Physik II Übung 1 - Lösungshinweise

Größe: px
Ab Seite anzeigen:

Download "Physik II Übung 1 - Lösungshinweise"

Transkript

1 Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht abe nicht alle. Übelegt euch ein Spiel, mit dem ih die Namen alle Pesonen in de Übung elativ schnell kennenlenen könnt. Das Spiel sollte 5, maximal 10 Minuten dauen. Das sollten alle alleine hinbekommen - Lösungshinweise gibt es hie keine. Höchstwahscheinlich ist diese Aufgabe auch nicht klausuelevant. Aufgabe Schwingung und Potential Ein Objekt de Masse m bewegt sich eindimensional entlang de Koodinate (z.b. auf eine Schiene) und befindet sich in einem Kaftfeld, das duch ein Potential V () = A mit A > 0 beschieben weden kann. a) Wie goß ist die auf das Objekt ausgeübte Kaft bei eine Auslenkung von? b) Stelle die Bewegungsgleichung fü das Objekt auf. c) Löse die Bewegungsgleichung mit Hilfe eines geeigneten Ansatzes fü die Anfangsbedingung (0) = 0, ṙ(0) = 0. Diese Aufgabe haben wi auch in de Physik-I Klausu gestellt, dahe ist sie gut zu Wiedeholung geeignet. a) F() = V () = d V () = A d b) F beschleunigung =F ueckstell m = A 1

2 c) Die Bewegungsgleichung ist die eine hamonischen Schwingung, dahe füht u.a. folgende Ansatz zum Ziel: (t) = C cos(ωt + φ) A mit ω = m 1. Ableitung: ṙ(t) = Cω sin(ωt + φ) Einsetzen de Anfangsbedingungen (0)! = 0 = C cos(ωt + φ) ṙ(0)! = 0 = Cω sin(ωt + φ) Daaus ekennt man φ = 0 C = 0 Damit egibt sich die Lösung (t) = 0 cos ωt Aufgabe 3 Tosionspendel Bei einem Tosionspendel wikt bei eine Auslenkung um einen Winkel φ ein Rückstelldehmoment von M = Dφ. Das Tosionspendel selbst hat ein Tägheitsmoment J. a) Stelle eine Bewegungsgleichung in φ fü das Tosionspendel auf. b) Löse die Bewegungsgleichung fü φ(0) = 0 und φ = ω 0. ϕ

3 Diese Aufgabe kommt aus de Wiedeholungsklausu. a) Ähnlich zu Tanslation: M = L Dφ = J φ 0 = φ + D J φ b) Ansatz: φ(t) = φ 0 cos(ωt + α) Hiebei ist ω nicht mit dem ω 0 zu vewechseln! φ(t) = φ 0 ω sin(ωt + α) φ(t) = φ 0 ω cos(ωt + α) Damit egibt sich D ω = J Einsetzen de Anfangsbedingungen φ(0) =! 0 = φ 0 cos(ωt + α) α = 90 Sinusansatz und α = 0 ist auch völlig ok! φ(0)! = ω 0 = φ 0 ω sin(ωt + α) φ 0 = ω 0 J D Lösung zusammen: φ(t) = ω 0 J D cos D J t + 90 Aufgabe 4 Raumstation 3

4 Um auf Raumfahten eine Schwekaft zu simulieen, könnte man goße zylindische Raumschiffe bauen, die um eine zentale Achse otieen. Die Raumfahe wüden dann alle auf de äußeen Keisfläche leben. Die abgebildete Raumstation hat einen Duchmesse von 1 km. a) Wie schnell muss die Raumstation otieen, damit die Raumfahe in ih Edbeschleunigung efahen? Beechne sowohl die Winkelgeschwindigkeit als auch die Rotationsgeschwindigkeit! b) Zwei Raumfahe gehen in de Raumstation, eine mit de Geschwindigkeit v x = 1 m/s in Rotationsichtung, de andee mit gleiche Geschwindigkeit entgegen de Rotationsichtung. Bestimme den Unteschied de von beiden efahenen Beschleunigung. Auch diese Aufgabe kommt aus de Wiedeholungsklausu. a) Wi sind im mitotieenden Koodinatensystem. Dot wikt die Zentifugalkaft F z = mω = m v Beschleunigung eines Köpes duch die Zentifugalkaft: ma = F z a = v Bestimme v fü a! = g g = v v = g = 70 m/s ω = v = g = 0.14 s 1 b) Man kann jeweils die Zentifugalbeschleunigung in einem Koodinatensystem, das sich mit den Raumfahen mitbewegt, beechnen. a 1 = (v + v x) = m/s a = (v v x) = 9.5 m/s a = a 1 a = 4v v x = 0.56 m/s 4

5 Die eigentliche Bedeutung davon: Wenn man gemütlich geht ist man schon je nach Richtung 3% schwee bzw. leichte! Und das, obwohl das Raumschiff iesengoß ist. Es bleibt also offen, ob diese At des Raumschiffbaus wiklich sinnvoll ist. Noch eine Anmekung zum Thema Koodinatensysteme und Coioliskaft: Man kann auch hie das Ganze im mit de Raumstation otieenden Koodinatensystem betachten, dann muss man zusätzlich zu Zentifugalkaft aus Aufgabenteil a) noch zwei weitee Käfte einfühen: Die Coioliskaft mωv x und eine Zentipetalkaft, da sich die Raumfahe im otieenden Koodinatensystem auf eine Keisbahn mit Winkelgeschwindigkeit ± v x bewegen. Dann ist a 1 = v + v v x + v a = v v v x + v Die Wand muss also die gleiche Kaft wie im mit den Raumfahen bewegten System ausüben, um die Raumfahe auf ihe Bahn zu halten. Das muss sie natülich auch, wenn man das Ganze im Labosystem echnet, nu dass hie keine Scheinkäfte aufteten, sonden alles in die Aufechtehaltung de jeweiligen Keisbewegung geht. Inteessant wids eigentlich est, wenn man etwas fallen lässt und die Wand nicht meh alle Käfte ausgleicht. Das übelassen wi abe euch. Aufgabe 5 Schwebungen a) Zwei Stimmgabeln, eine mit Fequenz ω 1, die andee mit Fequenz ω, weden mit de gleichen Amplitude angeschlagen. Die von ihnen ausgesandten Wellen weden entlang de x- Achse duch die folgenden Funktionen beschieben x x ξ 1 (t, x) = Acos ω 1 t k 1 x ξ (t, x) = Acos ω t k x Beechne k i aus ω i. Beechne damit die Funktion de Welle, welche ein Zuhöe, de sich auf de x-achse befindet, höt. Skizziee die Welle fü einen Zeitpunkt exemplaisch. Hinweis: cos x + cos y = cos x+y x y cos b) Du möchtest ein Klavie nu mit Hilfe eine Reihe von Stimmgabeln, die alle notwendigen Töne ezeugen, und deines Gehös stimmen. Wie gehst du vo? Wie imme gilt das Supepositionspinzip. Außedem vewenden wi noch ω = ck (Schallgeschwindigkeit c) ξ(t, x) = ξ 1 (t, x) + ξ (t, x) = A cos ω 1 t x + cos ω t x c c 5

6 Nun baucht man das Additionstheoem. Damit egibt sich ξ(t, x) ω1 A = cos + ω t x c }{{} Schwingung mit de mittleen Fequenz ω1 ω cos t x c }{{} Einhüllende Qualitativ sieht das Zeitvehalten eines Schwinges in de Welle und das Otsvehalten de Welle gleich aus. Unten ist ein Beispiel fü t = 0 mit ω = 0.1ω gezeigt b) Ton anspielen, Schwebung höen, in die Richtung stimmen wo die Schwebungsfequenz kleine wid, weitemachen bis man keine Schwebung meh höt. Das wiedeholt man fü jeden Ton. Aufgabe 6 Supeposition Zwei hamonische Schwingungen gleiche Fequenz und Amplitude mit eine Phasenveschiebung δ zueinande übelagen sich wiedeum zu eine Schwingung. a) Wie goß sind die Fequenz und Amplitude de esultieenden Schwingung fü δ 1 = π und 3 δ = π (ohne Taschenechne). 6 b) Wie goß muss die Phasenveschiebung sein, damit die Amplitude de esultieenden Schwingung de Ausgangsamplitude de beiden Einzelschwingungen entspicht? Man kann wiede das Additionstheoem von oben anwenden. Addiet man beides zusammen egibt sich ξ 1 (t) = Acos ωt ξ (t) = Acos (ωt + δ) δ ξ(t) = Acos cos ωt + δ }{{} =A 6

7 a) Die Fequenz de esultieenden Schwingung bleibt also die gleiche wähend die Amplitude sich ändet A δ A = cos Fü φ 1 sollte man cos 30 = wissen ode bei beiden Phasenveschiebungen die Kleinwinkelnäheung cos x = 1 x 3 vewenden (mit π 3) φ 1 = = 1.7 φ = = b) Hie soll A = A gelten, also cos δ = 1. Man weiß natülich auswendig, dass cos 60 = 1 ist, woaus sich diekt die gesuchte Phasenveschiebung egibt δ = 10 = 3 π Aufgabe 7 Ich lass mich doch nicht veschaukeln Die kleine Maia lässt sich von ihem Papa auf eine Schaukel so anschubsen, dass die Amplitude gleich bleibt. Ein unbeteiligte Beobachte misst dabei eine Schaukelpeiode von T = 3 s und eine Geschwindigkeit am niedigsten Punkt von v = m/s. Maia wiegt zusammen mit de Schaukel 30 kg. a) Wie goß ist die Gesamtenegie des Systems aus Kind und Schaukel? b) De Gütefakto de Schaukel ist Q = 0. Wie goß ist de Enegievelust po Peiode? c) Welche mittlee Leistung muss Maias Vate bingen? Hinweis: Da die Amplitude konstant bleibt und man nu am Enegievelust übe eine Peiode inteessiet ist, kann man den Anschubsvogang wie eine Sinusfömige Anegung behandeln. Diskutiet das in de Guppe. a) Wi setzen die potentielle Enegie im untesten Punkt auf 0. Dann ist dot E = E kin = 1 mv = 60 J b) De Gütefakto ist π Enegie/Enegievelust po Peiode Q = π E E E = π E = 6π J 19 J Q 7

8 c) (Mittlee) Leistung ist Enegie/Zeit P = E T = π W 6 W Die tatsächliche Leistung ist natülich deutlich göße, da man nu wähend eine kuzen Zeit schubst (ich wüde eine Gößenodnung schätzen). Aufgabe 8 Wellen am Seil Ein 5 m langes Seil ist an einem Ende an eine Wand befestigt, das andee Ende ist lose. Wellen laufen auf dem Seil mit eine Ausbeitungsgeschwindigkeit von 0 m/s. Bestimme Wellenlänge und Fequenz de Gundschwingung sowie de esten und zweiten Obeschwingung. Fü die veschiedenen Moden auf dem beschiebenen Seil gilt l = λ n (Dabei ist n = 0 die Gundschwingung, n = 1 die este Obeschwingung usw.) Fü die Fequenz eine Schwingung gilt ν = c λ Damit kann man fü alle dei Fälle Wellenlänge und Fequenz beechnen Gundschwingung 1. Obeschwingung. Obeschwingung 0 λ 0 m m 4 m 3 ν 1 Hz 3 Hz 5 Hz 8

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Physik 1+2 Sommer 2007 Prof. G.Dissertori Klausur. Aufgabe 1: Gekoppelt Oszillatoren (10 Punkte)

Physik 1+2 Sommer 2007 Prof. G.Dissertori Klausur. Aufgabe 1: Gekoppelt Oszillatoren (10 Punkte) Physik + Somme 007 Po. G.Dissetoi Klausu Lösungen Augabe : Gekoppelt Oszillatoen 0 Punkte a Die Bewegungsgleichungen de beiden Massen egeben sich aus de Gleichung ü einen hamonischen Oszillato und einem

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I 16. 03. 2016 1. Aufgabe (9 Punkte) Die Obefläche eines Teleskopspiegels soll duch Quecksilbe ealisiet weden. Das Quecksilbe befindet sich in

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

5 Gleichförmige Rotation (Kreisbewegung)

5 Gleichförmige Rotation (Kreisbewegung) -IC5-5 Gleichfömige Rotation (Keisbewegung) 5 Definitionen zu Kinematik de Rotation 5 Bahngeschwindigkeit und Winkelgeschwindigkeit Die bei de Rotationsbewegung (Abb) geltenden Gesetze sind analog definiet

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

v(t) r(t) Die Bewegung eines Körpers auf einer Kreisbahn vom Radius r kann beschrieben werden durch

v(t) r(t) Die Bewegung eines Körpers auf einer Kreisbahn vom Radius r kann beschrieben werden durch Die Keisbeweun ================================================================== 1. Bescheibun de Keisbeweun y v(t) ϕ(t) (t) ϕ(t) x Die Beweun eines Köpes auf eine Keisbahn vom Radius kann beschieben

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Repetition: Kinetische und potentielle Energie, Zentripetalkraft

Repetition: Kinetische und potentielle Energie, Zentripetalkraft Us Wyde CH-4057 Basel Us.Wyde@edubs.ch Repetition: Kinetische und entielle negie, Zentipetalkaft. in Kindekaussell deht sich po Minute viemal im Keis. ine auf dem Kaussell stehende Peson elebt dabei die

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Lösungen der Abituraufgaben Physik. Harald Hoiß 28. Februar 2019

Lösungen der Abituraufgaben Physik. Harald Hoiß 28. Februar 2019 Lösungen de Abituaufgaben Physik Haald Hoiß 28. Febua 209 Inhaltsvezeichnis. Physikabitu 20.. Ionentheapie............................................2. Teilchenbeschleunige......................................

Mehr

Ferienkurs Experimentalphysik Übung 1 - Musterlösung

Ferienkurs Experimentalphysik Übung 1 - Musterlösung Feienkus Expeimentalphysik 1 1 Übung 1 - Mustelösung 1. Spungschanze 1. Die maximale Höhe nach Velassen de Spungschanze kann übe die Enegieehaltung beechnet weden, de Bezugspunkt sei im Uspung am Abspungpunkt.

Mehr

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 9; Übung am 13. Januar (Mittwoch)

Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT. Aufgabenblatt 9; Übung am 13. Januar (Mittwoch) Winte 05/06, Pof. Thoas Mülle, IEKP, KIT Aufgabenblatt 9; Übung a 3. Janua 006 Mittwoch. Fliehkaft Auf ein Wasseteilchen an de Obefläche wiken die Schwekaft g und die Fliehkaft ω x. Die senkecht zu Resultieenden

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

Klausur 2 Kurs 12PH4 Physik

Klausur 2 Kurs 12PH4 Physik 2014-12-16 Klausu 2 Kus 12PH4 Physik Lösung 1 Teffen Elektonen mit goße Geschwindigkeit auf eine Gafitfolie und dann auf einen Leuchtschim, so sieht man auf dem Leuchtschim nicht nu einen hellen Punkt,

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I (Bachelo) & Technische Stömungslehe (Diplom) 1. Aufgabe (9 Punkte) 03.08.2012 Duch ein Leck füllt sich de Ballasttank (Volumen V B ) eines U-Boots

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

1. Eine kleine Masse rutscht vom höchsten Punkt einer großen Halbkugel vom Radius R reibungsfrei ab.

1. Eine kleine Masse rutscht vom höchsten Punkt einer großen Halbkugel vom Radius R reibungsfrei ab. TU Chemnitz Institut fü Physik Physikübunen fü Witschaftsinenieue WS003 Lösunsvoschläe fü das 3. Übunsblatt 1. Eine kleine Masse utscht vom höchsten Punkt eine oßen Halbkuel vom adius eibunsfei ab. a)

Mehr

m v = r 2 2 Kontrolle Physik-Leistungskurs Klasse Radialkraft, Wurf

m v = r 2 2 Kontrolle Physik-Leistungskurs Klasse Radialkraft, Wurf Kontolle Physik-Leistunskus Klasse 11 6.11.015 Radialkaft, Wuf 1. Vate und Sohn sind mit dem Rad untewes, de eine mit einem 8e, de andee mit einem e Rad. Als es dunkel wid, schalten beide ihe Lampen an,

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Physik für Pharmazeuten MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

Physik für Pharmazeuten MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik fü Phamazeuten MECHANIK II Abeit, Enegie, Leistung Impuls Rotationen Mechanik II 1.3 Abeit, Enegie, Leistung mechanische Abeit W = F Einheit [ W] = Nm = kgm s = J (Joule) Abeit ist Skala (Zahl),

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

5a Bewegte Koordinatensysteme

5a Bewegte Koordinatensysteme 5a Bewegte Koodinatensysteme 1 5a Bewegte Koodinatensysteme Bezugssysteme Bezugssysteme geben in de Physik ein Koodinatensystem fü die Natubeobachtung o Fall 1: uhendes ode sich gleichfömig bewegendes

Mehr

Standardbeispiele der Quantenmechanik

Standardbeispiele der Quantenmechanik Standadbeispiele de Quantenmechanik Visualisieung von Zuständen im Potenzialkasten hamonischen Oszillato Standadbeispiele de Quantenmechanik Folie 1 Gundlagen de Quantenmechanik De Zustand eines physikalischen

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Semina4 PHYS7357 Eletizitätslehe und Magnetismus (Physi, Witschaftsphysi, Physi Lehamt, Nebenfach Physi) Othma Mati, (othma.mati@uni-ulm.de) 3. 5. 9 Aufgaben. Das eletostatische Potential

Mehr

Aufgabe 1 (9 Punkte) Prüfung Maschinen- und Fahrzeugdynamik , A. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (9 Punkte) Prüfung Maschinen- und Fahrzeugdynamik , A. Techn. Mechanik & Fahrzeugdynamik echn. Mechanik & Fahzeugdynamik M&Fzg-Dynamik Pof. D.-Ing. habil. Hon. Pof. (NUS) D. Bestle 29. Mäz 2017 Familienname, Voname Matikel-Numme Püfung Maschinen- und Fahzeugdynamik Fachichtung 1. Die Püfung

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Dynamik der Rotationsbewegung g III. Kreiselbewegungen

Dynamik der Rotationsbewegung g III. Kreiselbewegungen Physik A VL3 (08..202) Dynamik de Rotationsbewegung g III Keiselbewegungen Keiselbewegungen De Zusammenhang zwischen Dehimpuls und Dehmoment wid beim Keisel deutlich Definition eines Keisels: Keisel =

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung. Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung

Mehr

Physik I Übung 13 - Lösungshinweise

Physik I Übung 13 - Lösungshinweise Physik I Übung 13 - Lösungshinweise Stefan Reutter WS 011/1 Moritz Kütt Stand: 7. Februar 01 Franz Fujara Aufgabe 1 Verstimmte Stimmgabel In der Vorlesung wurde ein Versuch mit zwei sehr ähnlichen Stimmgabeln

Mehr

Streuung an einer harten Kugel

Streuung an einer harten Kugel Semina zu Theoie de Kene, Teilchen und kondensieten Mateie 16.1.015 404549 Inhaltsvezeichnis 1 Einleitung 1 Klassische 1 3 Steuung an eine Potentialbaiee 4 5 5 Wikungsqueschnitte 7 6 Zusammenfassung 8

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I)

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I) Lösungen zu II Klausu in Theoie D Quantenmechanik I) Aufgabe 1 Teil a) 15 P) Die Komponenten des Opeatos A genügen den gleichen Vetauschungselationen, wie die Komponenten des Dehimpulsopeatos J mit = 1)

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Regelungstechnik I (WS 17/18) Übung 1

Regelungstechnik I (WS 17/18) Übung 1 Regelungstechnik I (WS 17/18 Übung 1 Pof. D. Ing. habil. Thomas Meue, Lehstuhl fü Regelungstechnik Aufgabe 1 (Mathematische Modellieung eines elektisch aktuieten Seilzuges. Abbildung 1.1 zeigt den Ankekeis

Mehr

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe)

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe) D. Anulf Schönlieb, Übungsbeispiele zu Potenzen, Wuzeln und Vektoen,. Klasse (10. Schulstufe) Übungsbeispiele zu Potenzen und Wuzeln sowie zu Vektoechnung,. Klasse (10. Schulstufe) 1)a) b) c) ) a) b) uv

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Physik für Pharmazeuten und Biologen MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

Physik für Pharmazeuten und Biologen MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik fü Phamazeuten und Biologen MECHANIK II Abeit, Enegie, Leistung Impuls Rotationen Mechanik II 1.3 Abeit, Enegie, Leistung mechanische Abeit W = F Einheit 2 2 [ W] = Nm = kgm s = J (Joule) Abeit

Mehr

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m)

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m) Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Nullpunkt fei wählba (abh. von Masse m) d Potential: eldstäke: bezogen auf Pobemasse (unabh. von Masse

Mehr

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung Loenz-Mie-Steuung in Bonsche Näheung 1 Einleitung Licht wede an einem Medium mit dem Bechungsindex n gesteut De Bechungsindex sei eell, Absoption finde nicht statt Ist die Wechselwikung mit dem Medium

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr

4.2 Allgemeine ebene Bewegung. Lösungen

4.2 Allgemeine ebene Bewegung. Lösungen 4. Allgemeine ebene Bewegung Lösungen Aufgabe 1: a) Massentägheitsmoment: Fü das Massentägheitsmoment eine homogenen Kugel gilt: J= 5 m Zahlenwet: J= 5 8 kg 0,115 m =0,0405 kgm b) Gleitstecke: Schwepunktsatz:

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2) Lk Physik in 1/ 1. Klausu aus de Physik 4. 03. 003 latt 1 (von ) 1. Elektonenablenkung duch Zylindespule Eine Zylindespule mit Radius 6, 0 cm, Länge l 30 cm, Windungszahl N 1000 und Widestand R 5, 0 Ω

Mehr

1. Die zu berechnende Boje hat in etwa die folgende Gestalt: r 2

1. Die zu berechnende Boje hat in etwa die folgende Gestalt: r 2 Lösungen fü die Püfung zu Einfühung in das mathematische Abeiten (14.3.003) 1. Die zu beechnende Boje hat in etwa die folgende Gestalt: h Zunächst bestimmen wi die Obefläche diese Boje. Sie ist zusammengesetzt

Mehr

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn.

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn. Keisbeweun 1. Ein kleine Waen de Masse 0,5 k bewet sich auf eine vetikalen Keisbahn it Radius 0,60. De Waen soll den höchsten Punkt de Bahn so duchfahen, dass de Waen it eine Kaft von de Göße seine Gewichtskaft

Mehr