1. Die zu berechnende Boje hat in etwa die folgende Gestalt: r 2

Größe: px
Ab Seite anzeigen:

Download "1. Die zu berechnende Boje hat in etwa die folgende Gestalt: r 2"

Transkript

1 Lösungen fü die Püfung zu Einfühung in das mathematische Abeiten ( ) 1. Die zu beechnende Boje hat in etwa die folgende Gestalt: h Zunächst bestimmen wi die Obefläche diese Boje. Sie ist zusammengesetzt aus de Mantelfläche eines Zylindes A Z = πh, de Obefläche eine Kugel (zwei Halbkugeln) A K = 4π ( ) = π, und den beiden Keisingen, die von den Deckflächen des Zylindes übe die Basiskeise de Halbkugeln hinausstehen A R = π( ( ) ) = 3 π, insgesamt ist also O = A Z + A K + A R = πh + 5 π = π(h + 5 ). Die nächste Aufgabe besteht dain, das Volumen zu bestimmen. Wiede setzt sich das Gesamtvolumen aus meheen Teilen zusammen, dem Volumen eines Zylindes V Z = π h und dem Volumen eine Kugel (wiede zwei Halbkugeln) was insgesamt egibt. V K = 4π( ) 3 3 = 1 6 π3, V = V Z + V K = π h π3 = π (h ) Fü die Nebenbedingung dücken wi uns h duch V, das ja fix vogegeben sei, und aus h = V 1 6 π3 π. (1) 1

2 Nachdem h positiv sein muss, gibt das die obee Genze fü : Außedem wissen wi > 0. h > 0 = < 3 6V π. Jetzt wollen wi das Optimieungspoblem lösen. Die Hauptbedingung ist min O(, h) = π(h + 5) ( ) V min O() = π π = V + 13π 6. Wi setzen die este Ableitung Null und ehalten 0 = O () = V + 13π 6 V = 13π 6 3 = 3 6V 13π. Die Lösung fü befindet sich innehalb de zulässigen Genzen, und ist ein lokales Minimum, da O () > 0 gilt. Aus de Gleichung (1) fü h ehalten wi h = und fü die Obefläche egibt sich 13π π3 π =, O = π( π ) =. Legt man eine Boje ins Wasse, dann ist de Auftieb F A gleich dem Gewicht des vedängten Wasses. Wasse hat eine Dichte von 1000 kg m 3, und die Boje schwimmt, wenn sich Gewicht F G de Boje und Auftieb die Waage halten, also falls F G = F A Mg = gv E 1000 kg m 3 gilt, wobei V E das Volumen unte de Wasseobefläche bezeichnet und M die Masse de Boje epäsentiet. Die Edbeschleunigung g fällt in de Gleichung weg, deen Wet ist also uneheblich. Nachdem die Boje zu Hälfte unte Wasse sein soll, ist V E = 1 V. Es gelten M = kg m O, V = O 3.

3 Dahe können wi den Radius beechnen 0 = F A g 1 M = 1000 V, kg m kg m O = (1000 O O m)kg m 6 = m = m = 3.49 cm, 1000 und die Höhe ist h = cm. Man vebaucht m Blech.. (a) Um zu übepüfen, ob K ein Unteköpe von R ist, müssen wi zunächst die Abgeschlossenheit de Opeationen + und nachweisen: Abgeschlossenheit von +: Es gilt (a 1 + b 1 5) + (a + b 5) = (a1 + a ) + (b 1 + b ) 5, und weil die Summe zweie ganze Zahlen wiede ganz ist, liegt die Summe zweie Elemente von K wiede in K. Abgeschlossenheit von : Wi haben (a 1 + b 1 5) (a + b 5) = a1 a + a 1 b 5 + a b b1 b = = (a 1 a + 5b 1 b ) + (a 1 b + a b 1 ) 5. Summe und Podukt ganze Zahlen sind ganz, also hat das Podukt zweie Elemente aus K dieselbe Fom wie alle Elemente von K und liegt dahe auch in de Menge. Dahe ist auf K abgeschlossen. Invese bzgl. +: Sei k = a + b 5 K. Dann ist das Invese bzgl. + in R gegeben duch k = a + ( b) 5. Offenba ist dieses Element wiede in K. Dahe sind additiv Invese enthalten. Invese bzgl. : Gehen wi wiede aus von k = a + b 5 K und sei k 0. Wi finden das Invese von k in R duch k 1 = 1 a + b 5 = a b 5 (a + b 5)(a b 5) = a a 5b + Dieses Element ist im allgemeinen nicht in K, da die Ausdücke a a 5b und b a 5b b a 5b 5. üblicheweise keine ganzen Zahlen sind. Dahe existieen in K nicht zu jedem Element multiplikative Invese. K ist dahe kein Unteköpe von R. Abe K ist Unteing von R, und dahe soga ein Integitätsbeeich. 3

4 (b) Wi beginnen jeden Induktionsbeweis mit dem Induktionsanfang (hie fü n = 0): 0 (k 1)(k + 1) = (0 1)(0 + 1) = 1 = 1 (0 + 1)(0 + )( 0 3). 6 k=0 Diese ist also ichtig. Dann scheiben wi die Induktionsvoaussetzung auf. Fü alle j n gelte j (k 1)(k + 1) = 1 (j + 1)(j + )(j 3). 6 k=0 Nun fomulieen wi die Induktionsbehauptung (die Behauptung, die wi im Induktionsschitt beweisen möchten): Zu zeigen ist n+1 (k 1)(k + 1) = 1 (n + )(n + 3)(n 1). 6 k=0 Zuletzt beweisen wi unsee Behauptung: n+1 (k 1)(k + 1) = k=0 = 1 6 was zu beweisen wa. n (k 1)(k + 1) + n(n + ) = (Induktionsvoaussetzung) k=0 (n + 1)(n + )(n 3) + n(n + ) = = 1 6 (n + )( (n + 1)(n 3) + 6n ) = = 1 3 (n + )( n + 5n 3 ) = = 1 (n + )(n + 3)(n 1), 3 3. (a) Betachten wi das gegebene lineae Gleichungssystem (3 + 4i)x + ( i)y = 1 + 8i (1 i)x + (3 + 3i)y = 8 + 9i. Wi multiplizieen die este Zeile mit 3i und die zweite mit. Das egibt (1 9i)x (6 + 6i)y = 4 3i ( 4i)x + (6 + 6i)y = i. Dann addieen wi die beiden Gleichungen und ehalten (14 13i)x = i, 4

5 somit gilt x = i 14 13i = ( i)( i) (14 13i)( i) Um y zu bestimmen setzen wi ein: y = Die vie Ausdücke egeben: ( Punkte) 1 + 8i (3 + 4i)(1 + i) i = i = 1 + i. = 6 i i = 3 i 1 i = + i. xy = (1 + i)( + i) = i( i)( + i) = 5i x = x = 5 y y 5 = 1 xy = (1 i)( + i) = 4 3i x y = (xy) = (5i) = 5. (b) Zunächst wollen wi feststellen, wie viele Lampen de Make B gekauft weden müssen. Übepüfen wi, wie wahscheinlich es ist, dass bei 31 gekauften Lampen alle funktionieen: P = = Das ist zu wenig. Dahe müssen wi wenigstens eine Lampe meh kaufen. Testen wi nun, wie hoch die Wahscheinlichkeit ist, dass von 3 gekauften Lampen wenigstens 31 funktionieen: ( ) 3 P = = > 0.995, also müssten wi 3 Lampen de Make B kaufen. Die Make A wid in Packungen zu dei Stück vekauft. Die Ausfallswahscheinlichkeit ist hoch, und dahe weden wi vesuchen, mit eine Extapackung, also 1 Packungen auszukommen. Damit kaufen wi 36 Lampen, und die Wahscheinlichkeit, dass wenigstens 31 davon funktionieen, ist die Summe de Wahscheinlichkeiten, dass keine, eine, zwei, usw. bis fünf Lampen defekt sind: P = 5 d=0 ( 36 d ) d 0.05 d = = , es eicht also eine Extapackung nicht aus (knapp abe doch). Vesuchen wi es mit eine weiteen Packung, also mit dem Kauf von 39 Lampen: 8 ( ) 39 P = d 0.05 d d d=0 = = , 5

6 das ist meh als genug. (1 1 Punkte) De Peisvegleich egibt 35 fü die 13 Pakete de Make A und 30 fü die 3 Lampen de Make B, es wäe also günstige das Podukt de Make B zu besogen. ( 1 Punkt) Wem die dagestellten Zahlen übetieben escheinen, de sei vesichet, dass es tatsächlich Hestelle gibt, bei denen 5% de Lampen Ausschuss sind. Das gesteckte Ziel von 99.5% Sicheheit ist auch seh hoch angesetzt. Gibt man sich mit 77% 99% zufieden, dann muss man nu 1 Packungen de Make A und 31 Lampen de Make B besogen, und de Peisvegleich sieht mit 300 zu 310 besse fü A aus. 4. (a) Zunächst wollen wi die Gleichung de Ellipse bestimmen: De Flächeninhalt de Ellipse ist abπ, also folgt die este Gleichung ab = 50. Die Tangente beüht die Ellipse. Dahe vewenden wi die Beühbedingung k a + b = d fü eine Geade de Fom y = kx + d. Tansfomieen wi t ell auf diese Gestalt: Das füht zu zweiten Gleichung t ell : y = 3 x a + b = a + 9b = 65. Die Gültigkeit de Beühbedingung kann man folgendemaßen heleiten: Seien die Ellipse x ell : a + y b = 1 und die Geade g : y = kx + d gegeben. Wollen wi die beiden schneiden, dann müssen wi g in ell einsetzen. Es folgt ( 1 a + k b ( b x ) a x + kd a + k x a + y b = 1 (kx + d) + = 1 ( b ) d b x + b 1 = 0, ) x + kdx + d b = 0, 6

7 eine quadatische Gleichung fü x. Wi lösen sie und ehalten x 1, = kd ± 4k d 4( b + k a )(d b ) ( b + k a ) = kd ± b 4 b d + k a a b b + k a = kd ± b b d a + k a. b + k a Damit die g die Ellipse beüht und nicht in zwei Punkten schneidet müssen x 1 und x zusammenfallen, die Wuzel muss also veschwinden, und das egibt die Bedingung k a + b = d. Weites können wi aus de Gleichung noch die Koodinaten des Beühungspunktes bestimmen: x = kd b a + k = kda b + a k = kda d = k d a y = kx + d = k k d a + d = a k + d d = a k + d d = b d. Vewenden wi nun die beiden Gleichungen, dann ehalten wi, indem wi a b = 500 in die zweiten Gleichung einsetzen und mit a multiplizieen, eine biquadatische Gleichung Deen Lösungen sind Daaus folgen die Wete fü b 4a 4 65a = 0. a 1, = 100, 5 4, a 1, = 10, 15. b 1, = 5,

8 Die Gleichungen de beiden Lösungen sind also ell I : ell II : x y 5 = 1 4x 5 + 9y 400 = 1. Jetzt wollen wi die Hypebelgleichungen suchen. Wenn sich Hypebeln und Ellipsen othogonal schneiden, sind sie konfokal, d.h. sie haben gemeinsame Bennpunkte. Die lineaen Exzentizitäten de Ellipsen sind nach Beechnung gemäß de Fomel e = a b gegeben duch e I = 75 e II = Diese Exzentizitäten müssen also auch die Hypebeln aufweisen, und fü Hypebeln ist die Fomel e = a + b. Wi haben also fü jede de beiden Lösungen eine Gleichung: a I + b I = 75 a II + b II = Dann muss noch de Beühpunkt de Tangente auf de Hypebel liegen, also müssen wi die Beühpunkte bestimmen: x I = = 8 y I = = 3 x II = = 9 y II = = Setzen wi diese in die Hypebelgleichung hyp : x a y b = 1 ein, dann egibt sich je eine zweite Gleichung fü die a und b: 64 9 = 1 a I b I = 1. 9b II 4a II 8

9 Jetzt dücken wi uns aus den Exzentizitätsgleichungen b aus und setzen ein. Das egibt wiede biquadatische Gleichungen Die Lösungen sind jeweils a 4 I 148a I = 0 a 4 II a II = 0. (a I) 1, = 100, 48 (a II) 1, = 05 36, Nun vewenden wi eneut die lineaen Exzentizitäten, um die zugehöigen b zu bestimmen: (b I) 1, = 5, 7 (b II) 1, = 400 9, Nu die jeweils positiven Lösungen kommen in Betacht. Ein altenative Weg fü die Bestimmung von a und b ist die Vewendung de Tangenten. Wi wissen, dass die Hypebel die Ellipse echtwinkelig schneidet, also hat die Hypebel im Beühpunkt eine auf t ell othogonal stehende Tangente. Diese Tangente hat die Gleichung t hyp : y = 3 x + d, wobei d duch den Beühpunkt bestimmt wid: t hypi : y = 3x 9 t hypii : y = 3x 17. () 1 Die Tangentengleichung an eine Hypebel im Beühungspunkt ist und dahe wissen wi t hyp : t hypi : t hypii : x p a x y p b y = 1, 8 x 3 y = 1 a I b I 9 x 16 y = 1. a II 3b II Diese Tangentengleichungen müssen mit denen oben übeeinstimmen, und dahe fomen wi die Gleichungen () um: t hypi : t hypii :

10 Koeffizientenvegleich egibt woaus 8 a I 9 3 b I a II 16 3b II = 1 6 = 1 9 = = 1 17, a I = 48, b I = 7 a II = 17 4, b II = 68 9 folgt. ( Punkte) Zu gute letzt finden wi also die Hypebelgleichungen hyp 1 : hyp : x 48 y 7 = 1 4x 17 9y 68 = 1. (b) Zunächst hat man die Wahl, ob man die Bohe so sotiet, dass de Duchmesse zunimmt ode so, dass e abnimmt. Schließlich muss man die einzelnen Gößenklassen nebeneinande legen wie vogegeben, und man kann nu innehalb de Guppen vetauschen. Die Anzahl de Möglichkeiten ist also gegeben duch ( Punkte)!4!4!5!!3! =

Extremwertaufgaben

Extremwertaufgaben 7.4.. Extemwetaufgaben Bei Extemwetaufgaben geht es daum, dass bei einem gestellten Sachvehalt (Textaufgabe) igendetwas zu maximieen bzw. zu minimieen ist. Dabei geht man nach einem festen, vogegebenen

Mehr

Beispiellösungen zu Blatt 49

Beispiellösungen zu Blatt 49 µathematische κoespondenz- zikel Mathematisches Institut Geog-August-Univesität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 49 Bei Familie Lösche wid Ästhetik goß geschieben: Man vesucht, die vie Kezen

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

Musterlösung Serie 4

Musterlösung Serie 4 D-MATH Lineae Algeba I HS 218 Pof Richad Pin Mustelösung Seie 4 Summen Podute und Matizen 1 Beweisen Sie: (a Fü jede ganze Zahl n gilt n ( n 2 n (b Fü alle ganzen Zahlen n gilt ( ( n n n (c Fü alle ganzen

Mehr

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung Skipt Montag Stetigkeit, Funktionengenzwete, Ableitung und Tayloentwicklung Jonas Habel, Floian Kollmannsbege 18. Mäz 2018 1 Beweistechniken Beginnen wi mit zwei häufigen Beweistechniken. (a) : (A B) (

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Mathematikaufgaben > Vektorrechnung > Kugeln

Mathematikaufgaben > Vektorrechnung > Kugeln Michael Buhlmann Mathematikaufgaben > Vektoechnung > Kugeln Aufgabe: Gegeben ist eine Kugel K im deidimensionalen katesischen x 1 -x -x 3 -Koodinatensystem mit dem Uspung als Mittelpunkt und dem Radius

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Mögliche Portfolios: Zulässiger Bereich

Mögliche Portfolios: Zulässiger Bereich Mögliche Potfolios: Zulässige Beeich Veeinfachende Annahme: 2 Finanztitel (A und B) Bekannte Infomationen: Ewatete Renditen E( A ) und E( B ) Vaianzen de Renditen Va( A ) und Va( B ) Kovaianz zwischen

Mehr

2 Partielle Ableitungen

2 Partielle Ableitungen 2 Patielle Ableitungen Wi kommen nun zu Diffeentiation von Funktionen im R n. Um fü diese Ableitungen zu definieen, ist die einfachste und vielfach beste Idee, alle Vaiablen bis auf x j als konstant aufzufassenunddieesultieendefunktiondeeinenvaiablen

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

Die Einheitsmatrix E ist das neutrale Element der Multiplikationen; E muss quadratisch sein!

Die Einheitsmatrix E ist das neutrale Element der Multiplikationen; E muss quadratisch sein! Matizen - Algoithmen Ac Matizen sind Tabellen mit ze Zeilen und sp Spalten Man kann mit ihnen Opeationen duchfühen, die in veschiedenen Beeichen benötigt weden (zb Lösen von Lineaen Gleichungssystemen)

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+ Kantonsschule Reussbühl Matuitätspüfung 000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / 00 Lösung de Aufgabe a ( + a) + a a + a) f () ; f () a fü a - ( + ) b) f() ( ) ( + ) + + + Nullstellen f() 0 fü 0,

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

B.3 Kugelflächenfunktionen und Legendre-Polynome

B.3 Kugelflächenfunktionen und Legendre-Polynome B.3 Kugelflächenfunktionen und Legende-Polynome 113 B.3 Kugelflächenfunktionen und Legende-Polynome B.3.1 Kugelflächenfunktionen B.3.1 a ::::::: :::::::::: Definition Sei die Einheitskugelfläche von R

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Mögliche Portfolios: Zulässiger Bereich

Mögliche Portfolios: Zulässiger Bereich Veeinfachende nnahme: zwei Finanztitel ( und ) ekannte Infomationen: ~ ~ ~, Va, t1 Cov~ Ewatete Renditen, t1,, t1 Vaianzen de Renditen Va ~, t 1 Kovaianz zwischen den Renditen, ~, t1, t1 Man kann unteschiedliche

Mehr

Mathematik Grundlagen Teil 2

Mathematik Grundlagen Teil 2 BBZ Biel-Bienne Eine Institution des Kantons Ben CFP Biel-Bienne Une institution du canton de Bene Beufsmatuität Matuité pofessionnelle Beufsbildungszentum Mediamatike Médiamaticiens Cente de fomation

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite Reelle Zahlen. Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus. Eine Wuzel kann nicht negativ

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

Tangentenfünfeck 1 Worum geht es? 2 Vorbereitung Abb. 1: Beliebiges Fünfeck mit vorgegebenen Seiten

Tangentenfünfeck 1 Worum geht es? 2 Vorbereitung Abb. 1: Beliebiges Fünfeck mit vorgegebenen Seiten Hans Walse, [20150837] Tangentenfünfeck 1 Woum geht es? Zu fünf gegebenen Stecken gibt es im Pinzip genau ein passendes Tangentenfünfeck. Ein Gelenkmodell aus fünf vogegebenen Stecken hat also im Pinzip

Mehr

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Vesuch : Dehschwingungen, Expeimentelle Bestimmung von Tägheitsmomenten 1. Aufgabenstellung Die Winkelichtgöße eine Dillachse soll eineseits duch statische Auslenkung mit bek. Dehmoment und andeeseits

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter 8 3. Dastellung de Geaden im Raum 3.1. Paametegleichung de Geaden Die naheliegende Vemutung, dass eine Geade des Raumes duch eine Gleichung de Fom ax + by + cz +d 0 beschieben weden kann ist falsch (siehe

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER

MMP I HERBSTSEMESTER 2017 PROF. DR. HORST KNÖRRER MMP I HERBSTSEMESTER 17 PROF. DR. HORST KNÖRRER LÖSUNG 7 1. Aufgabe Um die Stetigkeit von lineaen Abbildungen auf dem Schwataum u eigen, eigen wi uest die Stetigkeit in, woaus dann wie im Beweis von Sat

Mehr

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10 Pojekt : Geometie gotische Kichenfenste Jgst. 0 Begiffsekläung : Das Wot Gotik wude im 5. Jahhundet von italienischen Humanisten fü eine nichtantike, im Noden entstandene babaische (gotische) Kunst gebaucht.

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Pof. D. M. Wolf D. M. Pähofe TECHNISCHE UNIVERSITÄT MÜNCHEN Zentum Mathematik Mathematik fü Phsike 3 (Analsis MA93 http://www-m5.ma.tum.de/allgemeines/ma93 8S Sommesem. 8 Lösungsblatt 7 (8.5.8 Zentalübung

Mehr

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen.

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen. GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u spachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 927 PEGNITZ FERNRUF 0924/48 FAX 0924/264 Gundwissen JS 9 Die eellen Zahlen 2 Septembe 2008 (a) Wie ist

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Lösung 1: Die größte Schachtel

Lösung 1: Die größte Schachtel Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

7 Kurvenintegrale und die Greensche Formel

7 Kurvenintegrale und die Greensche Formel nalysis III, WS 2/22 Montag 3. $Id: geen.tex,v.9 22//3 5:4:52 hk Exp $ 7 Kuvenintegale und die Geensche Fomel 7.5 Rotation und die Geensche Fomel m Ende de letzten Sitzung hatten wi die geometische Definition

Mehr

Arbeiten ( )

Arbeiten ( ) Lösungen für die Prüfung zu Einführung in das mathematische Arbeiten (3.2.2002). Dieses Beispiel ist eine umgekehrte Kurvendiskussion. (a) Um die Koeffizienten von f zu bestimmen, können wir ansetzen f(x)

Mehr

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade.

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade. Landeswettbeweb athematik aden-wüttembeg 996 Runde ufgabe Zeige: Wenn die Summe von 996 Quadatzahlen duch 8 teilba ist, dann sind mindestens vie diese Quadatzahlen geade. Vobemekung Eine Quadatzahl ist

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Abituraufgabe Stochastik: Fliesenproduktion

Abituraufgabe Stochastik: Fliesenproduktion Abituaufgabe Stochastik: Fliesenpoduktion Eine Fima stellt mit zwei veschiedenen Maschinen A und B Bodenfliesen aus Keamik he. Damit eine Fliese als 1. Wahl gilt, muss sie stenge Qualitätsnomen efüllen.

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

1 Ergänzungen zum Themenfeld Vollständige Induktion

1 Ergänzungen zum Themenfeld Vollständige Induktion KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS D. Chistoph Schmoege Heiko Hoffmann WS 013/14 5.10.013 Höhee Mathematik I fü die Fachichtung Infomatik 1. Saalübung (5.10.013) 1 Egänzungen zum

Mehr

Aufgaben zur Vorbereitung Technik

Aufgaben zur Vorbereitung Technik Aufgaben zu Vobeeitung Technik Pof. Dipl.-Math. Usula Lunze Seite Test Anhand des ausgegebenen Tests können Sie selbständig emitteln, wo Ihe Schwächen und Lücken liegen. Die Aufgaben sollen soweit wie

Mehr

Die Schwarzschild-Metrik

Die Schwarzschild-Metrik Die Schwazschild-Metik Semina Mathematische Physik vom 19. Mai 2010 Lauin Ostemann 1 Einleitung Die Schwazschild-Metik in de engl. Liteatu Schwazschild solution) wa die este bekannte analytische Lösung

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r.

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r. Einfühung in die Stochastik Sommesemeste 07 D Walte Oevel 4 6 007 Ü b u n g s b l a t t 9 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten vewendet weden Lösungen von -Aufgaben sind

Mehr

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 2. Stufe (Keisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 2. Stufe (Keisolympiade) Klasse 9 Aufgaben Hinweis: De Lösungsweg mit Begündungen

Mehr

Helmuts Kochrezept Nummer 6:

Helmuts Kochrezept Nummer 6: Helmuts Kochezept Numme 6: Ausdücken von Raumladungsdichten mittels Delta- Distibution in katesischen und kummlinigen Koodinaten (Vesion 2, 4.5.28) Dieses Kochezept eklät Di, wie du Raumladungsdichten

Mehr

Übungen zur Mechanik Lösungen Serie 7

Übungen zur Mechanik Lösungen Serie 7 Übungen zu Mechanik Lösungen Seie 7. Edumundung im Space Shuttle (a) De Obite (Masse m) wid duch die Gavitation zu Ede auf de Umlaufbahn gehalten. F G ist die einzig wikende Kaft und muss somit gleich

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Tag der Mathematik 2019

Tag der Mathematik 2019 Guppenwettbeweb Einzelwettbeweb Mathematische Hüden Aufgaben mit en Aufgabe G mit Aufgabe G a) Fü eine Konsevendose mit einem Lite Inhalt soll möglichst wenig Mateial benötigt weden, d.h. gesucht ist ein

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Optimale Portfolioentscheidung unter Risiko

Optimale Portfolioentscheidung unter Risiko unte Risiko Bei de Bildung eines Investmentpotolios stehen dem ET zahleiche Finanztitel zu Veügung. e küntige Peis eines Finanztitels und dementspechend auch die küntige Rendite des Finanztitels sind zum

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Geometrie der Cartan schen Ableitung

Geometrie der Cartan schen Ableitung Geoetie de Catan schen Ableitung - - Notation Sei + Sei + Wi bezeichnen it ( L den Vektoau alle fach ultilineaen Abbildungen f : -al 2 Wi bezeichnen it S die Guppe alle Peutationen σ : {,, } {,, } Des

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministeium Geltungsbeeich: fü Kultus Schüle de Klassenstufe 10 an allgemeinbildenden Gymnasien Schuljah 011/1 ohne Realschulabschluss Besondee Leistungsfeststellung Mathematik ERSTTERMIN

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Lagebeziehungen zwischen Geraden und Ebenen

Lagebeziehungen zwischen Geraden und Ebenen Lagebeziehungen zwischen Geaden und Ebenen. Lagebeziehungen zwischen Geaden g a Gegeben seien zwei Geaden zu g µ b () Man untesucht zuest die Richtungsvektoen a, b auf lineae Abhängigkeit bzw. Unabhängigkeit

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 990 Runde Aufgabe Ein Rehtek mit den Seitenlängen n m und m m wid in n m uadate de Seitenlänge m zelegt. In dieses Rehtek wid eine Diagonale eingezeihnet. a) Duh wie viele innee Gittepunkte geht diese

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Mathematik / Wirtschaftsmathematik

Mathematik / Wirtschaftsmathematik tudiengang Witschaftsingenieuwesen Fach Mathematik / Witschaftsmathematik At de Leistung tudienleistung Klausu-Knz. WB-WMT--66 / WI-WMT- 66 Datum.6.6 Bezüglich de Anfetigung Ihe Abeit sind folgende Hinweise

Mehr

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17.

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17. Semina Algeba LECTURES ON FORMS IN MANY VARIABLES Funktionenköpe Sommesemeste 2005 Steffen Schölch Univesität Ulm Stand: 17. Juli 2005 Funktionenköpe Definition 1: Ein Köpe K heißt Funktionenköpe in j

Mehr