( γ (h(t)) ) h (t) dt =

Größe: px
Ab Seite anzeigen:

Download "( γ (h(t)) ) h (t) dt ="

Transkript

1 γ 1 : [, 1] X eine andee Paametisieung von, so existiet eine monoton wachsende diffeenziebae Funktion h : [, 1] [, 1] mit γ 1 t) = γht)), und es esultiet α γ1 t) γ 1 t) ) dt = α γht)) γ ht)) ) h t) dt = α γs) γ s) ) ds. 2.48) Das este Gleichheitszeichen folgt hie aus de Kettenegel, das zweite aus de Vaiablensubstitution s = ht). Aufgabe. Man hat beim Wegintegal die Feiheit, das Intevall [, 1] duch ein andees Intevall [a, b] zu esetzen: ist γ : [a, b] X eine Paametisieung von, so gilt b α = α γt) γ t))dt. 2.49) a Mitteilung. Bei genaue Betachtung eweist sich die Einschänkung γ t) als unnötig. Mehmaliges Umkehen ist elaubt!), solange γ nu de Spu de Kuve teu bleibt und vom Anfangspunkt zum Endpunkt füht Wegintegal in katesischen Koodinaten Die konkete Beechnung des Wegintegals efodet in de egel die Wahl eines Koodinatensystems. Hiebei hat man völlige Feiheit, denn das Wegintegal dückt sich in allen Koodinaten in de gleichen Weise aus. Von diese Feiheit wollen wi hie abe noch keinen Gebauch machen, sonden ein ganz spezielles Koodinatensystem vewenden. Außedem abeiten wi in diesem Abschnitt im deidimensionalen Euklidischen aum, E 3. Wi einnen daan, dass ein affines Koodinatensystem {o ; e x, e y, e z } von E 3 katesisch heißt, wenn die Basisvektoen e x, e y, e z ein Othonomalsystem von V = 3 bilden. Duch ein solches Koodinatensystem weden katesische Koodinaten x, y, z und Koodinatenfomen dx, dy, dz bestimmt. dx läßt sich anschaulich als die Scha von Ebenen auffassen, die paallel zu yz-ebene liegen eigentlich: die Lösungsmengen de affinen Gleichung x = constant sind) und Abstand Eins voneinande haben mit Pluspol bei x = + ). Eine analoge Aussage gilt fü dy und dz. Eine beliebige 1-Fom A wid duch A = A x dx + A y dy + A z dz ausgedückt, wobei die Komponenten Funktionen A x, A y, A z : E 3 sind. echenbeispiel. Eine Schaubenlinie mit adius, Schaubenhöhe L und Hub 2πL/a wid paametisiet duch [, 1] t γt) = o + cosat)e x + sinat)e y + Lte z. Zu beechnen sei das Wegintegal längs eines Kaftfelds K mit Koodinatendastellung K = k 1 dy + k 2 z dz k 1, k 2 ). Zuest emitteln wi duch Ableiten nach t den Tangentialvekto de Kuve: γ t) = a sinat)e x + a cosat)e y + Le z. 38

2 Einsetzen ins Kaftfeld egibt K γt) γ t)) = k 1 a cosat) + k 2 L 2 t. So ehalten wi das Wegintegal K = K γt) γ t)) dt = k 1 a cosat) + k 2 L 2 t) dt = k 1 sina) + k 2 L 2 / Wegintegal eine exakten 1-Fom Wie zuvo sei X, V, +) ein affine aum. Definition. Eine 1-Fom α : f : X ist, wenn also gilt X V heißt exakt, wenn sie das Diffeenzial eine Funktion α p v) = df) p v) D p f)v), 2.5) ode kuz: α = df. Ein exaktes Kaftfeld K heißt konsevativ. In de Physik scheibt man in diesem Fall K = du und nennt die Funktion U ein Potenzial des konsevativen Kaftfeldes K. Hauptsatz de Diffeenzial- und Integalechnung). Das Wegintegal α eine exakten 1-Fom α = df hängt nu vom Anfangspunkt p und vom Endpunkt q de Kuve ab, nicht abe vom Velauf de Kuve dazwischen: α = Beweis. Wähle eine Paametisieung de Kuve, Pe Definition ist dann Fü die Vekettung von Abbildungen gilt nun nach de Kettenegel df = fq) fp). 2.51) γ : [, 1] X, t γt), γ) = p, γ1) = q. α = [, 1] df) γt) γ t) ) dt. γ X f df) γt) γ t) ) = D γt) f) D t γ) = D t f γ) = d dt fγt)). Hiemit folgt schon das gewünschte Egebnis: d α = fγt)) dt = fγ1)) fγ)) = fq) fp). dt Beispiel 1. Sei jetzt X = E 3 wiede de Euklidische aum mit katesischen Koodinaten x, y, z. Die elektische Feldstäke E eine im Koodinatenuspung befindlichen Punktladung Q ist die 1-Fom E = Q 4πε x dx + y dy + z dz x 2 + y 2 + z 2 ) 3/ ) 39

3 Diese Feldstäke ist exakt, E = dφ, mit elektischem Potenzial Φ = Q ) 4πε x 2 + y 2 + z 2 ) 1/2 Nach dem obigen Hauptsatz ist das Wegintegal E = Φp) Φq) längs eine Kuve von p nach q wegunabhängig. Man nennt E =: q E die elektische Spannung zwischen den Punkten p p und q. Beispiel 2. Das Kaftfeld K des echenbeispiels von Abschnitt ist exakt: K = k 1 dy + k 2 z dz = df, f = k 1 y + k 2 z 2 /2. Mit Kenntnis des Hauptsatzes wäe die Beechnung des Wegintegals K küze ausgefallen: K = fγ1)) fγ)) = k 1 sina) + k 2 L 2 / Anschauliche Deutung des Hauptsatzes Wi wissen aus Abschnitt 1.4, dass wi Lineafomen λ : 3 duch Ebenenschaen veanschaulichen können in diese bildlichen Vostellung wid de Funktionswet λv) duch Abzählen de von v gekeuzten Ebenen bestimmt. In Abschnitt haben wi dann gesehen, wie die Ebenenscha zu λ df) p duch Lineaisieung de Niveauflächen de Funktion f im Punkt p entsteht. Diese Deutung des Diffeenzials df in Vebindung mit de anschaulichen Definition des Wegintegals eine 1-Fom in Gl. 2.45) lässt eine intuitive Deutung des Hauptsatzes zu. Deutung des Hauptsatzes). Beim Integieen eine exakten 1-Fom α = df füht die Pozedu des Abzählens gekeuzte Ebenen im diffeenziellen Limes, N ) insgesamt dazu, dass gekeuzte Niveauflächen gezählt weden, das Integal q p fq) fp) beechnet Wegintegal eines Vektofeldes df also die Niveau-Zunahme/Abnahme Das Wegintegal eine 1-Fom ist imme eklät, sofen de aum affin ist ode allgemeine: eine diffeenziebae Stuktu hat). Andes im Falle eines Vektofeldes! Um Vektofelde längs Kuven zu integieen, muss man die Geometie des aumes kennen und heanziehen. im Folgenden ein Euklidische aum. Aus Abschnitt ist uns schon de Euklidische Isomophismus I zwischen Vektofelden und 1-Fomen bekannt. Sei X = E n Definition. Sei u u : X V ein Vektofeld in einem Euklidischen aum X mit Euklidischem Diffeenzvektoaum V. Das Wegintegal u d von u längs eine Kuve ist eklät duch u d := Iu). 2.54) Zu Beechnung des Wegintegals des Vektofeldes u gehen wi also zu entspechenden 1-Fom Iu) übe und integieen dann die 1-Fom in de uns bekannten, natülichen Weise. 4

4 Als Konsequenz des Hauptsatzes übe Wegintegale exakte 1-Fomen egibt sich: Satz. Fü das Wegintegal eines Gadientenfeldes f längs eine Kuve von p nach q gilt f d = fq) fp). 2.55) Beweis. f d = Igadf) = df = fq) fp). echenbeispiel. Ein Langstecken-Flugzeug soll die andzone eines Wibelstums Huicane) von Ost nach West duchfliegen. Die küzeste Flugoute veläuft nödlich des Wibelstums in de nödlichen Hemisphäe wo goße Stüme am Boden im Gegenuhzeigesinn, in de eiseflughöhe von 1 km ode daübe abe im Uhzeigesinn wibeln), weshalb vo dem Stat zusätzliches Keosin getankt weden muss, um den duch Gegenwind veusachten Mehbedaf an Enegie zu decken. Fü eine gobe Abschätzung des Mehbedafs legen wi das Stumzentum in den Koodinatenuspung eines Systems ebene Polakoodinaten x 1 = cos θ und x 2 = sin θ und nehmen eine Flugoute längs x 2 = h = const an. Das vom Wibelstum ezeugte, zusätzliche Kaftfeld K H infolge von Gegenwind und eibung, bei vogegebene eisefluggeschwindigkeit) sei K H = f) dθ, f) = k 2 e /)2. Da K H keine konsevative Kaft ist, hilft uns de Hauptsatz nicht weite und wi sind gezwungen, wiklich zu echnen. Wi paametisieen die Flugoute duch x 1 γs)) = hs und x 2 γs)) = h. Nehmen wi eine totale Flugstecke von L an, dann machen wi einen venachlässigbaen Fehle, wenn wi s die gesamte Zahlenachse duchlaufen lassen siehe Skizze). So haben wi 2 γs)) = h s 2 ), tan θγs)) = 1/s. Mit de Zwischenechnung 2 dθ) γs) γ s)) = h s 2 ) d actan 1/s) = h2 ds ehalten wi dann das Abeitsintegal K H = Kγs)γ H s))ds = kh 2 e 1+s2 ) h 2 / 2 ds = πkh e h2 / 2. Jetzt beechnen wi das gleiche Integal ein zweites Mal und zwa so, wie es die meisten Benutze des Vektokalküls ohne 1-Fomen) täten. Diese echnung beginnt damit, dass man die 41

5 Kaft als Vektofeld päsentiet bekommt: K H = f) Dann paametisiet man die Flugoute z.b. als gleichfömig geadlinige Bewegung: ê θ. t γt) = o vte 1 + he 2, γ t) = ve 1. Weite muss das Euklidische Skalapodukt des Vektofeldes K H mit dem Linienelement d beechnet weden: K H d = f) ê θ, ve 1 dt = v f) sin θ dt. Diese Ausduck ist längs de Flugoute γt) auszuweten. Dazu benötigen wi γt)) = vt) 2 + h 2, sin θγt)) = h vt)2 + h 2. Einsetzen egibt schließlich das Abeitsintegal + K H d = kv v2 t 2 + h 2 e v2 t 2 +h 2 )/ 2 hdt v2 t 2 + h. 2 Nach Substitution s = vt und Küzen de Wuzelfaktoen esultiet das Integal von zuvo. Fußnote. Spätestens) seit Cal Fiedich Gauß kennt man das nach ihm benannte) Integal e πx2 dx = ) Duch die Vaiablensubstitution y = x π/a fü a > ) ehält man e ay2 dy = π/a e πx2 dx = π/a. 2.57) 42

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

7 Kurvenintegrale und die Greensche Formel

7 Kurvenintegrale und die Greensche Formel nalysis III, WS 2/22 Montag 3. $Id: geen.tex,v.9 22//3 5:4:52 hk Exp $ 7 Kuvenintegale und die Geensche Fomel 7.5 Rotation und die Geensche Fomel m Ende de letzten Sitzung hatten wi die geometische Definition

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Pof. D. M. Wolf D. M. Pähofe TECHNISCHE UNIVERSITÄT MÜNCHEN Zentum Mathematik Mathematik fü Phsike 3 (Analsis MA93 http://www-m5.ma.tum.de/allgemeines/ma93 8S Sommesem. 8 Lösungsblatt 7 (8.5.8 Zentalübung

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

9 Rotation und Divergenz

9 Rotation und Divergenz Mathematik fü Physike III, WS 22/23 Dienstag 22. $Id: ot.tex,v.5 23//22 5:5:22 hk Exp $ 9 Rotation und Divegenz 9. Die Geensche Fomel In diesem Kapitel wollen wi die veschiedenen zwei- und deidimensionalen

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut fü Expeimentelle Kenphysik, KIT Übungen zu Klassischen Physik II (Elektodynamik) SS 216 Pof. D. T. Mülle D. F. Hatmann Blatt 3 Beabeitung: 11.5.216 1. 3D Integation (a) Einfache Ladungsveteilung

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

2 Partielle Ableitungen

2 Partielle Ableitungen 2 Patielle Ableitungen Wi kommen nun zu Diffeentiation von Funktionen im R n. Um fü diese Ableitungen zu definieen, ist die einfachste und vielfach beste Idee, alle Vaiablen bis auf x j als konstant aufzufassenunddieesultieendefunktiondeeinenvaiablen

Mehr

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I)

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I) Lösungen zu II Klausu in Theoie D Quantenmechanik I) Aufgabe 1 Teil a) 15 P) Die Komponenten des Opeatos A genügen den gleichen Vetauschungselationen, wie die Komponenten des Dehimpulsopeatos J mit = 1)

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses GMFH - Gesellschaft fü Mathematik an Schweize Fachhochschulen SMHES - Société pou les Mathématiques dans les Hautes Ecoles Spécialisées suisses Mathematik-Refeenzaufgaben zum Rahmenlehplan fü die Beufsmatuität

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017

MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017 MAE4 Mathematik: Analysis fü Ingenieue 4 Fühlingssemeste 27 D. Chistoph Kisch ZHAW Wintethu Lösung 2 Aufgabe : Die Funktion ϕ ist offensichtlich stetig patiell diffeenzieba. Wi zeigen noch die Injektivität

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Neunte Vorlesung: Die Kruskal-Metrik

Neunte Vorlesung: Die Kruskal-Metrik Neunte Volesung: Die Kuskal-Metik 9.1 Poblemstellung 9. Eigenzeit fei fallende Teilchen 9.3 Metik von Lemaite 9.4 Eddington-Finkelstein-Metik 9.5 Kuskal-Metik 9.1 Poblemstellung De metische Tenso hängt

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

1./2. Klausur der Diplomvorprüfung

1./2. Klausur der Diplomvorprüfung ./. Klausu de Diplomvopüfung fü ae, autip, vef, wewi Aufgabe ( Punkte) (a) Fü das zugehöige chaakteistische Polynom ehält man λ + 5λ + = (λ + )(λ + ) mit den Nullstellen λ = / und λ =. Damit egibt sich

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

49 Uneigentliche Integrale

49 Uneigentliche Integrale Abschnitt 49 Uneigentliche Integale R lato 23 49 Uneigentliche Integale Wi betachten im Folgenden Integale a f / d von Funktionen f, die in einzelnen unkten des betachteten Integationsbeeichs nicht definiet

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Die Schwarzschild-Metrik

Die Schwarzschild-Metrik Die Schwazschild-Metik Semina Mathematische Physik vom 19. Mai 2010 Lauin Ostemann 1 Einleitung Die Schwazschild-Metik in de engl. Liteatu Schwazschild solution) wa die este bekannte analytische Lösung

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung Skipt Montag Stetigkeit, Funktionengenzwete, Ableitung und Tayloentwicklung Jonas Habel, Floian Kollmannsbege 18. Mäz 2018 1 Beweistechniken Beginnen wi mit zwei häufigen Beweistechniken. (a) : (A B) (

Mehr

( ) X t. = dt 2 τ. berücksichtigen, wird im Johnson-Mehl-Avrami-Ansatz in (9.23) künstlich ein Faktor ( ) eingebracht. Abbildung 9.

( ) X t. = dt 2 τ. berücksichtigen, wird im Johnson-Mehl-Avrami-Ansatz in (9.23) künstlich ein Faktor ( ) eingebracht. Abbildung 9. 7.5. 9.4 Johnson-Mehl-Avami-Kinetik Fü einfache Übelegungen zum Ablauf von Reaktionen wid oft die sogenannte JMA-Kinetik vewendet (besondes in technisch oientieten Atikeln). Die gundsätzliche Vogehensweise

Mehr

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung Loenz-Mie-Steuung in Bonsche Näheung 1 Einleitung Licht wede an einem Medium mit dem Bechungsindex n gesteut De Bechungsindex sei eell, Absoption finde nicht statt Ist die Wechselwikung mit dem Medium

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER MMP I HERBSTSEMESTER 17 PROF. DR. HORST KNÖRRER LÖSUNG 7 1. Aufgabe Um die Stetigkeit von lineaen Abbildungen auf dem Schwataum u eigen, eigen wi uest die Stetigkeit in, woaus dann wie im Beweis von Sat

Mehr

Musterlösung Serie 4

Musterlösung Serie 4 D-MATH Lineae Algeba I HS 218 Pof Richad Pin Mustelösung Seie 4 Summen Podute und Matizen 1 Beweisen Sie: (a Fü jede ganze Zahl n gilt n ( n 2 n (b Fü alle ganzen Zahlen n gilt ( ( n n n (c Fü alle ganzen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Helmuts Kochrezept Nummer 6:

Helmuts Kochrezept Nummer 6: Helmuts Kochezept Numme 6: Ausdücken von Raumladungsdichten mittels Delta- Distibution in katesischen und kummlinigen Koodinaten (Vesion 2, 4.5.28) Dieses Kochezept eklät Di, wie du Raumladungsdichten

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen SPEZIELLE FUNKTIONEN 3. Übungseinheit 1 Übesicht In de (theoetischen) Physi weden zu Veeinfachung de Foulieungen oft spezielle Funtionen bzw. Sätze von Funtionen eingesetzt. Beispiele: Γ- Funtion Kugelflächenfuntion

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor.

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor. De elektische Dipol Sind zwei unteschiedliche Ladungen in einem Abstand d angeodnet, dann liegt ein elektische Dipol vo. +q d q Man definiet das Dipolmoment: p q d Das Diplomoment ist ein Vekto, de entlang

Mehr

TEIL 1 Untersuchung des Grundbereichs 2)

TEIL 1 Untersuchung des Grundbereichs 2) Matin ock, Düppenweilestaße 6, 66763 Dillingen / Saa lementa-physikalische Stuktu Wassestoff-Molek Molekülionlion ( + ) ) kläung ung des Velaufs de Gesamtenegie (( Ges fü den Σ g Zustand des -Molekülsls

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit ) 5. Übung (KW 48) Aufgabe 1 (M 4.1 Veschiebungsabeit ) Welche Abeit muss aufgewendet weden, um eine Fede mit Fedekonstanten k (a) ohne Vospannung, d. h. von de Vospannlänge x 1 0, (b) von de Vospannlänge

Mehr

Aufgaben zur Vorbereitung Technik

Aufgaben zur Vorbereitung Technik Aufgaben zu Vobeeitung Technik Pof. Dipl.-Math. Usula Lunze Seite Test Anhand des ausgegebenen Tests können Sie selbständig emitteln, wo Ihe Schwächen und Lücken liegen. Die Aufgaben sollen soweit wie

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

HYPOZYKLOIDEN EINES DREIECKS. 1. Vorbemerkung

HYPOZYKLOIDEN EINES DREIECKS. 1. Vorbemerkung HYPOYKLOIDEN EINES DREIECKS Vobemekung Die hie angespochenen Hypozykloiden eines Deiecks sind an sich Otslinien eines mekwüdigen Vieeckpunktes Geht man von einem Deieck ABC aus, so ehält man ein seh spezielles

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas Pof. D. Nobet Ham 1/7. Das eale Gas Das eale Gas Fü die Bescheibung des ealen Gases weden die Gasteilchen betachtet als - massebehaftet - kugelfömig mit Duchmesse d - Wechselwikungen auf Gund von Diol-Diol-Wechselwikungen

Mehr

$Id: kurven.tex,v /11/30 12:41:04 hk Exp $ 3.5 Divergenz, Rotation und der Satz von Green. f(x, y) dx + g(x, y) dy = A

$Id: kurven.tex,v /11/30 12:41:04 hk Exp $ 3.5 Divergenz, Rotation und der Satz von Green. f(x, y) dx + g(x, y) dy = A Mathematik fü Ingenieue III, WS 25/26 Montag 3. $Id: kuven.tex,v. 25//3 2:4:4 hk Exp $ 3 Kuven 3.5 Divegenz, Rotation und de Satz von Geen Die Hauptaufgabe dieses bschnitts ist es die sogenannte Geensche

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

7. Kinematik in der Mechatronik

7. Kinematik in der Mechatronik 7. Kinematik in de Mechatonik Ein tpisches mechatonisches Sstem nimmt Signale auf, veabeitet sie und gibt Signale aus, die es in Käfte und Bewegungen umsett. Mechanische Stuktu Leistungsteil phsikalische

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Klausur 2 Kurs 12PH4 Physik

Klausur 2 Kurs 12PH4 Physik 2014-12-16 Klausu 2 Kus 12PH4 Physik Lösung 1 Teffen Elektonen mit goße Geschwindigkeit auf eine Gafitfolie und dann auf einen Leuchtschim, so sieht man auf dem Leuchtschim nicht nu einen hellen Punkt,

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17.

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17. Semina Algeba LECTURES ON FORMS IN MANY VARIABLES Funktionenköpe Sommesemeste 2005 Steffen Schölch Univesität Ulm Stand: 17. Juli 2005 Funktionenköpe Definition 1: Ein Köpe K heißt Funktionenköpe in j

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Einführung in die Vektoranalysis

Einführung in die Vektoranalysis Einfühung in die Vektoanalysis Eckad Specht Geschieben fü Matoids Matheplanet Vesion. www.matheplanet.com Novembe 23 Studenten stömen seit einigen Wochen wiede in die Hösäle und venehmen dieses fuchteinflößende

Mehr

Extremwertaufgaben

Extremwertaufgaben 7.4.. Extemwetaufgaben Bei Extemwetaufgaben geht es daum, dass bei einem gestellten Sachvehalt (Textaufgabe) igendetwas zu maximieen bzw. zu minimieen ist. Dabei geht man nach einem festen, vogegebenen

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

AR: Rechnen mit Tensoren

AR: Rechnen mit Tensoren Auto: Walte Bislin von walte.bislins.ch/doku/a 8..23 8: AR: Rechnen it Tensoen In de Tenso-Algeba geht es u Tensoen it hochgestellten und tiefgestellten Indizes, deen Tansfoationseigenschaften und den

Mehr

Aufgaben zu Kräften zwischen Ladungen

Aufgaben zu Kräften zwischen Ladungen Aufgaben zu Käften zwischen Ladungen 75. Zwei gleich geladenen kleine Kugeln sind i selben Punkt an zwei langen Isoliefäden aufgehängt. Die Masse eine Kugel betägt g. Wegen ihe gleichen Ladung stoßen sie

Mehr

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter 8 3. Dastellung de Geaden im Raum 3.1. Paametegleichung de Geaden Die naheliegende Vemutung, dass eine Geade des Raumes duch eine Gleichung de Fom ax + by + cz +d 0 beschieben weden kann ist falsch (siehe

Mehr