Inhalt der Vorlesung A1

Größe: px
Ab Seite anzeigen:

Download "Inhalt der Vorlesung A1"

Transkript

1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung, Enegie Ehaltungssätze: Enegie+Impulsehaltung Reibungskäfte Schwingungen Rotationsbewegung: Dehimpuls+Dehmoment

2 PHYSIK Physik A/B A WS SS 07 03/4 Wiedeholung: Keisbewegung (t) Die Bewegung ist vollständig duch Angabe des Winkels chaakteisiet. ϕ(t) Winkelgeschwindigkeit: dϕ( t) ω ( t) dt Betag de Bahngeschwindigkeit: v ω Winkelbeschleunigung: dω( t) d α ( t) dt ϕ( t) dt Beschleunigung: a d dt a a ( t ) α ω v

3 PHYSIK Physik A/B A WS SS 07 03/4 Beispiel: Gleichfömige Keisbewegung (t) (t) De zeitabhängige Otsvekto ist dann cos( ω t) ( t) ρ0 sin( ω t) 0 Geschwindigkeit Winkelgeschwindigkeit : ω π f v( t) v ( t) ρ v( t) 0 sin( ω t) ω cos( ω t) 0 ρ ω const. 0 Peiode : T f π ω Die Fequenz f gibt die Anzahl de Umläufe po Sekunde an. 3

4 PHYSIK Physik A/B A WS SS 07 03/4 Die Keisbeschleunigung ist a ( t) cos( ω t) ρ0ω sin( ω t) 0 (t) Die Keisbeschleunigung steht senkecht auf de Geschwindigkeit, sie weist imme zum Keismittelpunkt (Zentipetalbeschleunigung). Weitehin folgt, daß die Keisbeschleunigung popotional zum Quadat de Winkelgeschwindigkeit ist: a ρ 0ω ω 4

5 PHYSIK Physik A/B A WS SS 07 03/4 Wichtig ist nicht nu die Angabe de Dehfequenz, sonden auch die Oientieung de Dehachse, um die die Rotation efolgt. ω v ϕ Winkelgeschwindigkeit als Vekto ω De Vekto legt mit seine Richtung die Dehachse und mit seinem Betag die Fequenz. 0 Die Bahngeschwindigkeit ist dann: ω v dϕ dt ω 5

6 PHYSIK Physik A/B A WS SS 07 03/4 Untesuchung des Einflusses eine Kaft: Entscheidend bei de Dehbewegung sind nicht nu Betag und Richtung de Kaft, sonden auch Abstand von de Dehachse! Beispiel: TÜR De Tügiff sollte imme maximal weit weg von de Dehachse montiet sein! Diese Abstandsabhängigkeit tägt de Begiff de Kaft allein nicht Rechnung Definition eines neuen Begiffs: 6

7 PHYSIK Physik A/B A WS SS 07 03/4 Wenn die Kaft F und de Abstand senkecht aufeinande stehen, nennt man das Podukt M das Dehmoment. F Allgemein: M F sin α α sin α F Veschiedene Fälle fü Dehmomente: Fall : F F M M max Daaus folgt die allgemeine Definition des Dehmoments: M Fall : keine Wikung duch die Kaft! F F M 0 M F F 7

8 PHYSIK Physik A/B A WS SS 07 03/4 Expeimentelle Veanschaulichung de Dehmomentdefinition: Momentenscheibe 8

9 PHYSIK Physik A/B A WS SS 07 03/4 Aus diesen beiden Übeeinkünften, Benutzung des Dehwinkels zu Bescheibung de Bewegung Benutzung von Dehmomenten zu Bescheibung de Dynamik egeben sich eine Vielzahl andee Gößen: dp dt F dp dt F M d dt ( p) M Dehimpuls De lineae Impuls wa definiet duch: p mv De Dehimpuls eines Massepunktes ist definiet als: L p mv Es sollte beachtet weden, dass de Dehimpuls davon abhängt, auf welchen Uspungspunkt e bezogen wid. 9

10 PHYSIK Physik A/B A WS SS 07 03/4 L bezogen auf den Keismittelpunkt O L ω L bezogen auf den Punkt O L ω L m v L m v 0

11 PHYSIK Physik A/B A WS SS 07 03/4 De Dehimpuls eines Massepunktes ist definiet als: L p mv Ots- und Geschwindigkeitsvekto sollen senkecht zueinande stehen. Dann kann gilt fü den Betag des Dehimpulses: Den Ausduck I m L p m v m ω ( m )ω nennt man das Tägheitsmoment des Köpes. Zudem ist de Dehimpuls paallel zu Winkelgeschwindigkeit oientiet. Dehmoment L I ω Kinetische Enegie ( ) ( ) ω m ω Iω E kin mv m

12 PHYSIK Physik A/B A WS SS 07 03/4 Bewegungsgleichung De Dehimpuls ist nach de uspünglichen Definition: L Daaus folgt duch Ableiten nach de Zeit: Wegen p dl dt egibt sich: p mv m p 0 dl dt p + p p p Wegen des. Newton schen Axioms gilt: F p Das Dehmoment wude definiet als: M Also folgt dl dt F F M Ein Dehmoment M bewikt eine Ändeung des Dehimpulses L.

13 PHYSIK Physik A/B A WS SS 07 03/4 Dehimpulsehaltung Aus de Bewegungsgleichung des staen Köpes folgt sofot de nächste wichtige Ehaltungssatz. In einem abgeschlossenen System, auf das keine extenen Momente einwiken, gilt: dl dt 0 L const. De Gesamtdehimpuls des Systems bleibt also ehalten. Da de Dehimpuls ein Vekto ist, gilt diese Aussage fü jede einzelne Komponente. 3

14 PHYSIK Physik A/B A WS SS 07 03/4 Beispiel: Dehimpulsehaltung bedeutet, dass de Vekto L I ω const. konstant bleiben muß, selbst wenn das Tägheitsmoment I sich wähend de Bewegung veändet. Piouetteneffekt I ω I ω ω ω I I I > I ω > ω 4

15 PHYSIK Physik A/B A WS SS 07 03/4 Beispiel: Dehimpulsehaltung beim Tunen Schwungholen bei eine Riesenfelge: I ω I ω Beispiel: De Salto ω ω I I I > I ω > ω 5

16 PHYSIK Physik A/B A WS SS 07 03/4 Vesuch: Dehimpulsehaltung am Dehstuhl: Piouetteneffekt ω klein L I ω const. ω goß I klein I goß Eine Peson mit ausgesteckten Hanteln wid in Dehbewegung vesetzt. Das Tägheitsmoment ist elativ goß. Die Hanteln weden dann an den Köpe gezogen. Das Tägheitsmoment veinget sich und die Rotationsfequenz nimmt zu. 6

17 PHYSIK Physik A/B A WS SS 07 03/4 Lineae Bewegung Rotationsbewegung Otskoodinate Masse Geschwindigkeit Beschleunigung Kaft lineae Impuls Tanslationsenegie F F Vegleich: Tanslations- und Rotationsbewegung dp dt ma x m v x a v F x p mv E kin mv Bewegungsgleichung Dehwinkel Tägheitsmoment Winkelgeschwindigkeit Winkelbeschleunigung Dehmoment Dehimpuls Rotationsenegie M mx M ϕ I ω ϕ α ω ϕ M F L E dl dt Iα ot I ω I ω I ϕ 7

18 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung, Enegie Ehaltungssätze: Enegie+Impulsehaltung Reibungskäfte Schwingungen Rotationsbewegung: Dehimpuls+Dehmoment Planetenbewegung 8

19 PHYSIK Physik A/B A WS SS 07 03/4 Die Planetenbewegung Geozentisches Weltbild Histoische Übesicht: Aistoteles (384-3 v.ch.) 9

20 PHYSIK Physik A/B A WS SS 07 03/4 Poblem: Planetenbahnen bescheiben am Himmel Schleifen! 0

21 PHYSIK Physik A/B A WS SS 07 03/4 Claudius Ptolemäus (ca n.ch.) Almagest: Epizykeltheoie

22 PHYSIK Physik A/B A WS SS 07 03/4 Heliozentisches Weltbild Nikolaus Kopenikus ( ) 543: De-Revolutionibus

23 PHYSIK Physik A/B A WS SS 07 03/4 Äquivalenz de Ptolemäischen und Kopenikanischen Sichtweise 3

24 PHYSIK Physik A/B A WS SS 07 03/4 Unteschiedliche Schleifen von inneen und äußeen Planeten 4

25 PHYSIK Physik A/B A WS SS 07 03/4 Galileo Galilei (564-64) 60: Beobachtung de Jupitemonde 5

26 PHYSIK Physik A/B A WS SS 07 03/4 Tycho Bahe (564-60) E liefete fü seine Zeit extem päzise Bestimmungen deplanetenbahnen. 6

27 PHYSIK Physik A/B A WS SS 07 03/4 Johannes Keple (57-630) Astonomica Nova (609) Hamonici Mundi (69) 7

28 PHYSIK Physik A/B A WS SS 07 03/4 Das. Keplesche Gesetz Alle Planeten bewegen sich auf elliptischen Bahnen um die Sonne. Die Sonne steht dabei in einem Bennpunkt de Ellipse. 8

29 PHYSIK Physik A/B A WS SS 07 03/4 Die Ellipse ist eine geschlossene Kuve de Beziehung x a + b y y b u m Im Genzfall a b geht die Ellipse in einen Keis übe. A m a v A x Die Bennpunkte sind A und A. Fü die Vebindungslinien zu jedem Punkt de Ellipse gilt u + v const. Ellipse 9

30 PHYSIK Physik A/B A WS SS 07 03/4 Das. Keplesche Gesetz Die Vebindungslinie zwischen de Sonne und einem Planeten übesteicht in gleichen Zeiten gleiche Flächen. In de Nähe de Sonne läuft de Planet schnelle und legt in de Zeit t eine gößee Stecke zuück. Sonne t A A t A A 30

31 PHYSIK Physik A/B A WS SS 07 03/4 Dahe sind die in de Zeit t übestichenen Flächen imme gleich, also A A Dieses Gesetz kann man so ekläen: Fü eine in de Zeit dt übestichene d Fläche da gilt: da m m m v dt da d m d m dt dt m d Es folgt da dt m m v De Dehimpuls ist nun eine Konstante! L mv konstant ist. da L const. dt m Also: A( t) t 0 da dt dt m L t d.h. fü gleiche Zeiten t weden gleiche Flächen A( t) übestichen! 3

32 PHYSIK Physik A/B A WS SS 07 03/4 Waum ist de Dehimpuls eine Konstante? Weil die Gavitation eine sog. Zentalkaft ist, die auf ein Zentum hin oientiet ist. m s >> m Dann gilt: M F( ) f ( ) m 0 F m s >> m γ mm Die Sonne bewegt sich in gute Näheung nicht: S 0 mms F γ f ( ) 3 L In Zentalkaftfelden bleibt de Dehimpuls also ehalten. p ist L In Zentalfelden ist die Bewegung zweidimensional. In allen Zentalfelden gilt das. Keple sche Gesetz. 3

33 PHYSIK Physik A/B A WS SS 07 03/4 Das 3. Keplesche Gesetz R Wegen : m F g F z m Das Quadat de Umlaufdaue eines Planeten ist popotional zu ditten Potenz seine mittleen Entfenung zu Sonne. Im Fall eine Keisbewegung kann dieses Gesetz einfach gezeigt weden. Dabei wiken Gavitations- und Zentifugalkaft (T Umlaufdaue, ωπ/t): m m F R G γ, F z mrω ( π ) mm T 4π F z FG γ m R 3 R T R γ m const. 33

34 PHYSIK Physik A/B A WS SS 07 03/4 Beechnung de Planetenbahnen mit dem Newton schen Gavitationsgesetz: Annahme: Nu ein Planet de Masse m bewegt sich um die Sonne, deen Masse m s seh viel göße ist Die Sonne bewegt sich nicht. const. m. Newton - Axiom fü die Masse m : d ( t) msm ( t) m γ dt ( t) ( t) m s >> m Lösung diese (dei!) Gleichungen : ( t) liegt in eine Ebene und bescheibt eine Ellipse, mit de Sonne in einem Bennpunkt!. Keple - Gesetz! Anmekungen: Die andeen Planeten stöen die elliptischen Bahnkuven leicht. Es gibt auch andee mögliche Bahnen: Keise, Hypebeln ode Paabeln. Falls m s >> m nicht gilt, dann bewegen sich beide Köpe um den gemeinsamen Schwepunkt. 34

35 Physik A/B SS 07 PHYSIK A WS 03/4 Inwiefen ist es ealistisch, dass Raumschiffe mit /4 de Mondmasse in die Nähe de Ede kommen können? Gavitation : Geostationäe Obit Abstand Ede - Mond F F RS Mond m m RS Mond / / RS Mond 4 RS Mond km km 5!! Weitehin wüden sich das Raumschiff und die Ede um ihen gemeinsamen Schwepunkt bewegen und das System aus den dei Köpen Ede-Mond-Raumschiff wäe wahscheinlich instabil! Selbst wenn die Aliens fiedlich wäen, wüde allein die Existenz des Raumschiffes auseichen, um die Ede zu venichten!!! 35

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2 Physik - avitation. iwidz 8. Weltbilde Ptolemaios: eozentisches Weltbild (odell mit pizyklen). iwidz 8. Weltbilde. iwidz 3 8. Weltbilde Histoisch: Die Bewegung de Planeten wa übe Jahhundete nicht zu ekläen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Drehbewegung Der Drehimpuls Definition des Drehimpulses

Drehbewegung Der Drehimpuls Definition des Drehimpulses Kapitel 10 Dehbewegung 10.1 De Dehimpuls Bei de Behandlung de Bewegung eines Teilchens haben wi den Impuls eines Teilchens definiet (Siehe Kap..). Diese Gösse wa seh hilfeich, wegen de Ehaltung des Gesamtimpulses

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

5 Gleichförmige Rotation (Kreisbewegung)

5 Gleichförmige Rotation (Kreisbewegung) -IC5-5 Gleichfömige Rotation (Keisbewegung) 5 Definitionen zu Kinematik de Rotation 5 Bahngeschwindigkeit und Winkelgeschwindigkeit Die bei de Rotationsbewegung (Abb) geltenden Gesetze sind analog definiet

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden. Gavitation Massen zeihen sich gegenseitig an. Aus astonomischen Beobachtungen de Planetenbewegungen kann das Gavitationsgesetz abgeleitet weden. Von 1573-1601 sammelte Tycho Bahe mit bloßem Auge (ohne

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum:

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum: b) Dehimpuls De Bewegungszustand eines otieenden Köpes wid duch seinen Dehimpuls L beschieben. Analog zum Dehmoment nimmt de Dehimpuls mit dem Impuls p und dem Bahnadius zu. Fü Massenpunkt auf Keisbahn:

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Inhalt: 2. 3. 4. 5. 6. Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2015/2016

Inhalt: 2. 3. 4. 5. 6. Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2015/2016 Inhalt: 1.. 3. 4. 5. 6. Einleitung Keplesche Gesetze Das Gavitationsgesetz Täge Masse und schwee Masse Potentielle Enegie de Gavitation Beziehung zwischen de Enegie und de Bahnbewegung Pof. D.-Ing. Babaa

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt. Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,

Mehr

Physik für Pharmazeuten und Biologen MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

Physik für Pharmazeuten und Biologen MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik fü Phamazeuten und Biologen MECHANIK II Abeit, Enegie, Leistung Impuls Rotationen Mechanik II 1.3 Abeit, Enegie, Leistung mechanische Abeit W = F Einheit 2 2 [ W] = Nm = kgm s = J (Joule) Abeit

Mehr

Von Kepler III zu Kepler III

Von Kepler III zu Kepler III Von Keple III zu Keple III Joachi Hoffülle jh.schule@googleail.co Luitpold-Gynasiu München Seeaust. 80538 München Voaussetzungen: F a t Geschwindigkeit als Göße it Betag und Richtung Vetautheit it de Beechnung

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Mechanik. I.3 Erhaltungssätze. Impuls, Drehimpuls, Energie

Mechanik. I.3 Erhaltungssätze. Impuls, Drehimpuls, Energie Mechanik I.3 Ehaltungssätze Impuls, Dehimpuls, Enegie De Impuls Eine Masse m, die sich mit de Geschwindigkeit v bewegt, hat den Impuls p p m v p De Impuls ist eine Vektogöße; die Einheit des Impulses ist

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Keplersche Gesetze Gravitationsgesetz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 15. Nov. 2016 Der Drehimpuls m v v r v ω ω v r

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

V. Drehbewegungen. y-komponente y = r 0 sin ϕ. betragen. Die Länge des Vektors r kann mit Hilfe des Satzes von Pythagoras errechnet werden:

V. Drehbewegungen. y-komponente y = r 0 sin ϕ. betragen. Die Länge des Vektors r kann mit Hilfe des Satzes von Pythagoras errechnet werden: V. Dehbewegungen In Kapitel II und III haben wi die Gundlagen kennengelent, die wi bauchten, um gadlinige ode die Übelageung von gadlinigen Bewegungen zu beechnen. Bei de Betachtung des Pendels hingegen

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung 1.3. Statik 1.3.1. Käfte Zug- und Duckfede, Expande, Kaftmesse: Je göße die Kaft, desto göße die Vefomung mit Kaftmesse an OHP-Pojekto, Stuhl, ode Pesente ziehen Je göße die Kaft, desto göße die Beschleunigung.

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008 Abitu - Leistungskus Physik Sachsen-Anhalt 008 Thema G Efoschung des Weltalls Die Entdeckungen von Johannes Keple und Isaac Newton sowie die Estellung de Gundgleichung des Raketenantiebs duch Konstantin

Mehr

Ferienkurs Experimentalphysik Übung 1 - Musterlösung

Ferienkurs Experimentalphysik Übung 1 - Musterlösung Feienkus Expeimentalphysik 1 1 Übung 1 - Mustelösung 1. Spungschanze 1. Die maximale Höhe nach Velassen de Spungschanze kann übe die Enegieehaltung beechnet weden, de Bezugspunkt sei im Uspung am Abspungpunkt.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

GRUNDKURS EXPERIMENTALPHYSIK

GRUNDKURS EXPERIMENTALPHYSIK Volesungsskipt GRUNDKURS EXPERIMENTALPHYSIK Pof. D. Fank Richte Skipt angefetigt von cand. phys. Stefan Welzel Technische Univesität Chemnitz Fakultät fü Natuwissenschaften Institut fü Physik Vowot VORWORT

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik fü Medizine und Zahnmedizine Volesung 01 Pof. F. Wögötte (nach M.Seibt) -- Physik fü Medizine und Zahnmedizine 1 Liteatu Hams, V.: Physik fü Medizine und Phamazeuten (Hams Velag) Haten, U.: Physik

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Newton: exp. Beobachtungen

Newton: exp. Beobachtungen 1. Dynamik Usache von Bewegungen (bzw. Bew.-Ändeungen) Käfte wiken auf Köpe mit Masse Gundlagen: Symmetie / Invaianzen Pinzip de kleinsten Wikung Enegie-, Impuls-, Dehimpulsehaltung 1..1 Newtonsche Gesetze

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2) Lk Physik in 1/ 1. Klausu aus de Physik 4. 03. 003 latt 1 (von ) 1. Elektonenablenkung duch Zylindespule Eine Zylindespule mit Radius 6, 0 cm, Länge l 30 cm, Windungszahl N 1000 und Widestand R 5, 0 Ω

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

Dienstag Punktmechanik

Dienstag Punktmechanik Einneung 2.11.2004 Bücheflohmakt Dienstag 2.11.2004 4. Punktmechanik 12:30 4.1 Kinematik eines Massenpunktes vo Studentenseketaiat Koodinatensysteme Geschwindigkeit im Raum Beschleunigung im Raum Supepositionspinzip

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Um was geht es in dieser Vorlesung wirklich?

Um was geht es in dieser Vorlesung wirklich? Inhalt de Volesung 1. Elektostatik 2. Elektische Stom 3. Leitungsmechanismen 4. Magnetismus 5. Elektomagnetismus 6. Induktion 7. Maxwellsche Gleichungen 8. Wechselstom 9. Elektomagnetische Wellen 1 Um

Mehr

Grundwissen Physik 10. Klasse

Grundwissen Physik 10. Klasse Chistoph-Jacob-Teu-Gymnasium Lauf Juni 9 Gundwissen Physik 1. Klasse Geozentisches Weltbild Aistoteles (384-3 v. Ch.), 1. Astonomische Weltbilde und Keplesche Gesetze Im Mittelpunkt de Welt befindet sich

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx XVIII. as mathematische un as physikalische Penel Eine lineae iffeentialgleichung. Onung hat ie allgemeine Fom: y() y() () P() Q() y() = (). ie allgemeine Lösung iese inhomogenen Gleichung lautet y() =

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

29. Grundlegendes zu Magnetfeldern

29. Grundlegendes zu Magnetfeldern Elektizitätslehe Gundlegendes zu Magnetfelden 9. Gundlegendes zu Magnetfelden 9.1. Die LORENTZ-Kaft Ladungen weden nicht nu von elektischen Felden beeinflusst (COULOMB- Kaft, Gl. (5-4)), sonden auch von

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit ) 5. Übung (KW 48) Aufgabe 1 (M 4.1 Veschiebungsabeit ) Welche Abeit muss aufgewendet weden, um eine Fede mit Fedekonstanten k (a) ohne Vospannung, d. h. von de Vospannlänge x 1 0, (b) von de Vospannlänge

Mehr

4.9 Gravitation und Planetenbewegung

4.9 Gravitation und Planetenbewegung 4.9 avitation und Planetenbewegung Aus astonomischen Beobachtungen de Planetenbewegungen kann das avitationsgesetz abgeleitet weden. Pythagoäe: Planeten keisen um die Sonne Kopenikus: Heliozentistisches

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Einführung in die Physik I. Elektromagnetismus 3

Einführung in die Physik I. Elektromagnetismus 3 infühung in die Physik lektomagnetismus 3 O. on de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die magnetische

Mehr

Bezugssysteme neu beleuchtet

Bezugssysteme neu beleuchtet Bezugssysteme neu beleuchtet D. Holge Hauptmann Euopa-Gymnasium Wöth Bezugsysteme neu beleuchtet, Folie 1 Kleine Vobemekung Beim Bezugssystemwechsel: ändet sich die mathematische Bescheibung das physikalische

Mehr

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort.

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort. M09 Bestimmung de allbeschleunigung Die usammenhänge zwischen eschwindigkeit, Beschleunigung, Masse und Kaft weden am Beispiel des feien alles mit de Atwoodschen allmaschine expeimentell untesucht. Im

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Materie im Magnetfeld

Materie im Magnetfeld Mateie i Magnetfeld Die Atoe in Mateie haben agnetische Eigenschaften, die akoskopisch Magnetfelde beeinflussen, wenn an Mateie in sie einbingt. Man untescheidet veschiede Typen von agnetischen Eigenschaften:

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr