MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017

Größe: px
Ab Seite anzeigen:

Download "MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017"

Transkript

1 MAE4 Mathematik: Analysis fü Ingenieue 4 Fühlingssemeste 27 D. Chistoph Kisch ZHAW Wintethu Lösung 2 Aufgabe : Die Funktion ϕ ist offensichtlich stetig patiell diffeenzieba. Wi zeigen noch die Injektivität von ϕ: eien (, ϑ ), ( 2, ϑ 2 ) M mit ( ) ( ) cos(ϑ ϕ(, ϑ ) ) 2 cos(ϑ 2 ) ϕ( sin(ϑ ) 2 sin(ϑ 2 ) 2, ϑ 2 ). () Dann gelten 2 cos 2 (ϑ ) + 2 sin 2 (ϑ ) ( cos(ϑ )) 2 + ( sin(ϑ)) 2 (2) ( 2 cos(ϑ 2 )) 2 + ( 2 sin(ϑ 2 )) cos 2 (ϑ 2 ) sin 2 (ϑ 2 ) 2 (3) und ϑ { accos (cos(ϑ )), sin(ϑ ) 2π accos (cos(ϑ )), sin(ϑ ) < ( ) accos 2 cos(ϑ 2 ), ( ) 2π accos 2 cos(ϑ 2 ), 2 sin(ϑ 2 ) 2 sin(ϑ 2 ) < 2 { accos (cos(ϑ2 )), sin(ϑ 2 ) 2π accos (cos(ϑ 2 )), sin(ϑ 2 ) < ϑ 2, (6) also (, ϑ ) ( 2, ϑ 2 ). Damit ist ϕ injektiv. Die Menge ϕ(m) R 2 enthält alle Punkte de Einheitskeisscheibe ausse dem Zentum R 2 ( ) und dem Einheitskeis x 2 + y 2 ( ). Wi definieen die Veeinigung N : { R 2} {(x, y) R 2 x 2 + y 2 } R 2, (7) dann gilt Ω ϕ(m) N. Weil N R 2 eine Nullmenge im R 2 ist, gilt f(y) dy f(y) dy f(y) dy. (8) (4) (5) Ω ϕ(m) N ϕ(m) Auf das Integal auf de echten eite wollen wi nun den Tansfomationssatz anwenden. Dazu beechnen wi die Jacobi-Matix und die Funktionaldeteminante: ( ) cos(ϑ) sin(ϑ) Dϕ(, ϑ), det ( Dϕ(, ϑ) ) cos 2 (ϑ) + sin 2 (ϑ). sin(ϑ) cos(ϑ) (9)

2 Mit dem Tansfomationssatz ehalten wi nun das gesuchte Integal f(y) dy f(y) dy f(ϕ(x)) ( ) det Dϕ(x) dx () Ω Fubini ϕ(m) M 2π 2π e ( cos(ϑ))2 +( sin(ϑ)) 2 dϑ d e 2 dϑ d. () Fü das innee Integal ehalten wi I() 2π e 2 dϑ e 2 ϑ 2π ϑ } {{ } :I() 2πe 2. (2) Fü das äussee Integal vewenden wi jetzt noch die ubstitution s 2, ds 2 d: 2πe 2 d 2π e s 2 ds π e s ds π e s s π ( e ) π(e ) 5.4, mit de euleschen Zahl e e (3) z e x2 +y y x 2

3 Aufgabe 2 : Die Tansfomation ϕ : M R 3 ist eine lineae Abbildung, x ϕ(x, x 2, x 3 ) x 2, (4) x 3 und ihe Abbildungsmatix hat offensichtlich vollen Rang 3, also ist ϕ injektiv. Es gilt ϕ(m) { ϕ(x, x 2, x 3 ) R 3 x, x 2 3, 5 x 3 } (5) x x 2 x 2 x 3 R 2 5 x, x 2 3, x 3 x 3.(6) Mit y : x x 2, y 2 : x 2 x 3, y 3 : x 3 ehalten wi x y + y 2 + y 3, x 2 y 2 + y 3, x 3 y 3, und damit ϕ(m) y y 2 R 3 5 y + y 2 + y 3, y 2 + y 3 3, y 3 y 3 Ω. (7) Nach dem Tansfomationssatz (atz de Volesung) ist das gesuchte Volumen gegeben duch das deidimensionale Integal Ω vol 3 (Ω) dy dy Ω ϕ(m) M det ( Dϕ(x) ) dx. (8) Auf de echten eite steht ein deidimensionales Integal übe einen Quade, das einfach zu beechnen ist. Fü die Jacobi-Matix und die Funktionaldeteminante von ϕ ehalten wi Dϕ(x), det ( Dϕ(x) ) (9) (die Abbildung ϕ ist oientieungs- und volumenehaltend), und damit Ω 3 dx 3 dx 2 dx 3 2 dx 2 dx 6 dx 36. (2) M [ 5,] [,3] [,] Ω ϕ(m) x3 y x 2 x y y 2-2 3

4 Aufgabe 3 : Fü die Fläche R 3 wählen wi die Paametedastellung cos(ϑ) ϕ(, ϑ) : sin(ϑ) R 3, (, ϑ) M : [, 4] [, 2π). (2) Wi ehalten die Ableitungsvektoen cos(ϑ) ϕ (, ϑ) sin(ϑ), ϕ ϑ (, ϑ) sin(ϑ) cos(ϑ), (, ϑ) M. (22) Das Keuzpodukt de Ableitungsvektoen ist gegeben duch cos(ϑ) ϕ (, ϑ) ϕ ϑ (, ϑ) sin(ϑ), ϕ (, ϑ) ϕ ϑ (, ϑ) 2. (23) Mit Def. 9 de Volesung ehalten wi das Obeflächenintegal 4 2π f dσ f(ϕ(, ϑ)) ϕ (, ϑ) ϕ ϑ (, ϑ) dϑ d (24) 4 2π 4 2π 3 cos 2 (ϑ) 2 dϑ d 2 4 cos 2 (ϑ) dϑ d. (25) Fü das innee Integal ehalten wi und damit I() 2 4 2π f dσ } {{ } :I() cos 2 (ϑ) dϑ (ϑ + sin(ϑ) cos(ϑ)) 2π 4 2π 4 d 2π ϑ 2π π 4, (26) 99. (27) 4

5 Aufgabe 4 : Wi scheiben zunächst die Fläche R 3 als Menge auf: { (x, y, z) R 3 x 2 + y 2 4, z, y }. (28) Fü diese Menge wählen wi die Paametedastellung 2 cos(ϑ) ϕ(ϑ, z) : 2 sin(ϑ), (ϑ, z) M : [, π] [, ]. (29) z Wi ehalten die Ableitungsvektoen 2 sin(ϑ) ϕ ϑ (ϑ, z) 2 cos(ϑ), ϕ z (ϑ, z). (3) Das Keuzpodukt de Ableitungsvektoen ist gegeben duch 2 cos(ϑ) ϕ ϑ (ϑ, z) ϕ z (ϑ, z) 2 sin(ϑ). (3) Das gesuchte Obeflächenintegal ist gemäss Def. 9 de Volesung gegeben duch v dσ π π π v(ϕ(ϑ, z)) (ϕ ϑ (ϑ, z) ϕ z (ϑ, z)) dz dϑ (32) z 4 sin 2 (ϑ) 4 cos 2 (ϑ) 2z cos(ϑ) + 8 sin 3 (ϑ) dz 2 cos(ϑ) 2 sin(ϑ) dz dϑ (33) dϑ. (34) } {{ } :I(ϑ) Fü das innee Integal ehalten wi I(ϑ) 2z cos(ϑ) + 8 sin 3 (ϑ) dz ( z 2 cos(ϑ) + 8z sin 3 (ϑ) ) z cos(ϑ) + 8 sin3 (ϑ), und damit den Volumenstom v dσ π 32 3 cos(ϑ) + 8 sin 3 (ϑ) dϑ (35) (sin(ϑ) + 83 cos(ϑ) ( cos 2 (ϑ) 3 )) π (36) ϑ [m 3 s ]. (37) 5

6 Fü den Massenstom multiplizieen wi noch mit de Massendichte ρ und ehalten 87 kgm m3 s 928 kgs. In de folgenden Gafik zeichnen wi das nomiete (!) Vektofeld sowie die Funktion v (ϕ ϑ ϕ z ) 2z cos(ϑ) + 8 sin 3 (ϑ) auf : v, die Fläche v Volesungswebseite: 6

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

7 Kurvenintegrale und die Greensche Formel

7 Kurvenintegrale und die Greensche Formel nalysis III, WS 2/22 Montag 3. $Id: geen.tex,v.9 22//3 5:4:52 hk Exp $ 7 Kuvenintegale und die Geensche Fomel 7.5 Rotation und die Geensche Fomel m Ende de letzten Sitzung hatten wi die geometische Definition

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2 D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck rança Stefan Huber Zentralübung TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA924 Z3.. Polardarstellung quadratischer Matrizen

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

Lösungsvorschlag zum 12. Übungsblatt zur Vorlesung Analysis III im Wintersemester 2018/ Januar 2019

Lösungsvorschlag zum 12. Übungsblatt zur Vorlesung Analysis III im Wintersemester 2018/ Januar 2019 Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung nalysis III im Wintersemester 28/9 28. Januar 29 Institut für nalysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich ufgabe 45: (i Der Weg umlaufe den

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Pof. D. M. Wolf D. M. Pähofe TECHNISCHE UNIVERSITÄT MÜNCHEN Zentum Mathematik Mathematik fü Phsike 3 (Analsis MA93 http://www-m5.ma.tum.de/allgemeines/ma93 8S Sommesem. 8 Lösungsblatt 7 (8.5.8 Zentalübung

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER MMP I HERBSTSEMESTER 17 PROF. DR. HORST KNÖRRER LÖSUNG 7 1. Aufgabe Um die Stetigkeit von lineaen Abbildungen auf dem Schwataum u eigen, eigen wi uest die Stetigkeit in, woaus dann wie im Beweis von Sat

Mehr

Vorkurs Mathematik Übungen zu Kurven im R n

Vorkurs Mathematik Übungen zu Kurven im R n Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale Vorlesung: Analysis II für Ingenieure Wintersemester 7/8 Michael Karow Thema: Transformationsformel für Gebietsintegrale Transformation von Gebietsintegralen im 2 (Satz 24 im Skript) Seien, 2 kompakte

Mehr

Neunte Vorlesung: Die Kruskal-Metrik

Neunte Vorlesung: Die Kruskal-Metrik Neunte Volesung: Die Kuskal-Metik 9.1 Poblemstellung 9. Eigenzeit fei fallende Teilchen 9.3 Metik von Lemaite 9.4 Eddington-Finkelstein-Metik 9.5 Kuskal-Metik 9.1 Poblemstellung De metische Tenso hängt

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Analysis 3 - Klausur - Lösung

Analysis 3 - Klausur - Lösung Wintersemester 23/24, Universität Bonn Analysis 3 - Klausur - Lösung Aufgabe : Sigma-Algebren (4+6 Punkte) a) Sei X eine Menge. Sei F = {{} : X}. Bestimmen Sie σ(f). b) Sei X eine Menge, Sei S P(X). Zeigen

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1 UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,

Mehr

8 Beispiele von Koordinatentransformationen

8 Beispiele von Koordinatentransformationen 8 Beispiele von Koordinatentransformationen Wir diskutieren nun diejenigen Koordinatentransformationen, die in der Praxis wirklich gebraucht werden (ebene und räumliche Polarkoordinaten sowie Zylinderkoordinaten).

Mehr

9 Rotation und Divergenz

9 Rotation und Divergenz Mathematik fü Physike III, WS 22/23 Dienstag 22. $Id: ot.tex,v.5 23//22 5:5:22 hk Exp $ 9 Rotation und Divegenz 9. Die Geensche Fomel In diesem Kapitel wollen wi die veschiedenen zwei- und deidimensionalen

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Lösungen zu Koordinatentrafo und Integration im R n

Lösungen zu Koordinatentrafo und Integration im R n Lösungen zu Koordinatentrafo und Integration im R n für Freitag, 8.9.9 von Carla Zensen Aufgabe : Verschiedene Parametrisierungen a) Zylinderkoordinaten ρ Ψ ϕ Ψ z Ψ cos ϕ ρ sin ϕ DΨρ, ϕ, z) = ρ Ψ ϕ Ψ z

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

Ferienkurs Analysis 3 für Physiker. Integration im R n

Ferienkurs Analysis 3 für Physiker. Integration im R n Ferienkurs Analysis 3 für Physiker Integration im R n Autor: Benjamin Rüth Stand: 16. ärz 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Definition des Riemann-Integrals über Quadern 3

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 6. Übungsblatt Aufgabe 2

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 57 Die ransformationsformel für Integrale Wir kommen zur ransformationsformel für Integrale, wofür wir noch eine Bezeichnung

Mehr

Geometrie der Cartan schen Ableitung

Geometrie der Cartan schen Ableitung Geoetie de Catan schen Ableitung - - Notation Sei + Sei + Wi bezeichnen it ( L den Vektoau alle fach ultilineaen Abbildungen f : -al 2 Wi bezeichnen it S die Guppe alle Peutationen σ : {,, } {,, } Des

Mehr

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen:

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen: D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen emerkungen: Die Aufgaben der Serie 6 bilden den Fokus der Übungsgruppen vom 3. März/2. April..

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Inhalt. Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals

Inhalt. Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals Inhalt Diese Übung beschäftigt sich hauptsächlich mit der Anwendung des Transformationssatzes des Lebesgue-Integrals f dλ n = f ψ det Dψ dλ n. U ψ(u) Dabei ist ψ : U ψ(u) ein C 1 -Dieomorphismus auf einer

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Facbereic atematik Prof. Dr. R. Farwig C. omo J. Prasiswa R. Sculz SS 29 6.7.29 2. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Jordan-essbarkeit Die enge R n sei Jordan-messbar. Zeigen Sie, dass

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Räumliche Bereichsintegrale mit Koordinatentransformation

Räumliche Bereichsintegrale mit Koordinatentransformation Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe

Mehr

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen SPEZIELLE FUNKTIONEN 3. Übungseinheit 1 Übesicht In de (theoetischen) Physi weden zu Veeinfachung de Foulieungen oft spezielle Funtionen bzw. Sätze von Funtionen eingesetzt. Beispiele: Γ- Funtion Kugelflächenfuntion

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

1./2. Klausur der Diplomvorprüfung

1./2. Klausur der Diplomvorprüfung ./. Klausu de Diplomvopüfung fü ae, autip, vef, wewi Aufgabe ( Punkte) (a) Fü das zugehöige chaakteistische Polynom ehält man λ + 5λ + = (λ + )(λ + ) mit den Nullstellen λ = / und λ =. Damit egibt sich

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

$Id: kurven.tex,v /11/30 12:41:04 hk Exp $ 3.5 Divergenz, Rotation und der Satz von Green. f(x, y) dx + g(x, y) dy = A

$Id: kurven.tex,v /11/30 12:41:04 hk Exp $ 3.5 Divergenz, Rotation und der Satz von Green. f(x, y) dx + g(x, y) dy = A Mathematik fü Ingenieue III, WS 25/26 Montag 3. $Id: kuven.tex,v. 25//3 2:4:4 hk Exp $ 3 Kuven 3.5 Divegenz, Rotation und de Satz von Geen Die Hauptaufgabe dieses bschnitts ist es die sogenannte Geensche

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I)

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I) Lösungen zu II Klausu in Theoie D Quantenmechanik I) Aufgabe 1 Teil a) 15 P) Die Komponenten des Opeatos A genügen den gleichen Vetauschungselationen, wie die Komponenten des Dehimpulsopeatos J mit = 1)

Mehr

Musterlösungen Serie 3

Musterlösungen Serie 3 -MAVT -MATL Analysis II FS 1 Prof. r. P. Biran Musterlösungen Serie 1. Frage 1 Berechnen Sie wobei [, 1] [, 1]. xe x+y df, e 1 1 e + 1 xe x+y df Mit einer partiellen Integration erhalten wir xe x+y dydx

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

1. Übungsblatt zur Analysis 3

1. Übungsblatt zur Analysis 3 Hannover, den 2. Oktober 23 Aufgabe. Übungsblatt zur Analysis 3 Abgabe am 27./28. Oktober 23 vor den Stundenübungen (je 5 Punkte) Man zeige: a) Die Funktion f : N N N, f(m, n) := 2 (m + n)(m + n + ) +

Mehr

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden,. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) Immatrikulationsjahrgang

Mehr

Ebene Bildkoordinatentransformationen. HS BO Lab. für Photogrammetrie: Ebene und räumliche Koordinatensysteme 1

Ebene Bildkoordinatentransformationen. HS BO Lab. für Photogrammetrie: Ebene und räumliche Koordinatensysteme 1 Ebene Bildkoodinatentansfomationen HS BO Lab. fü Photogammetie: Ebene und äumliche Koodinatensysteme 1 Ebene Bildkoodinatentansfomation Veschiebung (Tanslation) (2 Paamete): x, y T x, y Übe Tanslationen

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

6 Integration auf Untermannigfaltigkeiten

6 Integration auf Untermannigfaltigkeiten 6 Integration auf Untermannigfaltigkeiten 6.1 annigfaltigkeiten. Eine k dimensionale C α annigfaltigkeit ist ein metrischer Raum mit einer Überdeckung {V : J} durch offene engen und Homöomorphismen ϕ :

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

Satz von Gauß. Satz von Gauß 1-1

Satz von Gauß. Satz von Gauß 1-1 atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt

Mehr

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale Das mehrdimensionale Riemann-Integral. Volumenintegrale Es sei ein uader im R n gegeben durch := [a, b ] [a 2, b 2 ] [a n, b n ] = {(x,... x n ) a j x j b j } mit rellen Zahlen a j, b j, j =,... n. Offenbar

Mehr

( γ (h(t)) ) h (t) dt =

( γ (h(t)) ) h (t) dt = γ 1 : [, 1] X eine andee Paametisieung von, so existiet eine monoton wachsende diffeenziebae Funktion h : [, 1] [, 1] mit γ 1 t) = γht)), und es esultiet α γ1 t) γ 1 t) ) dt = α γht)) γ ht)) ) h t) dt

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zu Wahscheinlichkeitstheoie und Statistik Pof. D. C. Löh/M. Blank Blatt 13 vom 12. Juli 2012 Aufgabe 1 (Exponentialfamilien. Welche de folgenden Aussagen sind wah? Begünden Sie jeweils kuz Ihe

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 80 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 15.10.2008 2 / 80 Technisches Vorlesungswebsite: http://www.am.uni-erlangen.de/am3/de/lehre/ws08/ingmatha3/

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

V04A3: Version 1 vom Montag,

V04A3: Version 1 vom Montag, V04A3: Version 1 vom Montag, 28.10.02 40 Inhaltsverzeichnis 1.14 Volumina relativ zu C 1 Abbildungen..................... 41 1.14.1 Tangentialräume zu C 1 Abildungen.................. 41 1.14.2 Erste rundform

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Übungen zur Analysis 3

Übungen zur Analysis 3 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Wintersemester 013/014 Blatt 1 09.01.014 Übungen zur Analysis 3 1.1ε Rückzug vertauscht mit Dachprodukt. Es sei f : U V eine differenzierbare

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr