QFT entfernt den Shift

Größe: px
Ab Seite anzeigen:

Download "QFT entfernt den Shift"

Transkript

1 QFT entfent den Shift Lemma Entfenen des Shifts duch QFT QFT m z,b = 1 1 e 2πi b l ml Beweis: Es gilt QFT m z,b = 1 m m 1 1 m 1 m 2 y=0 l=0 k=0 QFT m k + b Umfomung liefet m 1 k=0 k+b e2πi m y y Wi ziehen den vom Shift b abhängigen Tem aus de 1 Summe 1 m 1 by m 2 y=0 e2πi m m 1 ky k=0 e2πi m y by 2πi Fü y = ml, l Z ehalten wi e m = e 2πi b l und e 2πi ky m = 1 Dies liefet sofot die gefodete obige Fomel Übungsaufgabe: Rechnen Sie nach, dass fü m y gilt m 1 k=0 ( e 2πi y m ) k = 0 Dh die estlichen Amplituden heben sich gegenseitig auf QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 20 / 30

2 Finden de Odnung von 2 in Z 15 Beispiel: Finden de Peiode von 2 in Z 15 Gegeben: Z 15 = 8 Gesucht: od Z 15 (2) Sei f (x) = 2 x mod 15 mit evesible Einbettung U f Auf wid H 3 I 3 und U f angewendet Dies liefet x=0 x 2x mod 15 = 1 8 ( ) Angenommen wi messen 2 im echten Teil Dann steht in den esten 3 Qubits de peiodische Zustand z 4,1 = 1 ( ) 2 QFT 8 ( z 4,1 ) = l=0 e2πi 1 4 l 2l = 1 2 ( 0 + i 2 4 i 6 ) 6 Bei Messung von 6 ehalten wi Z 15 = 3 4 De Nenne impliziet 4 od(2) Wi püfen 2 4 = 1 mod 15 QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 21 / 30

3 Finden de Peiode ohne Vielfachheit Poblem Finden de Peiode Gegeben: n, peiodische Zustand z,b = 1 m k 0 k+b<2 n k + b mit m 2n, so dass z,b ein Einheitsvekto ist Gesucht: Idee de Lösung: Es gilt QFT 2 n( z,b ) = 1 2 n by 1 m2 n y=0 e2πi 2 n m 1 k=0 k e2πi e2πi k 2 n y y Amplitude m 1 2 k=0 n y wid goß, falls y nahe einem Vielfachem von 2n ist Wi zeigen y 2n l 1 2 fü ein l Z mit hohe Ws Wegen 2 n 2 folgt damit y 2 l n n 2 2 Damit kommt l in de Kettenbuchentwicklung von y 2 vo n Zeigen altenativ, dass man gcd(l 1,) mittels Gitten finden kann 2 Duchgänge des Algoithmus liefen 1 = gcd(l 1,), 2 = gcd(l 2,) Mit Ws 6 gilt = kgv( π 2 1, 2 ) QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 22 / 30

4 Messung von y Lemma Gemessenes y appoxiet Vielfaches von 2n Mit Ws mindestens 4 04 ehalten wi ein y mit π y 2n 2 l 1 2 Beweisskizze: Sei y l = 2n l + δ l fü δ l 1 2 und p(y l) = 1 m 1 k m2 n k=0 e2πi 2 n y l 2 Fü die Beechnung von p(y l ) tägt nu de Tem δ l bei Übung: m2 n p(y l ) = Wegen m 2n e2πi 2 n mδl 2 1 e 2πi = sin2 (π 2 n mδ l ) 2 n δl 1 sin 2 (π 2 n δ l ) und sin(x) x fü kleine x ehalten wi p(y l ) 1 ( sin(πδl ) m2 n π ) 2 2 n δ 1 l ( sin(πδl ) Es gilt sin(x) 2 π x fü x [0, π 2 ], dh p(y l) 1 πδ l ) 2 ( 2 π πδ l πδ l ) 2 = 1 4 π 2 Ws gilt fü alle p(y l ) mit l Z, dh wi messen ein y mit Ws 4 π 2 QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 23 / 30

5 Beechnen von /gcd(l, ) Lemma Beechnen von l und Sei y Z mit y 2n l 1 2 und l Z, 2 2 n Dann kann Zeit O(n 2 ) beechnet weden gcd(l,) in Beweisskizze: Es gilt y 2 n l = x fü ein x Z mit x 2 Seien, l, x die duch gcd(l, ) geküzten Unbekannten, l, x Definieen f (, x ) = y x mit f (, x ) = 0 mod 2 n f ist modulaes lineaes Polynom mit Nullstelle (, x ), so dass x 2 2n 1 Volesung Kyptanalyse:, x weden in Zeit O(n 2 ) gefunden, sofen ( x kleine ) als de Modul 2 n ist 1 y Sei B = 0 2 n Dann gilt (, l ) B = (, x ) t und (, x ) ist eine küzeste ganzzahlige Lineakombination von Vektoen aus B Dh ein küzeste Vekto liefet = gcd(l,) QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 24 / 30

6 Gaußalgoithmus Definition Gitte Sei B Z 2 2 Wi bezeichnen mit L(B) = {x Z 2 ab = x, a Z 2 } das von den Vektoen von B aufgespannte Gitte Wi vewenden fü die Länge von Gittevektoen x = (x 1, x 2 ) die l 2 -Nom x = x 1 + x 2 Algoithmus Gaußalgoithmus ( ) b1 EINGABE: Basis B = Z 2 2 b 2 1 Subtahiee vom längeen Basisvekto ein ganzzahliges Vielfaches des küzeen Basisvektos, das die Nom minimiet 2 Vetausche die beiden Vektoen 3 Iteiee Schitte 1+2 solange sich die Nom in Schitt 1 veküzt AUSGABE: Reduziete Basis QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 25 / 30

7 Gaußalgoithmus liefet küzeste Vektoen Fakt Gaußalgoithmus De Gaußalgoithmus liefet bei Eingabe eine Basis B mit maximalem Basiseintag b m in Zeit O(log 2 b m ) eine eduziete Basis mit küzestem Gittevekto in L(B) QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 26 / 30

8 Sho s Algoithmus (1994) Algoithmus Sho s Algoithmus zum Finden de Odnung EINGABE: a, N 1 Benötigen 2 n N 2 φ 2 (N), dh wähle n = 2 log N 2 Sei U f die evesible Einbettung von f (x) = a x mod N 3 Wende auf 0 n 0 n zunächst H n I n dann U f an Liefet 1 2 n 1 2 n x=0 x ax mod N = ( 1 ) 1 m 1 b=0 2 n k=0 k + b a b mod N 4 Messen de hinteen n Registe liefet in den esten n Registen z,b = 1 m 1 m k=0 5 Beechne QFT 2 n( z,b ) und messe ein y 1 6 Wiedehole Schitte 1-5 fü ein y 2 7 Beechne 1 = gcd(l 1,), 2 = k + b gcd(l 2,) aus y 1, y 2 mit Gauß-Alg 8 Beechne = kgv( 1, 2 ) Falls a 1 mod N, Ausgabe Fehle AUSGABE: = od ZN (a) QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 27 / 30

9 Finden de Odnung von 2 in Z 21 Beispiel: Finden de Peiode von 2 in Z 21 Wähle de Einfachheit halbe nu n = 6 Wi ehalten 63 x=0 x 2x mod 21 = 1 8 ( ) Messung von 4 im echten Teil liefet im linken Teil z 6,2 = i=0 10k + 2 QFT 2 6( z 6,2 ) und Messung liefet ein y = 11l mit Ws 4 π 2 Bei Messung von y = 11 1 ehalten wi die Gittebasis ( ) 1 11 B = 0 64 Gaußalgoithmus liefet küzesten Vekto (6, 2) = (, x) in L(B) Wi püfen 2 = 2 6 = 1 mod 21 QA - Volesung Finden de Peiode, Gaußalgoithmus, Sho s Algoithmus, Faktoisieen 28 / 30

Motivation Phasenbestimmung

Motivation Phasenbestimmung Motivation Phasenbestimmung Problem Spezialfall der Phasenbestimmung Gegeben: Zustand z = 1 n y {0,1} n( 1)x y y Gesucht: x F n Für n = 1 ist der Zustand z = 1 ( 0 + ( 1) x 1 ) = H x. Es gilt H z = x,

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Die Einheitsmatrix E ist das neutrale Element der Multiplikationen; E muss quadratisch sein!

Die Einheitsmatrix E ist das neutrale Element der Multiplikationen; E muss quadratisch sein! Matizen - Algoithmen Ac Matizen sind Tabellen mit ze Zeilen und sp Spalten Man kann mit ihnen Opeationen duchfühen, die in veschiedenen Beeichen benötigt weden (zb Lösen von Lineaen Gleichungssystemen)

Mehr

Geometrie der Cartan schen Ableitung

Geometrie der Cartan schen Ableitung Geoetie de Catan schen Ableitung - - Notation Sei + Sei + Wi bezeichnen it ( L den Vektoau alle fach ultilineaen Abbildungen f : -al 2 Wi bezeichnen it S die Guppe alle Peutationen σ : {,, } {,, } Des

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr

Rechnen mit Vektoren im RUN- Menü

Rechnen mit Vektoren im RUN- Menü Kael 09.. CASIO Teach & talk Jügen Appel Einen deidimenionalen Vekto kann man al Matix mit dei Zeilen und eine Spalte auffaen. Daduch kann man mit Vektoen echnen. D.h. konket, man kann Vektoen addieen

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17.

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17. Semina Algeba LECTURES ON FORMS IN MANY VARIABLES Funktionenköpe Sommesemeste 2005 Steffen Schölch Univesität Ulm Stand: 17. Juli 2005 Funktionenköpe Definition 1: Ein Köpe K heißt Funktionenköpe in j

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER MMP I HERBSTSEMESTER 17 PROF. DR. HORST KNÖRRER LÖSUNG 7 1. Aufgabe Um die Stetigkeit von lineaen Abbildungen auf dem Schwataum u eigen, eigen wi uest die Stetigkeit in, woaus dann wie im Beweis von Sat

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2016

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2016 Püfung Gundinziien de Vesicheungs- und Finanzmathematik 6 Aufgabe : (7 min) a) Gegeben sei ein eineiodige State Sace-Makt bestehend aus eine isikolosen Anlage zum sicheen Zins und eine "Binomialaktie"

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen.

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen. GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u spachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 927 PEGNITZ FERNRUF 0924/48 FAX 0924/264 Gundwissen JS 9 Die eellen Zahlen 2 Septembe 2008 (a) Wie ist

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite Reelle Zahlen. Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus. Eine Wuzel kann nicht negativ

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

B.3 Kugelflächenfunktionen und Legendre-Polynome

B.3 Kugelflächenfunktionen und Legendre-Polynome B.3 Kugelflächenfunktionen und Legende-Polynome 113 B.3 Kugelflächenfunktionen und Legende-Polynome B.3.1 Kugelflächenfunktionen B.3.1 a ::::::: :::::::::: Definition Sei die Einheitskugelfläche von R

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zu Wahscheinlichkeitstheoie und Statistik Pof. D. C. Löh/M. Blank Blatt 13 vom 12. Juli 2012 Aufgabe 1 (Exponentialfamilien. Welche de folgenden Aussagen sind wah? Begünden Sie jeweils kuz Ihe

Mehr

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors - 1-2 Vektolge 2.1 Definition eines Vektos - Skle - Vektoen Def.: Q Ende Ein Vekto ist eine mthemtische Göße, die duch Ange von: P Anfng PQ - Mßhl (Mßeinheit) - Richtung Vollständig eschieen ist. Speielle

Mehr

7 Kurvenintegrale und die Greensche Formel

7 Kurvenintegrale und die Greensche Formel nalysis III, WS 2/22 Montag 3. $Id: geen.tex,v.9 22//3 5:4:52 hk Exp $ 7 Kuvenintegale und die Geensche Fomel 7.5 Rotation und die Geensche Fomel m Ende de letzten Sitzung hatten wi die geometische Definition

Mehr

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe)

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe) D. Anulf Schönlieb, Übungsbeispiele zu Potenzen, Wuzeln und Vektoen,. Klasse (10. Schulstufe) Übungsbeispiele zu Potenzen und Wuzeln sowie zu Vektoechnung,. Klasse (10. Schulstufe) 1)a) b) c) ) a) b) uv

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Semina4 PHYS7357 Eletizitätslehe und Magnetismus (Physi, Witschaftsphysi, Physi Lehamt, Nebenfach Physi) Othma Mati, (othma.mati@uni-ulm.de) 3. 5. 9 Aufgaben. Das eletostatische Potential

Mehr

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung Loenz-Mie-Steuung in Bonsche Näheung 1 Einleitung Licht wede an einem Medium mit dem Bechungsindex n gesteut De Bechungsindex sei eell, Absoption finde nicht statt Ist die Wechselwikung mit dem Medium

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+ Kantonsschule Reussbühl Matuitätspüfung 000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / 00 Lösung de Aufgabe a ( + a) + a a + a) f () ; f () a fü a - ( + ) b) f() ( ) ( + ) + + + Nullstellen f() 0 fü 0,

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Universität Siegen 4. Juli 2006 Inhaltsverzeichnis Quantenfouriertransformation 1 Quantenfouriertransformation Rechnen mit Qubits diskrete

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie Endliche Köpe Von Chistiane Telöken und Stefanie Meye im WS 03/04 Ausgewählte Titel de Kyptologie Gliedeung. Einleitung. Kyptologie im Altetum. Definitionen de Kyptologie.3 Kyptologie heute. Endliche Köpe.

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

1. Schularbeit Mathematik 6B 97/

1. Schularbeit Mathematik 6B 97/ . Schulabeit Mathematik 6B 97/98.0.997. Beechne die fehlenden Fomen de Geaden Vektoielle Fom Koodinatenfom x y t. Auf de Geaden g[a( /6), B(/ )] ist von A aus in Richtung B eine Stecke von d abzutagen.

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen SPEZIELLE FUNKTIONEN 3. Übungseinheit 1 Übesicht In de (theoetischen) Physi weden zu Veeinfachung de Foulieungen oft spezielle Funtionen bzw. Sätze von Funtionen eingesetzt. Beispiele: Γ- Funtion Kugelflächenfuntion

Mehr

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung Skipt Montag Stetigkeit, Funktionengenzwete, Ableitung und Tayloentwicklung Jonas Habel, Floian Kollmannsbege 18. Mäz 2018 1 Beweistechniken Beginnen wi mit zwei häufigen Beweistechniken. (a) : (A B) (

Mehr

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r.

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r. Einfühung in die Stochastik Sommesemeste 07 D Walte Oevel 4 6 007 Ü b u n g s b l a t t 9 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten vewendet weden Lösungen von -Aufgaben sind

Mehr

Diskrete Strukturen Klausur

Diskrete Strukturen Klausur Technische Univesität München Winte 2017/18 Pof. J. Esaza / D. M. Luttenbege, S. Sicket Diskete Stuktuen Klausu 14.02.2018 Beachten Sie: Soweit nicht andes angegeben, ist stets eine Begündung bzw. de Rechenweg

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Zusammenfassung magnetische Kraft auf elektrische Ladung

Zusammenfassung magnetische Kraft auf elektrische Ladung 24b Magnetismus 1 Zusammenfassung magnetische Kaft auf elektische Ladung Kaftwikung am elektisch geladenen Isolato ist otsunabhängig Kaftwikung am Magneten ist otsabhängig Maximale Kaft an den Enden Magnete

Mehr

Neunte Vorlesung: Die Kruskal-Metrik

Neunte Vorlesung: Die Kruskal-Metrik Neunte Volesung: Die Kuskal-Metik 9.1 Poblemstellung 9. Eigenzeit fei fallende Teilchen 9.3 Metik von Lemaite 9.4 Eddington-Finkelstein-Metik 9.5 Kuskal-Metik 9.1 Poblemstellung De metische Tenso hängt

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

2 Der Weierstraßsche Produktsatz

2 Der Weierstraßsche Produktsatz 4 Kapitel Meromorphe Funktionen Der Weierstraßsche Produktsatz Unser nächstes Problem soll sein, zu einer vorgegebenen Menge von Punkten eine holomorphe Funktion zu suchen, die genau in den Punkten Nullstellen

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

Lineare Algebra 2. A m. A 3 XI n3

Lineare Algebra 2. A m. A 3 XI n3 Techische Uivesität Dotmud Sommesemeste 27 Fakultät fü Mathematik Übugsblatt 6 Pof D Detlev Hoffma 6 Jui 27 Maco Sobiech/ Nico Loez Lieae Algeba 2 Lösug zu Aufgabe 6: Voaussetzuge: Sei K ei Köpe ud sei

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Geometrische Form des Additionstheorems

Geometrische Form des Additionstheorems Geometrische Form des Additionstheorems Jae Hee Lee 29. Mai 2006 Zusammenfassung Der Additionstheorem lässt sich mithilfe des Abelschen Theorems elegant beweisen. Dieser Beweis und die Isomorphie zwischen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1.

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1. KAPITEL 8 Wichtige statistische Veteilungen In diesem Kapitel weden wi die wichtigsten statistischen Veteilungsfamilien einfühen Zu diesen zählen neben de Nomalveteilung die folgenden Veteilungsfamilien:

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Division mit Schulmethode

Division mit Schulmethode Division mit Schulmethode Satz Division mit Rest von Polynomen Seien a(x), b(x) Q[x] mit b(x) 0. Dann gibt es eindeutige q(x), r(x) Q[x] mit a(x) = q(x) b(x) + r(x) und grad(r) < grad(b). Beweis: Sei grad(a)

Mehr

Komplexe Analysis D-ITET. Serie 1

Komplexe Analysis D-ITET. Serie 1 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 08 Komplexe Analysis D-ITET Serie ETH Zürich D-MATH Aufgabe. echnen mit komplexen Zahlen (.a) Berechnen Sie die folgenden Terme: i) ( 4 + 7i) + (8

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Wie lange dauert es (im Mittel), bis...?

Wie lange dauert es (im Mittel), bis...? Wie lange dauet es (im Mittel, bis? Teilnehme: Valentin Bonje Thomas Dittma Heniette Kisten Max Lindne Anton Pusch Fabian Schiemann Maximilian Steppe Alexeij Wad Alma Wettig mit tatkäftige Untestützung

Mehr

Analysis II. Uneigentliche Integrale

Analysis II. Uneigentliche Integrale Pof D H Benne Osnbück SS 204 Anlysis II Volesung 3 In diese Volesung entwickeln wi die Integtionstheoie weite, und zw untesuchen wi die Fge, ws pssiet, wenn wi in einem Integl b die Intevllgenzen gegen

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Extremwertaufgaben

Extremwertaufgaben 7.4.. Extemwetaufgaben Bei Extemwetaufgaben geht es daum, dass bei einem gestellten Sachvehalt (Textaufgabe) igendetwas zu maximieen bzw. zu minimieen ist. Dabei geht man nach einem festen, vogegebenen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Schwache Wechselwirkung - Paritätsverletzung - verschiedene Prozesse der schwachen WW

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Schwache Wechselwirkung - Paritätsverletzung - verschiedene Prozesse der schwachen WW Ken- und Teilchenphysik Einfühung in die Teilchenphysik: Schwache Wechselwikung - Paitätsveletzung - veschiedene Pozesse de schwachen WW Noethe Theoem: Wiedeholung: Noethe-Theoem Jede Symmetie impliziet

Mehr

Teil A: Grundlagen der Elektrodynamik

Teil A: Grundlagen der Elektrodynamik Lfd. N.: Matikeln.: Seite A- Teil A: Gundlagen de Elektodynamik Aufgabe A- Wie lautet de Phaso fü das folgende zeitabhängige Feld mit de Keisfequenz ω? ψ( x, y, t) = A sin( ωt + ax) e by ~ A, a, b: eelle

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

49 Uneigentliche Integrale

49 Uneigentliche Integrale Abschnitt 49 Uneigentliche Integale R lato 23 49 Uneigentliche Integale Wi betachten im Folgenden Integale a f / d von Funktionen f, die in einzelnen unkten des betachteten Integationsbeeichs nicht definiet

Mehr

Eigenräume, Eigenvektoren und Eigenwerte sowie deren Verallgemeinerungen. Der K- Vektorraum als K [ X ]-Modul. : 1,, r

Eigenräume, Eigenvektoren und Eigenwerte sowie deren Verallgemeinerungen. Der K- Vektorraum als K [ X ]-Modul. : 1,, r igenäume, igenvektoen und igenwete sowie deen Veallgemeineungen De K- Vektoaum als K [ X ]-odul s sei V ein K -Vektoaum mit de Basis = { e e } und nd ( V :,, α K In de lineaen Geometie sind wi an den von

Mehr