Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie"

Transkript

1 Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= s 3 ;,s a) Duch geeignete Wahl de Paamete und s ehält man einen Punkt P de Ebene E, bei dem alle Koodinaten übeeinstimmen. Beechnen Sie die Paamete und s entspechend und geben Sie die Koodinaten des Punktes P an. b) De Koodinatenuspung O(0 0 0) und die Punkte P( ) und Q(0 3 0) bilden die Eckpunkte eines Deiecks. Zeigen Sie, dass das Deieck OPQ echtwinklig ist, und geben Sie an, bei welchem Eckpunkt de echte Winkel liegt. Aufgabe x Gegeben sind die beiden Punkte P( 4 ) und L( 6 ) sowie de Vekto v = 3 6 mit de unbekannten Komponente x 0. a) Stellen Sie eine Paametegleichung fü die Stecke s zwischen den Punkten P und L auf. b) Bestimmen Sie die fehlende Komponenten des Vektos v so, dass de Vekto senkecht zu Stecke s ist, und beechnen Sie anschließend seine Länge. [Zu Kontolle: x = ] c) Stellen Sie eine Paametegleichung fü eine Geade g auf, die die Stecke s in de Mitte senkecht schneidet. Aufgabe 3 Die Geade g veläuft duch die beiden Punkte P(0 0 ) und Q( 4 ). In de Ebene E liegen die x -Koodinatenachse und de Punkt R( 5). a) Stellen Sie fü die Geade g und fü die Ebene E jeweils eine Gleichung in Paametefom auf. b) Beechnen Sie die Koodinaten des Duchstoßpunktes S de Geaden g mit de Ebene E. [Zu Kontolle: S( 8 5)] c) Bestimmen Sie denjenigen Punkt S' auf de Geaden g, de vom Geadenpunkt P gleich weit entfent ist wie de Duchstoßpunkt S.

2 Aufgabe 4 Die Ebene E und die Geade g weden duch die folgenden Paametegleichungen beschieben: 0 0 E: x = s ;,s 0 g: x= + t ; t und a) Weisen Sie nach, dass die Geade g echt paallel zu Ebene E veläuft. b) Geben Sie eine Gleichung eine weiteen Geaden h an, die paallel zu g veläuft und in de Ebene E liegt. c) Angenommen, eine Geade j liegt in de Ebene E, ist abe nicht mit de Geaden h identisch. Nennen Sie alle möglichen Lagebeziehungen, die fü diese Geade j und die Geade g infage kommen, und begünden Sie Ihe Antwoten kuz.

3 Hinweise und Tipps Aufgabe a) Bestimmen Sie den Otsvekto eines Punktes, bei dem alle Koodinaten übeeinstimmen. Setzen Sie diesen Otsvekto mit de vogegebenen Ebenengleichung gleich und lösen Sie das daaus esultieende lineae Gleichungssystem. Vegessen Sie nicht, die Paamete und s sowie die Koodinaten des Punktes P anzugeben. b) Bilden Sie die Seitenvektoen des Deiecks jeweils als Diffeenz de Otsvektoen zweie Eckpunkte des Deiecks. Übelegen Sie, welche Eigenschaft das Skalapodukt zweie Vektoen efüllt, wenn die Vektoen senkecht aufeinande stehen. Beechnen Sie jeweils das Skalapodukt zweie Seitenvektoen. Entnehmen Sie dem Vektopaa, das aufeinande senkecht steht, den gemeinsamen Eckpunkt, bei dem de echte Winkel liegt. Altenativ: Beechnen Sie die Seitenlängen des Deiecks. Wenden Sie die Umkehung des Satzes des Pythagoas an. Aufgabe a) Stellen Sie die Zwei-Punkte-Fom de Stecke zwischen den Punkten P und L auf. Beachten Sie, dass bei eine Stecke de Definitionsbeeich fü den Paamete eingeschänkt ist. b) Übelegen Sie, welche Eigenschaft das Skalapodukt zweie Vektoen efüllt, wenn die Vektoen senkecht aufeinande stehen. De Vekto v und de Richtungsvekto de Stecke s stehen senkecht aufeinande, wenn ih Skalapodukt den Wet null annimmt. Bestimmen Sie aus diese Bedingung die unbekannte Komponente x. Fü die Länge eines Vektos = v v v v 3 gilt: v = v + v + v 3 c) Fü den Mittelpunkt M de Stecke PL gilt: m = (p + l ) Nutzen Sie aus, dass de Vekto v aus Teilaufgabe b senkecht zu Stecke s liegt. Stellen Sie eine Punkt-Richtungsfom de Geadengleichung auf. 3

4 Aufgabe 3 a) Stellen Sie die Zwei-Punkte-Fom de Geadengleichung auf. Die x -Koodinatenachse kann als Geade aufgefasst weden. Entnehmen Sie de Geadengleichung fü die x -Koodinatenachse einen Anbindungspunkt und einen Spannvekto fü die Ebene. Mithilfe des Punktes R, de nicht auf de x -Koodinatenachse liegt, kann de zweite Spannvekto fü die Ebene gebildet weden. Stellen Sie mithilfe des Anbindungspunktes und de Spannvektoen eine Ebenengleichung auf. b) Beachten Sie, dass de Duchstoßpunkt S sowohl auf de Geaden g als auch in de Ebene E liegt. Setzen Sie die Geaden- und die Ebenengleichung gleich und lösen Sie das esultieende lineae Gleichungssystem. Geben Sie mithilfe de Lösung die Koodinaten des Duchstoßpunktes an. c) Veanschaulichen Sie den vogegebenen Sachvehalt in eine Skizze. Übelegen Sie, welche Beziehung zwischen den Vektoen PS und SP besteht. Nutzen Sie diese Beziehung, um den Otsvekto von S' zu beechnen. Aufgabe 4 a) Zeigen Sie zunächst, dass die Geade g paallel zu Ebene E veläuft. Was muss in diesem Fall fü den Richtungsvekto de Geaden und die Spannvektoen de Ebene gelten? Weisen Sie nach, dass sich de Richtungsvekto de Geaden als Lineakombination de Spannvektoen de Ebene dastellen lässt. Nun könnte noch de Fall voliegen, dass die Geade g in de Ebene E liegt. Schließen Sie diese Möglichkeit aus, indem Sie eine Punktpobe duchfühen. b) Übelegen Sie, welche Eigenschaft die Richtungsvektoen paallele Geaden efüllen. Wählen Sie einen geeigneten Anbindungspunkt und stellen Sie die Punkt-Richtungsfom de Geaden auf. c) Übelegen Sie zunächst, welche Lagebeziehungen die Geaden j und h in de Ebene E zueinande haben können. Entscheiden Sie anschließend, welche Folgeung sich daaus fü die Lagebeziehungen de Geaden j und g egibt. 4

5 Lösung Aufgabe a) De Punkt P, bei dem alle Koodinaten übeeinstimmen, besitzt mit einem weiteen Paamete t 0 den Otsvekto t p= t. t Um nun die Paamete, s und t zu bestimmen, wid de Otsvekto des Punktes P mit de Paametefom de Ebene E gleichgesetzt: t 3 t = s 3 t 3 4 Es egibt sich ein lineaes Gleichungssystem mit dei Vaiablen: I t = 3+ s II t = 4 + 3s III t = s I t = 3+ s II t = 4 + 3s III I 0 = 6 + 6s 6 = 6s s = Einsetzen von s = in II: t = 4+ 3 = Einsetzen von s = und t = in I: = 3+ = 3+ = Die gesuchten Paamete lauten = und s = und de Punkt P besitzt die Koodinaten P( ). b) Im Deieck OPQ bilden die Vektoen OP, OQ und PQ die Deiecksseiten. 0 OP = 0 = OQ = 3 0 = PQ = 3 = 0 5

6 Das Deieck ist dann echtwinklig, wenn zwei diese Seitenvektoen aufeinande senkecht stehen. Dies ist de Fall, wenn ih Skalapodukt gleich null ist. 0 OP OQ = 3 = ( ) 0 ( 3) 0 = = OP PQ= = ( ) = + = 0 0 OQ PQ= 3 = 0 3( ) + 0 = = Die Vektoen OP und PQ stehen senkecht aufeinande. De echte Winkel wid von diesen Vektoen eingeschlossen und liegt somit beim Eckpunkt P. Altenativ: Fü die Seitenlängen des Deiecks gilt: OP = OP = = ( ) + ( ) + ( ) = 3 [LE] 0 OQ OQ 3 0 ( 3) 0 9 3[LE] = = = + + = = 0 PQ PQ ( ) 6 [LE] = = = + + = Es gilt: OP + PQ = = 3 = OQ Nach de Umkehung des Satzes des Pythagoas ist das Deieck OPQ echtwinklig mit den Katheten OP und PQ sowie de Hypotenuse OQ. De echte Winkel liegt somit beim Eckpunkt P. 6

7 Aufgabe a) Um eine Paametegleichung fü die Stecke zwischen den Punkten P und L zu ehalten, wählt man als Anbindungspunkt einen de beiden Punkte und als Richtungsvekto den Vebindungsvekto zwischen den Punkten. Damit nu die Stecke zwischen P und L duch die Paametefom dagestellt wid, muss de Definitionsbeeich des Paametes entspechend eingeschänkt weden. 3 s: x= p+ PL= = 4 + ; 0 0 b) De Vekto v ist dann senkecht zu Stecke s, wenn das Skalapodukt von dem Vekto v und dem Richtungsvekto PL de Stecke s gleich null ist: x 3 v PL= 0 3 = x ( 3) = 0 3x 6 = x = 6 : ( 3) x = Fü x = steht de Vekto v senkecht zu Stecke s. De gesuchte Vekto lautet damit v =. 3 6 Fü seine Länge gilt: v = 3 = ( ) + ( 3) + 6 = = 49 = 7[LE] 6 c) Die Mitte bzw. de Mittelpunkt de Stecke s beechnet sich mit de Fomel: 0,5 m = (p + l ) = = 0 = 5 M( 0,5 5 ) Mit dem Mittelpunkt M de Stecke s als Anbindungspunkt und dem zu Stecke s senkecht stehenden Vekto v = 3 6 als Richtungsvekto lautet die Paametefom de Geadengleichung: 0,5 g: x= m+ t v= 5 + t 3 ; t 0 6 Anmekung: Die Geade ist nicht eindeutig festgelegt, da es beliebig viele Richtungsvektoen gibt, die senkecht zu Stecke s sind. 7

8 Aufgabe 3 a) Mit dem Anbindungspunkt P und dem Richtungsvekto PQ lautet die Paametefom de Geaden g duch P und Q: g: x= p+ PQ= = ; 0 3 Da die x -Koodinatenachse in de Ebene E liegt, kann de Koodinatenuspung als Anbindungspunkt und de Richtungsvekto de x -Koodinatenachse als este Spannvekto de Ebene vewendet weden. Als zweite Spannvekto kann de Vebindungsvekto OR gewählt weden. Die Ebenengleichung lautet damit: E: x = 0 + s + t OR = 0 + s + t ; s,t b) Fü die Beechnung des Duchstoßpunktes S weden die Vektogleichungen von Geade und Ebene gleichgesetzt und das daaus esultieende lineae Gleichungssystem wid gelöst = 0 + s + t I = t II 4 = s + t III 3 = 5t I = t II + I 5 = s III + 3 I = t t = Einsetzen von t = in I: = ( ) = Einsetzen von = in II: 5 = s s= 0 Die Koodinaten des Duchstoßpunktes S egeben sich entwede duch Einsetzen von = in die Geadengleichung ode duch Einsetzen von s = 0 und t = in die Ebenengleichung. 0 0 s = = = 8 S( 8 5) Altenativ: s = = 0 = 8 S( 8 5)

9 c) Vom Punkt P gelangt man zum Duchstoßpunkt S mit dem Vebindungsvekto PS. Die Entfenung de beiden Punkte entspicht de Länge dieses Vektos. Um ausgehend von P zum Punkt S' zu gelangen, statet man wiede im Punkt P und hängt den Gegenvekto SP an. Da de Gegenvekto die gleiche Länge besitzt, ist die Entfenung zwischen S' und P gleich de Entfenung zwischen S und P s' = p + SP = = = 8 S'( 8 7) Aufgabe 4 a) Die Geade g veläuft paallel zu Ebene E, wenn de Richtungsvekto de Geaden und die beiden Spannvektoen de Ebene linea abhängig sind. Dies ist de Fall, wenn sich de Richtungsvekto als Lineakombination de Spannvektoen dastellen lässt. 6 0 = k 0 + l 5 I 6= k k = 3 II = l l= III = k + 5l Einsetzen von k = 3 und ; = in III: = 3+ 5 ( ) = 3 5 = (wahe Aussage) Die Geade g veläuft paallel zu Ebene E. Um nun noch auszuschließen, dass die Geade g in de Ebene E liegt, wid mithilfe eine Punktpobe gezeigt, dass de Anbindungspunkt de Geaden die Ebenengleichung nicht efüllt. 0 0 = s 5 I = = II = s s = III = + + 5s 0= + 5s 9

10 Einsetzen von = und s = in III: 0= = 5 (falsche Aussage) De Anbindungspunkt de Geaden g liegt nicht in de Ebene E. Folglich veläuft die Geade g echt paallel zu Ebene E. b) Als Anbindungspunkt de Geaden h eignet sich jede beliebige Punkt de Ebene E. De Einfachheit halbe wid de Anbindungspunkt von E gewählt. Da die Geade h paallel zu Geaden g velaufen soll, wid als Richtungsvekto de Richtungsvekto de Geaden g übenommen. Die Paametefom lautet damit: 0 6 h: x= 0 + m ; m 0 c) Da angenommen wid, dass die Geade j in de Ebene E liegt, abe nicht identisch mit de Geaden h ist, müssen nu die folgenden beiden Fälle untesucht weden: Die Geade j liegt in de Ebene E und veläuft echt paallel zu Geaden h. In diesem Fall veläuft die Geade j auch echt paallel zu Geaden g. Die Geade j liegt in de Ebene E und besitzt einen Schnittpunkt mit de Geaden h. In diesem Fall veläuft die Geade j windschief zu Geaden g. Als mögliche Lagebeziehungen kommen dahe nu echt paallel ode windschief infage. 0

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Lagebeziehungen zwischen Geraden und Ebenen

Lagebeziehungen zwischen Geraden und Ebenen Lagebeziehungen zwischen Geaden und Ebenen. Lagebeziehungen zwischen Geaden g a Gegeben seien zwei Geaden zu g µ b () Man untesucht zuest die Richtungsvektoen a, b auf lineae Abhängigkeit bzw. Unabhängigkeit

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Kernfach Mathematik (Thüringen): Abiturprüfung 2013 Aufgabe A1: Analysis (mit CAS)

Kernfach Mathematik (Thüringen): Abiturprüfung 2013 Aufgabe A1: Analysis (mit CAS) Kenfach Mathematik (Thüingen): Abitupüfung 03 Aufgabe A: Analysis (mit CAS) Gegeben ist die Funktion f duch y= f(x) = x e (x 0). x a) Untesuchen Sie den Gaphen de Funktion f auf lokale Extempunkte und

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade.

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade. Landeswettbeweb athematik aden-wüttembeg 996 Runde ufgabe Zeige: Wenn die Summe von 996 Quadatzahlen duch 8 teilba ist, dann sind mindestens vie diese Quadatzahlen geade. Vobemekung Eine Quadatzahl ist

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministeium Geltungsbeeich: fü Kultus Schüle de Klassenstufe 10 an allgemeinbildenden Gymnasien Schuljah 011/1 ohne Realschulabschluss Besondee Leistungsfeststellung Mathematik ERSTTERMIN

Mehr

Kernfach Mathematik (Thüringen): Abiturprüfung 2015 Pflichtaufgaben Teil A

Kernfach Mathematik (Thüringen): Abiturprüfung 2015 Pflichtaufgaben Teil A Kenfach Mathematik (Thüingen): Abitupüfung 2015 Pflichtaufgaben Teil A 1. Gegeben ist die Funktion f duch f(x) = x 3 3x + 2 (x 0). a) Zeigen Sie, dass t(x) = 3x + 2 eine Gleichung de Tangente an den Gaphen

Mehr

Aufgaben zur Vorbereitung Technik

Aufgaben zur Vorbereitung Technik Aufgaben zu Vobeeitung Technik Pof. Dipl.-Math. Usula Lunze Seite Test Anhand des ausgegebenen Tests können Sie selbständig emitteln, wo Ihe Schwächen und Lücken liegen. Die Aufgaben sollen soweit wie

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

2.8. Prüfungsaufgaben zum Satz des Pythagoras

2.8. Prüfungsaufgaben zum Satz des Pythagoras .8. üfungsaufgaben zum Satz des ythagoas Aufgabe : Rechtwinkliges Deieck Ein echtwinkliges Deieck mit de Kathete a = 0, m hat die Fläche A = 000 cm. Beechne die estlichen Seitenlängen dieses Deiecks. 000

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Hauptprüfung 2009 Aufgabe 4

Hauptprüfung 2009 Aufgabe 4 Haptpüfng 9 Afgabe 4 Gegeben ind die Geaden g: x nd h: x mit, 4. Beechnen Sie die Koodinaten de Schnittpnkte de Geaden g nd h. Beechnen Sie den Schnittwinkel δ de Geaden g nd h. Becheiben Sie die beondee

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsvewaltung fü Bildung, Wissenschaft und Foschung Fach Name, Voname Klasse Abschlusspüfung an de Fachobeschule im Schuljah / Mathematik (B) Püfungstag.. Püfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

VEKTOREN. 1. Einführung. Vektoren 7

VEKTOREN. 1. Einführung. Vektoren 7 Vektoen 7 VEKTOREN. Einfühung Zwei Raumschiffe befinden sich bei einem Andockmanöve hundete Kilomete übe unseem Planeten und sind zunächst weit voneinande entfent. Sie müssen zum Andocken mit eine Genauigkeit

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj qwetyuiopasdfghjklzxcvbnmqwetyuiop asdfghjklzxcvbnmqwetyuiopasdfghjklzx cvbnmqwetyuiopasdfghjklzxcvbnmqwe tyuiopasdfghjklzxcvbnmqwetyuiopasdf Aufgaben M-Beispielen ghjklzxcvbnmqwetyuiopasdfghjklzxcvb Vobeeitung

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Übungsaufgaben. Physik II. Elektrisches Feld und Potential

Übungsaufgaben. Physik II. Elektrisches Feld und Potential Institut fü mathematisch - natuwissenschaftliche Gunlagen http://www.hs-heilbonn.e/ifg Übungsaufgaben Phsik II Elektisches Fel un Potential Auto: Pof. D. G. Buche Beabeitet: Dipl. Phs. A. Szasz August

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Tangenten an Kreise und Tangentialebenen an Kugeln Ein Unterrichtsvorschlag für Leistungskurse in der S II

Tangenten an Kreise und Tangentialebenen an Kugeln Ein Unterrichtsvorschlag für Leistungskurse in der S II Atikel in Mathematik in de Schule, (994),, S. 59-55 Tangenten an Keise und Tangentialebenen an Kugeln Ein Unteichtsvoschlag fü Leistungskuse in de S II ANDREAS FILLER In dem Atikel weden Wege zu Behandlung

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. Lehrbrief Nr. 2: Perzeptron

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. Lehrbrief Nr. 2: Perzeptron Neuonale Netze, Fuzz Contol, Genetische Algoithmen Pof. Jügen Saue Lehbief N. : Pezepton Pecepton - Das Pezepton ist das einfachste Modell fü Neuonale Netze. Dieses Modell gehöt zu Klasse de sog. Musteassoziatoen.

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

5 Geraden im R Die Geradengleichung. Übungsmaterial 1

5 Geraden im R Die Geradengleichung. Übungsmaterial 1 Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und

Mehr

4. a b c p q h (a) 3 cm 4 cm. (c) 8 cm 10 cm (d) 5 cm 6 cm (e) 3 cm 4 cm (f) 9 cm 4 cm (g) 8 cm 4 cm (h) 6 cm 4 cm

4. a b c p q h (a) 3 cm 4 cm. (c) 8 cm 10 cm (d) 5 cm 6 cm (e) 3 cm 4 cm (f) 9 cm 4 cm (g) 8 cm 4 cm (h) 6 cm 4 cm Flähensätze im ehtwinkligen Deiek Die Resultate sind, falls nötig, auf Nahkommastellen zu unden. Wiedeholungsaufgaben 1. Wiedehole den Inhalt de dei Sätze zum ehtwinkligen Deiek, ohne eine algebaishe Fomel

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

Abitur Physik (Bayern) 2016 Themenbereich I: Elektromagnetische Felder, Relativitätstheorie

Abitur Physik (Bayern) 2016 Themenbereich I: Elektromagnetische Felder, Relativitätstheorie Abitu Physik (Bayen) 2016 Themenbeeich I: Elektomagnetische Felde, Relativitätstheoie Aufgabenvoschlag 1 1. Modell de Zündanlage eines Autos Bei einem Ottomoto wid die Vebennung des Benzin-Luft-Gemisches

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Elastostatik Statik elastischer Körper

Elastostatik Statik elastischer Körper FS 1 Elastostatik Statik elastische Köpe Die Elastostatik enthält Elemente de Festigkeitslehe und hat die Aufgabe, Beanspuchungen und Defomationen an Stuktuen u emitteln. Duch die Beücksichtigung de Vefomungen

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008 Abitu - Leistungskus Physik Sachsen-Anhalt 008 Thema G Efoschung des Weltalls Die Entdeckungen von Johannes Keple und Isaac Newton sowie die Estellung de Gundgleichung des Raketenantiebs duch Konstantin

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

BMS. berufsmaturitätsschule Formelsammlung Physik

BMS. berufsmaturitätsschule Formelsammlung Physik beufsatuitätsschule oelsalung Physik BMS Inhaltsvezeichnis ehleechnung Rechnen in de Physik 3 Wäelehe 4 Hydostatik 5 Kineatik 6 Dehbewegungen 6 Käfte 7 Statik 9 Dynaik 1 Abeit, Enegie und Leistung 11 Stoffwete

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

R. Brinkmann Seite Lineare Gleichungssysteme mit 2 Gleichungen und 2 Variablen

R. Brinkmann  Seite Lineare Gleichungssysteme mit 2 Gleichungen und 2 Variablen R. Brinkmann http://brinkmann-du.de Seite 1 18.0010 Lineare e mit Gleichungen und Variablen Ein solches besteht aus zwei Gleichungen. Gesucht ist die gemeinsame Lösung beider Gleichungen. Es gibt unterschiedliche

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :

Mehr

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV ZÜ 3. Aufgabe 3. Ein Wagen Masse M) kann eibungsfei auf eine waagechten Bahn fahen. An eine Achse uch seinen Schwepunkt S que zu Fahtichtung hängt eibungsfei gelaget ein Massenpenel Masse, Länge l, Stab

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

Aufgabe P1 Bewegungen (15 BE)

Aufgabe P1 Bewegungen (15 BE) Abitu 2003 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen (15 BE) 1. In de Physik weden Bewegungen mit den Modellen Massenpunkt" und stae Köpe" beschieben. Welche Gundaussagen beinhalten

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme.

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme. Bandenbugische Technische Univesität Cottbus Fakultät fü Mathematik, atuwissenschaften und Infomatik Lehstuhl Gafische Systeme Diplomabeit Umsetzung eines vollautomatisieten Objektefassungs- Systems übe

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

wwwmathe-aufgabecom Abitupüfug Mathematik Bae-Wüttembeg (ohe CAS) Wahlteil Aufgabe Aalytische Geometie II, Aufgabe II Gegebe si ie Pukte A(//), B(//) u C(//) a) Zeige Sie, ass as Deieck ABC gleichscheklig

Mehr