, Fraue Schwarz, Dennis Schimmel, Luas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Repetitorium B: Lagrangesche Mechanik

Repetitorium B: Lagrangesche Mechanik Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-uenchen.de/lehre/vorlesungen/sose_6/t_theor_echanik/

Mehr

Dynamik. Modulprüfung in Technischer Mechanik am 9. März Aufgaben. Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise:

Dynamik. Modulprüfung in Technischer Mechanik am 9. März Aufgaben. Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Moduprüfun in Technischer Mechanik a 9. März 16 Aufaben Nae: Vornae: Matr.-Nr.: Fachrichtun: Hinweise: Bitte schreiben Sie deutich esbar. Zeichnunen üssen sauber und übersichtich sein. Die Benutzun roter

Mehr

10. Lagrange-Formalismus

10. Lagrange-Formalismus Übungen zur T1: Theoretische Mechanik, SoSe013 Prof Dr Dieter Lüst Theresienstr 37, Zi 45 10 Lagrange-Formalismus Dr James Gray JamesGray@physikuni-muenchene Übung 101: Penel an Feern Eine Punktmasse m

Mehr

Besprechung am

Besprechung am PN Einführung in die Physi für Chemier Prof. J. Lipfert WS 206/7 Übungsblatt 0 Übungsblatt 0 Besprechung am 7.0.207 Aufgabe Ungedämpfter harmonischer Oszillator. Eine Masse m schwingt reibungsfrei an einer

Mehr

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb.

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb. Tutoriumsaufgaben. Aufgabe a) Wir nutzen den Drallsatz für die olle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Θ S φ = M(t) rs + cos(φ) F c + F H () m x = S + F H F c Gl.

Mehr

12 Lineare Differentialgleichungen mit periodischen Koeffizienten

12 Lineare Differentialgleichungen mit periodischen Koeffizienten 56 Gewöhnliche Differentialgleichungen / Sommersemester 28 12 Lineare Differentialgleichungen mit eriodischen Koeffizienten 12.1 Homogene lineare Systeme mit eriodischen Koeffizienten haben für > die Form

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html 9. Januar 006 Übungsblatt 8 Lösungsvorschlag 3 Aufgaben,

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

15. März Korrektur

15. März Korrektur nstitut für Technische und Num. Mechani Maschinendynami Prof. P. Eberhard / Dr.-ng.. leißner WS 2015/16 P 1 15. März 2016 Prüfung in Maschinendynami Nachname, Vorname Aufgabe 1 (8 Punte) Bestimmen Sie

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen FB IW - Meschede Ingenieurmathematik (MB 0.09.018 Klausur Ingenieurmathematik - Lösungen Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 3 4 5 6 7 8 Summe Note Punkte Die Klausur

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR.

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR. - Aufgaben Aufgabe : Abschlussprüfung 999 / AI Gegeben ist ie Funktion f( x) sin ( x ) = un x IR. a) Ermitteln Sie alle Nullstellen un Extrempunkte er Funktion f. b) Zeichnen Sie en Graphen er Funktion

Mehr

Blatt 05.3: Green sche Funktionen

Blatt 05.3: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Gekoppelte Pendel und Kopplungsgrad

Gekoppelte Pendel und Kopplungsgrad Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen

Mehr

Statik starrer Körper

Statik starrer Körper odulprüfung in Technischer echnik m 09. ärz 016 Sttik strrer Körper ufgben Nme: Vornme: tr.-nr.: Fchrichtung: Hinweise: Bitte schreiben Sie deutlich lesbr. Zeichnungen müssen suber und übersichtlich sein.

Mehr

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W.

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Klausur vom 4. September 009 Aufgabe : Pendelnde Hantel

Mehr

Abschlussaufgabe Nichttechnik - A II - Lösung

Abschlussaufgabe Nichttechnik - A II - Lösung GS - 7 - m_nta_lsgmc Abschlussaufgabe - Nichttechni - A II - Lösung Gegeben ist ie relle Funtion f ( x) x = x mit IR > un ID f = IR Der Graph wir mit G f bezeichnet Bestimmen Sie Lage un Vielfachheit er

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 4 08.11.01 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nena Balanesković Die Lagrange Methoe zweiter Art, Symmetrien un Erhaltungsgrößen 1. y r x Gegeben sei

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 3.0.007 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1) Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)

Mehr

PHYSIK I. Sommersemester 2007

PHYSIK I. Sommersemester 2007 Testprüfung, Musterlösung 1. Einfache Mechani Die Perle hat nur einen Freiheitsgrad, sie ann sich nur entlang des Drahtes bewegen. Wir bezeichnen den Abstand der Perle von der Drehachse it r. Auf die Perle

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heielberg Mathematischer Vorkurs zum Stuium er Physik Übungen Aufgaben zu Kapitel 5 aus: K. Hefft, Mathematischer Vorkurs zum Stuium er Physik, sowie Ergänzungen Aufgabe 5.: Differenzierbarkeit

Mehr

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben

Modulprüfung in Technischer Mechanik am 16. August Festigkeitslehre. Aufgaben Modulrüfung in Technischer Mechanik am 6. August 206 Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutlich lesbar. Zeichnungen müssen sauber und übersichtlich sein. Die

Mehr

Aufgabe 1 (7 Punkte) y x y x. Prüfungsklausur Technische Mechanik III. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (7 Punkte) y x y x. Prüfungsklausur Technische Mechanik III. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynaik TM III Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 3. März 08 Failiennae, Vornae Matrikel-Nuer Prüfungsklausur Technische Mechanik III Fachrichtung. Die Prüfung ufasst

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

1 Grundlagen und Definitionen

1 Grundlagen und Definitionen Die lassische Mechani beschreibt die Bewegung von Körpern und Bewegungsänderungen durch wirende Kräfte. Dies geschieht auf der Grundlage der Newtonschen Axiome (lassisch) und ist gültig im Bereich leiner

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Absorption. Physikalisches Grundpraktikum IV

Absorption. Physikalisches Grundpraktikum IV Physikalisches Grunpraktiku IV Universität Rostock :: Institut für Physik 1 Absorption Nae: Daniel Schick Betreuer: Dr. Enenkel & Dr. Holzhüter Versuch ausgeführt: 15.06.05 Protokoll erstellt: 19.06.05

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Technische Mechanik III Übungsblatt Nr. 3

Technische Mechanik III Übungsblatt Nr. 3 Institut für Technische Mechanik Prof. Dr.-In. C. Proppe Prof. Dr.-In. W. Seeann Nae: Testat: Terin: (jew. 19:00 Uhr) Vornae: Di., 25.11.2008 Matr. Nr.: Technische Mechanik III Übunsblatt Nr. 3 Thea: Newtonsches

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1

d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1 Lösung Klausur E1 Mechanik vom 11. April 2013 Aufgabe 1: Affentheater (16 Punkte) a) r(t) = x(t) = vx 0 t = v 0 cos α t y(t) v y 0 t 1 2 gt2 v 0 sin α t 1 2 gt2 b) y(x) = y(t(x)) mit t = x y(x) = x tan

Mehr