2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

Größe: px
Ab Seite anzeigen:

Download "2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew."

Transkript

1 . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x, y, z x', y', z' "uhend" beschleunigt bewegt (im Zug) Otsvekto = + 1 a t = 1 a t S S Geschwindigkeit v = v + a t v = v a t S S Beschleunigung a a a = a + a a = a a S S System S ist Inetialsystem! F = ma = F ma S F = ma! es = F+ F t F: Scheinkaft t Beobachte in S' wid zusätzliche Beschleunigung ( ) a S (Tägheitskaft) als Wikung eine Kaft ("Scheinkaft", "Tägheitskaft") intepetieen! Um einen Köpe im beschleunigten System S' "in uhe zu halten" muß eine (eale) Kaft F wiken, die die Scheinkaft F v t kompensiet: F+ F = 0 a = 0! (d'alembet) [Gl..1.1.] t statisches Gleichgewicht: Summe de Käfte=0 einschl. de Tägheitskaft! Beispiel: Köpe Fl. (m = 1 kg) steht auf eine (elektonischen, in "N" geeichten) Waage in einem Aufzug (g=10 m/s ) a) b) c) 10 N 15 N 5 N (betachte nu vetikale Komp.von Kaft, Beschl. etc., "+" nach oben) wg. "actio" = "eactio" gilt: Anzeige de Waage = F N = F Fl. auf Waage = F Waage auf Fl.! [Gl..1..] Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.1/10

2 a) Aufzug in uhe (ode gleichf. Geschw.!) a) Fl. bleibt in uhe 10 N Käfte auf Fl.: Gewicht: F = mg G -10 N Waage auf Fl.: F N +10 N Summe: F es 0 N Beschleunigung: a 0 m/s Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S./10

3 b) Aufzug beschleunigt mit 5 m / s nach oben: b) 15 N 1) Betachtung von außen: Käfte auf Fl.: Gewicht: F = mg -10 N G Waage auf Fl.: F N +15 N Summe: F es + 5 N Beschleunigung: a +5 m/s Fl. wid mit 5 m /s nach oben beschleunigt! ) Betachtung im beschl. Bezugssystem des Aufzugs: Käfte auf Fl.: Gewicht: F = mg G -10 N Waage auf Fl.: F N +15 N "Tägheitsk." F t - 5 N Summe: F 0 N Beschleunigung: a' 0 m/s Im Bezugssystem des Aufzugs bleibt Fl. in uhe! Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.3/10

4 c) Aufzug beschleunigt mit -5 m / s (nach unten) c) 5 N 1) Betachtung von außen: Käfte auf Fl.: Gewicht: F = mg G Waage auf Fl.: F N Summe: F es Beschleunigung: a Fl. wid mit -5 m / s (nach unten) beschleunigt! ) Betachtung im beschl. Bezugssystem des Aufzugs: Käfte auf Fl.: Gewicht: F = mg G Waage auf Fl.: F N "Tägheitsk." F t Beschleunigung: Summe: F a' Im Bezugssystem des Aufzugs bleibt Fl. in uhe! Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.4/10

5 .. otieende Bezugssysteme, Zentifugal - und Coioliskaft Spez.: gleichfömig otieende Bezugssysteme, Bsp.: Ede a) Betachtung von außen gleichmäßige Keisbewegung Betachtung im otieenden Bezugssystem Köpe uht im otieenden Bezugssystem m F Z F Z m F t =F Zf Duch Zentipetalkaft (z.b. Fede) F = m (nach innen!) beschleunigte z Bewegung! Beobachte im beschl. System: Köpe uht Summe alle Käfte = 0 auße de Fede muß eine weitee Kaft (gleich goß abe entgegengesetzt, d.h. nach außen!) wiken: Tägheitskaft (Scheinkaft) : "Zentifugalkaft" / "Fliehkaft" F zf Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.5/10

6 Zentifugalbeschl. auf de Ede: addiet sich (vektoiell!) zu Edbeschleunigung g 0 ( g zeigt zum Edmittelpunkt: g 0 0 ) Bem.: ZF-Beschl. als Vekto a v = ( zf ) [Gl..1.3.] mit: = Vekto de Winkelgeschwindigkeit π Betag: = = T (Winkelgeschw. [ad./s]) ichtung de Dehachse, "echte-hand-"/ "echtsschauben"- egel g = g + a 0 zf [Gl..1.4.] F = g ( 0 ) a zf = cos λ E mg λ F Zf a zf << g ( nachechnen!) 0 g = g g a cosλ 0 zf = g cos λ (*) 0 E [Gl..1.4.] ( g m /s ) 0 g / ms Abh. de Edbeschl. vom Beitengad th. exp. H HN Beitengad Effekt ca. 50% göße als nach (*)! Waum? Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.6/10

7 b.) Köpe bewegt sich im otieenden System im ot. System titt eine zusätzliche Scheinkaft auf: COIOLIS-Kaft einfaches Beispiel - adiale Bew. mit Geschw v, ( v ) : Köpe bewegt sich (im Inetialsystem) käftefei geadlinig im ot. System wüde e geadl. in Zeit t von A nach B kommen wegen de otation bleibt e abe um Winkel α = t zuück A B'! s = α v t ( ) ( ) ( ) = t v t = v t Beobachte im ot. System intepetiet dies als Nomalbeschleunigung : Coiolis-Beschl. a c s = 1 a t a = v c c F F v c c F F = 0 fü v! c c Coiolis-Kaft: = m ( v ) B s B v t A α [Gl..1.5.] c.) Beschleunigung eines Köpes im otieenden Bezugssystem: Auf Köpe wikt im Inetialsystem ( I ) Kaft F, Beschl. a = Fm I im otieenden System ( ) hat Köpe Geschw. v, Otsvekto Beschl. im ot. System: a = a { I + v ( ) (*) [Gl..1.6.] Fm Coiolisbeschl. Zentifugalbeschl. Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.7/10

8 Egänzung: kleine echenübung: wi beechnen die Beschleunigung a im ot. System! (und zeigen, daß (*) venünftig ist!) (Annahme: System "" otiet gegenübe "I" um z-achse) Schitt 1: wie weden Vektoen von I tansfomiet? Schitt : Dastellung des Otsvektos I (als Spaltenvekto im System I abe in Abh. von den Koodinaten x, y, z im System ) Schitt 3: Schitt 4: -mal diffeenzieen Beschleunigung a I zeigen, daß Egebnis Gl. (*) entspicht! Schitt 1: wie weden Vektoen von I tansfomiet? z I z Umechnung (Tansfomation) de Koodinaten I P (1) x x cost y sin t I y x t y t I = sin + cos z z I y y I x I t x Übung: zeigen Sie, daß x + y + z = x + y + z und daß in de x-y-ebene die Vektoen I I I x I y I x u. den Winkel t einschließen! y Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.8/10

9 analoge Tansf. gilt fü Geschwindigkeit und Bechleunigung: x& cos t y& sint x&& cos t && y sint v = x& sin t+ y& cost a = && x sin t+ && y cost z& && z Gl ist die Dastellung eines Geschwindigkeitsvektos v im Koodinatensystem I (Dehung des K.- () (3) Bem.: Systems), die duch die otation bedingte zusätzliche Geschw. ist hie (noch) nicht enthalten! Entspechendes gilt fü Gl. 3! Schitt : Dastellung des Otsvektos I (als Spaltenvekto im System I abe in Abh. von den Koodinaten x, y, z im System ) siehe Schitt 1! (1) I x I = y I z I x cost y sint = x sint+ y cost z Schitt 3: mal diffeenzieen Beschleunigung a I Beechnung de Geschw. v I = & I : ableiten! (4) v x& x& cost x sin t y& sint y cost I = y& = x& sint+ x cos t+ y& cost y sint I I z& z I & Beechnung de Beschl. a = v & = && : nochmals ableiten! I I I Abk. : s = sin t,c = cost x&& c x& s x& s x c && y s y& c y& c+ y s (5) a = x&& s+ x& c+ x& c x s+ && y c y& s y& s y c I && z (6) x&& c x& s x c && y s y& c+ y s a = x&& s+ x& c x s+ && y c y& s y c I && z Schitt 4: zeigen, daß Egebnis Gl. (*) entspicht! a = a + v ( I ) bzw: = + ( ) (*) a a v (**) I alle Vektoen als Spaltenvekt. im K.-System I dastellen: Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00 S.9/10

10 && x c && y s a = x&& s+ && y c && z x& c y& s v = x& s+ y& c z& 0 = 0 x c y s = x s+ y c z Keuzpodukte aus-x-en: a.) b.) (& + & ) 0 ( x& c y& s ) x s y c v = 0 ( ) ( x c y s ) 0 x& s y& c = + x& c y& s 0 x s+ y c = x s y c = x c y s 0 0 ( ) ( x s y c ) x c y s ( ) = x c+ y s + = x s y c 0 0 schließlich alles in (**) einsetzen: x&& c && y s x s y c x c y s & & + a = x s+ y c x c y s x s y c I && && & & && z 0 0 dies ist identisch Gl. 6 (Be. de. Ableitung) : x&& c x& s x c && y s y& c+ y s a = x s+ x c x s+ y c y s y c I && & && & q.e.d.! && z Physik beschl_bezugssysteme.doc, Pof. D. K. auschnabel, HHN, :04:00S.10/10

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m)

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m) Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Nullpunkt fei wählba (abh. von Masse m) d Potential: eldstäke: bezogen auf Pobemasse (unabh. von Masse

Mehr

5 Gleichförmige Rotation (Kreisbewegung)

5 Gleichförmige Rotation (Kreisbewegung) -IC5-5 Gleichfömige Rotation (Keisbewegung) 5 Definitionen zu Kinematik de Rotation 5 Bahngeschwindigkeit und Winkelgeschwindigkeit Die bei de Rotationsbewegung (Abb) geltenden Gesetze sind analog definiet

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung. Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung

Mehr

Repetition: Kinetische und potentielle Energie, Zentripetalkraft

Repetition: Kinetische und potentielle Energie, Zentripetalkraft Us Wyde CH-4057 Basel Us.Wyde@edubs.ch Repetition: Kinetische und entielle negie, Zentipetalkaft. in Kindekaussell deht sich po Minute viemal im Keis. ine auf dem Kaussell stehende Peson elebt dabei die

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

und zwar in entgegengesetzter Richtung. Wir schliessen daraus: Die Bewegung muss immer relativ zu einem bestimmten Koordinatensystem

und zwar in entgegengesetzter Richtung. Wir schliessen daraus: Die Bewegung muss immer relativ zu einem bestimmten Koordinatensystem Kapitel 4 4. Relativbewegung Im esten Kapitel (Mechanik) haben wi gelent, dass sowohl Ruhe wie Bewegung elative Begiffe sind. Wenn ein Zug z.b. duch eine Station fäht, befindet e sich elativ zu Station

Mehr

4.2 Allgemeine ebene Bewegung. Lösungen

4.2 Allgemeine ebene Bewegung. Lösungen 4. Allgemeine ebene Bewegung Lösungen Aufgabe 1: a) Massentägheitsmoment: Fü das Massentägheitsmoment eine homogenen Kugel gilt: J= 5 m Zahlenwet: J= 5 8 kg 0,115 m =0,0405 kgm b) Gleitstecke: Schwepunktsatz:

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Dynamik der Rotationsbewegung g III. Kreiselbewegungen

Dynamik der Rotationsbewegung g III. Kreiselbewegungen Physik A VL3 (08..202) Dynamik de Rotationsbewegung g III Keiselbewegungen Keiselbewegungen De Zusammenhang zwischen Dehimpuls und Dehmoment wid beim Keisel deutlich Definition eines Keisels: Keisel =

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

49 Uneigentliche Integrale

49 Uneigentliche Integrale Abschnitt 49 Uneigentliche Integale R lato 23 49 Uneigentliche Integale Wi betachten im Folgenden Integale a f / d von Funktionen f, die in einzelnen unkten des betachteten Integationsbeeichs nicht definiet

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik fü Medizine und Zahnmedizine Volesung 01 Pof. F. Wögötte (nach M.Seibt) -- Physik fü Medizine und Zahnmedizine 1 Liteatu Hams, V.: Physik fü Medizine und Phamazeuten (Hams Velag) Haten, U.: Physik

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

Wichtige Begriffe der Vorlesung:

Wichtige Begriffe der Vorlesung: Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

Ferienkurs Experimentalphysik Übung 1 - Musterlösung

Ferienkurs Experimentalphysik Übung 1 - Musterlösung Feienkus Expeimentalphysik 1 1 Übung 1 - Mustelösung 1. Spungschanze 1. Die maximale Höhe nach Velassen de Spungschanze kann übe die Enegieehaltung beechnet weden, de Bezugspunkt sei im Uspung am Abspungpunkt.

Mehr

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung.

3. Dynamik. 3.1 Axiome F 2 F Schwere und träge Masse. Die Dynamik befasst sich mit den Ursachen der Bewegung. . Dynaik 9 Nachechnen: v / a / t 0 Die Dynaik befat ich it den Uachen de Beweun. a t k/ N. Axioe. Täheitpinzip (Galileo, 564-64 Newton, 64-77) Ein ich elbt übelaene Köpe bewet ich eadlini leichföi. Reaktionpinzip

Mehr

7.1 Schwerkraft oder Gewichtskraft 7.2 Gravitation Massenanziehung 7.3 Federkraft elastische Verformung 7.4 Reibungskräfte

7.1 Schwerkraft oder Gewichtskraft 7.2 Gravitation Massenanziehung 7.3 Federkraft elastische Verformung 7.4 Reibungskräfte Inhalt 1 7 Veschiedene Käfte 7.1 Schwekaft ode Gewichtskaft 7. Gavitation Massenanziehung 7.3 Fedekaft elastische Vefomung 7.4 Reibungskäfte 7.4.1 Äußee Reibung zwischen Festköpeobeflächen 7.4.1.1 Haftung

Mehr

Newton: exp. Beobachtungen

Newton: exp. Beobachtungen 1. Dynamik Usache von Bewegungen (bzw. Bew.-Ändeungen) Käfte wiken auf Köpe mit Masse Gundlagen: Symmetie / Invaianzen Pinzip de kleinsten Wikung Enegie-, Impuls-, Dehimpulsehaltung 1..1 Newtonsche Gesetze

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I 16. 03. 2016 1. Aufgabe (9 Punkte) Die Obefläche eines Teleskopspiegels soll duch Quecksilbe ealisiet weden. Das Quecksilbe befindet sich in

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Aufgabe 1 (9 Punkte) Prüfung Maschinen- und Fahrzeugdynamik , A. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (9 Punkte) Prüfung Maschinen- und Fahrzeugdynamik , A. Techn. Mechanik & Fahrzeugdynamik echn. Mechanik & Fahzeugdynamik M&Fzg-Dynamik Pof. D.-Ing. habil. Hon. Pof. (NUS) D. Bestle 29. Mäz 2017 Familienname, Voname Matikel-Numme Püfung Maschinen- und Fahzeugdynamik Fachichtung 1. Die Püfung

Mehr

6a Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1

6a Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1 6a Dnamik Animation follows the laws of phsics unless it is funnie othewise. alsche Vostellung Kaftbild in de Antike Ansatz von Aistoteles: Käfte veusachen die Bewegung von Köpen Natülich fü einen Köpe

Mehr

7. Kinematik in der Mechatronik

7. Kinematik in der Mechatronik 7. Kinematik in de Mechatonik Ein tpisches mechatonisches Sstem nimmt Signale auf, veabeitet sie und gibt Signale aus, die es in Käfte und Bewegungen umsett. Mechanische Stuktu Leistungsteil phsikalische

Mehr

4.3 Magnetostatik Beobachtungen

4.3 Magnetostatik Beobachtungen 4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da Gaphische Datenveabeitung Pola-, Zylinde- und Kugelkoodinatensysteme Pof. D. Elke Hegenöthe h_da GDV : Pola-, Zylinde-und Kugelkoodinatensystem Koodinatensysteme zu Dastellung geometische Daten: Katesisches

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Wirbel in Hoch- und Tiefdruckgebieten auf der Nord- bzw. Südhalbkugel

Wirbel in Hoch- und Tiefdruckgebieten auf der Nord- bzw. Südhalbkugel Skipt 3 Wo, 8/9 0 4 (i) Coiolis-Kaft: F C = m ω & ' Die Coiolis-Kaft wikt nu auf MP/Köpe, die sich bezüglich des otieenden BS/NIS bewegen, also nu dann, wenn & ' 0 und wenn ω und & ' nicht die gleiche

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung:

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung: Zu Einneung Stichote aus de 10. Volesung: Volumenintegale in unteschiedlichen Koodinatensstemen Beegung eines staen Köpes: Tanslation und Rotation Tägheitsmoment Steinesche Sat Momentane Dehachse Zusammenhang

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

0.6.4) Lineare Regression Wenn wir fliegen könnten und den Greifvögeln ähnlich

0.6.4) Lineare Regression Wenn wir fliegen könnten und den Greifvögeln ähnlich VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 0.6.4) Linee Regession Wenn wi fliegen könnten und den Geifvögeln ähnlich Msse m [kg] Spnnweite s [m] Bussd 1 1,3 Fischdle,0 1,6 S n ( y i 1

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

10.1 Der starre Körper

10.1 Der starre Körper Kapitel 0 Die Bewegung stae Köpe 0. De stae Köpe Obwohl die Mateie nach den Wahnehmungen unsee Sinnesogane eine kontinuieliche Stuktu zu haben scheint setzt sie sich in Wiklichkeit aus Einheiten zusammen

Mehr

Neunte Vorlesung: Die Kruskal-Metrik

Neunte Vorlesung: Die Kruskal-Metrik Neunte Volesung: Die Kuskal-Metik 9.1 Poblemstellung 9. Eigenzeit fei fallende Teilchen 9.3 Metik von Lemaite 9.4 Eddington-Finkelstein-Metik 9.5 Kuskal-Metik 9.1 Poblemstellung De metische Tenso hängt

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn.

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn. Keisbeweun 1. Ein kleine Waen de Masse 0,5 k bewet sich auf eine vetikalen Keisbahn it Radius 0,60. De Waen soll den höchsten Punkt de Bahn so duchfahen, dass de Waen it eine Kaft von de Göße seine Gewichtskaft

Mehr

Drehbewegung Der Drehimpuls Definition des Drehimpulses

Drehbewegung Der Drehimpuls Definition des Drehimpulses Kapitel 10 Dehbewegung 10.1 De Dehimpuls Bei de Behandlung de Bewegung eines Teilchens haben wi den Impuls eines Teilchens definiet (Siehe Kap..). Diese Gösse wa seh hilfeich, wegen de Ehaltung des Gesamtimpulses

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 9; Übung am 13. Januar (Mittwoch)

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 9; Übung am 13. Januar (Mittwoch) Winte 05/06, Pof. Thoas Mülle, IEKP, KIT Aufgabenblatt 9; Übung a 3. Janua 006 Mittwoch. Fliehkaft Auf ein Wasseteilchen an de Obefläche wiken die Schwekaft g und die Fliehkaft ω x. Die senkecht zu Resultieenden

Mehr

v(t) r(t) Die Bewegung eines Körpers auf einer Kreisbahn vom Radius r kann beschrieben werden durch

v(t) r(t) Die Bewegung eines Körpers auf einer Kreisbahn vom Radius r kann beschrieben werden durch Die Keisbeweun ================================================================== 1. Bescheibun de Keisbeweun y v(t) ϕ(t) (t) ϕ(t) x Die Beweun eines Köpes auf eine Keisbahn vom Radius kann beschieben

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

1. Schularbeit Mathematik 6B 97/

1. Schularbeit Mathematik 6B 97/ . Schulabeit Mathematik 6B 97/98.0.997. Beechne die fehlenden Fomen de Geaden Vektoielle Fom Koodinatenfom x y t. Auf de Geaden g[a( /6), B(/ )] ist von A aus in Richtung B eine Stecke von d abzutagen.

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Gradientwindgleichung. Strömungsverhältnisse bei gekrümmten Isobarenverlauf

Gradientwindgleichung. Strömungsverhältnisse bei gekrümmten Isobarenverlauf Nächste Abschnitt => Gadientwindgleichung Stömungsvehältnisse bei gekümmten Isobaenvelauf Das geostophische Gleichgewicht zwischen Duckgadientkaft und Coioliskaft gilt nu fü Luftstömung entlang geadlinige

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00

Mehr

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls 5 Rotaton des staen Köpes 5 Dehungen und Dehmomente 5 Rotatonsenege und Dehmpuls um was geht es? Beschebung von Bewegungen (pmä Dehungen) des staen Köpes Analoge zu Kap. und 3: Kaft Dehmoment Impuls Dehmpuls

Mehr

Dienstag Punktmechanik

Dienstag Punktmechanik Einneung 2.11.2004 Bücheflohmakt Dienstag 2.11.2004 4. Punktmechanik 12:30 4.1 Kinematik eines Massenpunktes vo Studentenseketaiat Koodinatensysteme Geschwindigkeit im Raum Beschleunigung im Raum Supepositionspinzip

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

Inhalt

Inhalt Inhalt 1.. 3. 4. 5. 6. 7. 8. Kaft und Impuls Ehaltung des Impulses Das zweite und ditte Newtonsche Gesetz Beziehung zwischen Kaft und Beschleunigung Reibung Dynamik, gekümmte Bewegung Dehimpuls, Dehmoment

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Tracking, Teil 1: Einführung

Tracking, Teil 1: Einführung Tacking, Teil 1: Einfühung Volesung Augmented Realit Pof. D. Andeas But WS 26/27 Folien heute übew. von D. Matin Wagne LMU München Medieninfomatik But Augmented Realit WS26/7 Folie 1 Ein Geneisches AR-Sstem

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr