6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

Größe: px
Ab Seite anzeigen:

Download "6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler"

Transkript

1 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische und inelastische Stöße auf Luftschiene Dehmoment (Scheibe mit Gewichten) Abollende Ganolle Rotieende fliegende Tommelstock EPI WS 007/08 Dünnwebe/Faessle

2 6. Volesung 3c) Enegie Enegie-Ehaltungssatz Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann nicht venichtet ode ezeugt weden. Falls Enegievelust duch Reibung und ähnliche Pozesse venachlässigt weden kann, also nu konsevative Käfte wiken, gilt fü ein abgeschlossenes System de Enegiesatz de Mechanik: Eges ΣE + ΣEkin konst pot i i Folgt aus Newtonschen Axiomen fü die Mechanik, gilt abe allgemein fü die ganze Physik: E ges E pot + E kin + E Wäme + E elekt. + E chem.. (+ mc² ) De von Einstein beigesteuete Tem (in Klammen) ist im Rahmen unsee Vesuche venachlässigba. Wenn Abeit W von außen geleistet wid: W E gesamt E pot + E kin + EPI WS 007/08 Dünnwebe/Faessle

3 Konsevative Käfte F F s ) ( i i Abeit auf dem Weg A Abeit auf dem Weg B Gilt fü Gavitationskaft, elekt. Kaft, abe nicht fü Reibungskaft. EPI WS 007/08 Dünnwebe/Faessle

4 Enegiesatz Beispiele fü den Enegie-Ehaltungssatz: E E pot + E kin oben: E E pot m g h, E kin 0 unten: E E kin ½mv², E pot 0 dazwischen (h ): E m g h + ½mv ² Enegien wie links EPI WS 007/08 Dünnwebe/Faessle

5 De Wichtigkeit wegen noch einmal de Enegie-Ehaltungssatz: 3.Abeit, Enegie, Stöß öße Enegie kann nu von eine Fom in eine andee vewandelt weden, sie kann nicht venichtet ode ezeugt weden. Falls Enegievelust duch Reibung ode ähnliche Pozesse venachlässigt weden kann, gilt fü ein abgeschlossenes System de Enegiesatz de Mechanik: Eges Epot + Ekin const. Neben de potentiellen, kinetischen ode elastischen Enegie gibt es weitee Fomen: Wämeenegie, elektische Enegie, Stahlungsenegie De Enegie-Ehaltungssatz gilt ganz allgemein fü jede Enegiefom: Die Summe alle Enegien in einem abgeschlossenen System ist konstant EPI WS 007/08 Dünnwebe/Faessle

6 Leistung Die Leistung bestimmt, wie schnell Enegie von einem System auf ein andees übetagen wid: Leistung Abeit (Enegie) / Zeit P P W t dw dt F ds dt F v mittlee Leistung im (endlichen) Zeitintevall t (Diffeenzenquotient) momentane Leistung (infinitesimales Zeitintevall dt, Diffeentialquotient) Masseinheit: [P] [W] / [t] Newton. Mete/Sekunde Menschliche Leistungen: mit Egomete gemessen; gesunde Pesonen: 75 W ganztägig, 50 W ca. 5 Stunden, 50 W ca. 35 min. 750 W ca. min, 500 W ca. 6 sec. EPI WS 007/08 Dünnwebe/Faessle

7 als Beispiel fü Enegie- und Impulsehaltung Einneung: Impuls p m v (vektoiell p m v ) bleibt ehalten, wenn keine äußee Kaft wikt. Folgt aus Newton II: dv dp F m a m p konstant fü dt dt F 0 Impulssatz fü ein System aus meheen Köpen: pgesamt mv + mv + m3v const., wenn die Summe de äußeen Käfte Null ist ( abgeschlossenes System ) 3c) Stöß öße EPI WS 007/08 Dünnwebe/Faessle

8 Impuls/Enegie Stoß mit Kugeln: EPI WS 007/08 Dünnwebe/Faessle

9 Stöß öße Anwendung des Enegie- und des Impulssatzes: Stossgesetze vohe: nachhe: Impulssatz: m v + mv mu + mu Enegiesatz: m v mv mu mu W Elastische Stoss: W 0 Unelastische Stoss: W 0 EPI WS 007/08 Dünnwebe/Faessle

10 Stöß öße zentale elastische Stoß auf uhenden Köpe: Impulssatz: Enegiesatz: u v m m + mv mu + ( m m ), + m v mu mu mu u mv m + m Beispiele: m m u 0, u v m << m u - v, u 0 -max. Enegieübetag -max. Impulsübetag m >> m u v, u v EPI WS 007/08 Dünnwebe/Faessle

11 Beispiel fü m <<m : Elastische Stoß gegen Maue v m V v - v m Enegie vohe mv ' m( v) nachhe Impulssatz scheinba veletzt Fü abgeschlossenes System muß Maue einbezogen weden ' M seh goß! v Maue seh klein! Mv Maue seh klein EPI WS 007/08 Dünnwebe/Faessle

12 Stöß öße unelastische Stoß Beispiel: - gleiche Massen: m m m - m uht vo Stoß: v 0 - abe: Klebewachs an beiden Wagen - vo Stoß: v 0, v v - nach Stoß: beide mit u u u Impulssatz: ( m + m ) m v mu + mu u u Enegiesatz: m v m u m u + + W W mv 4 v (½ kinet. Enegie umgewandelt) Beim unelastischen Stoß wid kinetische Enegie in Wäme, Vefomungsenegie (Beispiel: Autokollision), Anegungsenegie ode andee Enegiefomen umgewandelt. EPI WS 007/08 Dünnwebe/Faessle

13 II 4.) Stae Köpe Bishe: Veschiebung von Massenpunkten ode Massenzenten (Schwepunkt) von Köpen. Jetzt: ausgedehnte stae Köpe. Sta bedeutet, die Lage de einzelnen Teile zueinande ändet sich nicht. Die Bewegung wid zelegt in die Schwepunktbewegung (fü die alles in den bisheigen Kapiteln Gesagte gilt) und eine Dehung. EPI WS 007/08 Dünnwebe/Faessle

14 a) Dehmoment Dehmoment: Dehmoment Kaft. Hebelam Hebelam: zu Kaft senkechte Abstand zum Dehpunkt Betag: M F sin(, F) Allgemeine Definition: M F keuz F : Vektopodukt - Vekto, senkecht auf, F - in Richtung eine Rechtsschaube (echte Hand) EPI WS 007/08 Dünnwebe/Faessle

15 Stae Köpe Wid ein System im Schwepunkt untestützt, so uht es. Die Summe de Dehmomente ist Null. Schwepunkt (Massenmittelpunkt): sp m i m i i EPI WS 007/08 Dünnwebe/Faessle

16 Dehmoment Bsp.: menschl. Am als einamige Hebel Nachteil: kuze effektive Hebelam Beugewinkel > 90 o : zum Halten de gleichen Masse ist gößee Bizepskaft efodelich senkecht nicht senkecht angeifende Kaft angeifende Kaft EPI WS 007/08 Dünnwebe/Faessle

17 Ein Köpe ändet seinen Rotationszustand nicht, wenn die Summe alle Dehmomente Null ist. Bsp.: Wippe, Balkenwaage Hebelgesetz: Damit ein Hebel im Gleichgewicht ist, muss die Summe de linksdehenden gleich de Summe de echtsdehenden Dehmomente sein. Dehmoment F l Beweis: Fü F l wäe Dehbeschleunigung links -Dehbeschleunigung echts. F l F l EPI WS 007/08 Dünnwebe/Faessle

18 Schwepunkt Expeimentelle Bestimmung des Schwepunkts: Dehachsen A,B F g De Köpe kommt nu zu Ruhe, wenn an SP angeifende Gewichtskaft kein Dehmoment meh ausübt. (Kaft und Hebelam sind paallel) Schwepunkt fällt, wenn e nicht übe de Untestützungsfläche liegt Ist s Abstandsvekto vom Dehpunkt zum Schwepunkt und F s die Summe alle Käfte auf einen Köpe, so ist das Gesamtdehmoment M x. s F s EPI WS 007/08 Dünnwebe/Faessle

19 Schwepunkt Schwepunktsatz: De Schwepunkt eines Köpes bewegt sich so, als ob die gesamte Masse dot veeinigt wäe und die Summe alle äußeen Käfte dot angeifen wüde. De Schwepunktsbewegung kann noch eine Rotation übelaget sein, wobei jedoch nu Dehachsen duch den Schwepunkt möglich sind. EPI WS 007/08 Dünnwebe/Faessle

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Wichtige Begriffe der Vorlesung:

Wichtige Begriffe der Vorlesung: Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments)

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments) 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Tommelstock Dehstuhl mt Kesel (Ehaltung

Mehr

7.Vorlesung. Überblick

7.Vorlesung. Überblick 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Ganolle Tommelstock Dehstuhl mt

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Physik für Pharmazeuten MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

Physik für Pharmazeuten MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik fü Phamazeuten MECHANIK II Abeit, Enegie, Leistung Impuls Rotationen Mechanik II 1.3 Abeit, Enegie, Leistung mechanische Abeit W = F Einheit [ W] = Nm = kgm s = J (Joule) Abeit ist Skala (Zahl),

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik fü Medizine und Zahnmedizine Volesung 01 Pof. F. Wögötte (nach M.Seibt) -- Physik fü Medizine und Zahnmedizine 1 Liteatu Hams, V.: Physik fü Medizine und Phamazeuten (Hams Velag) Haten, U.: Physik

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Physik für Pharmazeuten und Biologen MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

Physik für Pharmazeuten und Biologen MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik fü Phamazeuten und Biologen MECHANIK II Abeit, Enegie, Leistung Impuls Rotationen Mechanik II 1.3 Abeit, Enegie, Leistung mechanische Abeit W = F Einheit 2 2 [ W] = Nm = kgm s = J (Joule) Abeit

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Drehbewegung Der Drehimpuls Definition des Drehimpulses

Drehbewegung Der Drehimpuls Definition des Drehimpulses Kapitel 10 Dehbewegung 10.1 De Dehimpuls Bei de Behandlung de Bewegung eines Teilchens haben wi den Impuls eines Teilchens definiet (Siehe Kap..). Diese Gösse wa seh hilfeich, wegen de Ehaltung des Gesamtimpulses

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum:

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum: b) Dehimpuls De Bewegungszustand eines otieenden Köpes wid duch seinen Dehimpuls L beschieben. Analog zum Dehmoment nimmt de Dehimpuls mit dem Impuls p und dem Bahnadius zu. Fü Massenpunkt auf Keisbahn:

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Mechanik. I.3 Erhaltungssätze. Impuls, Drehimpuls, Energie

Mechanik. I.3 Erhaltungssätze. Impuls, Drehimpuls, Energie Mechanik I.3 Ehaltungssätze Impuls, Dehimpuls, Enegie De Impuls Eine Masse m, die sich mit de Geschwindigkeit v bewegt, hat den Impuls p p m v p De Impuls ist eine Vektogöße; die Einheit des Impulses ist

Mehr

5 Gleichförmige Rotation (Kreisbewegung)

5 Gleichförmige Rotation (Kreisbewegung) -IC5-5 Gleichfömige Rotation (Keisbewegung) 5 Definitionen zu Kinematik de Rotation 5 Bahngeschwindigkeit und Winkelgeschwindigkeit Die bei de Rotationsbewegung (Abb) geltenden Gesetze sind analog definiet

Mehr

Dienstag Punktmechanik

Dienstag Punktmechanik Einneung 2.11.2004 Bücheflohmakt Dienstag 2.11.2004 4. Punktmechanik 12:30 4.1 Kinematik eines Massenpunktes vo Studentenseketaiat Koodinatensysteme Geschwindigkeit im Raum Beschleunigung im Raum Supepositionspinzip

Mehr

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung 1.3. Statik 1.3.1. Käfte Zug- und Duckfede, Expande, Kaftmesse: Je göße die Kaft, desto göße die Vefomung mit Kaftmesse an OHP-Pojekto, Stuhl, ode Pesente ziehen Je göße die Kaft, desto göße die Beschleunigung.

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Biophysik für Pharmazeuten I.

Biophysik für Pharmazeuten I. Biophysik fü Phamazeuten I. Biomechanik 04. 09. 5. Mechanik Tölgyesi eenc Mechanik Kinematik (Bewegungslehe) Tanslation Veschiebung Rotation Dehung Allgemeine Bewegung = Tanslation + Rotation Bezugssystem

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu Einneung Stichwote aus de 3. Volesung: inkelaße: Radiant und Steadiant die (gleichföige) Keisbewegung als beschleunigte Bewegung (Richtungsändeung von v) Dastellung de kineatischen Gößen duch die Einheitsvektoen

Mehr

Zusammenfassung Θ Θ. 1 Iω KER = = vt. R a rad. Trägheitsmoment. Kinematik. Rotation. Tennis First service Andre Agassi rpm (165 km/h),

Zusammenfassung Θ Θ. 1 Iω KER = = vt. R a rad. Trägheitsmoment. Kinematik. Rotation. Tennis First service Andre Agassi rpm (165 km/h), 9b otation Zusammenfassung Winkel (ad) & Θ Θ ω Auguste odin La main de Dieu ω Winkelgeschwindigkeit (ad/s) v ω & ω Winkelbeschleunigung (ad/s²) α α a a Tägheitsmoment n i tan α + tan a ad m i dm i a ad

Mehr

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls 5 Rotaton des staen Köpes 5 Dehungen und Dehmomente 5 Rotatonsenege und Dehmpuls um was geht es? Beschebung von Bewegungen (pmä Dehungen) des staen Köpes Analoge zu Kap. und 3: Kaft Dehmoment Impuls Dehmpuls

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Die gleichförmig beschleunigte Bewegung. a ( t ) = a. [ s]

Die gleichförmig beschleunigte Bewegung. a ( t ) = a. [ s] a [ m ] s Die gleichfömig beschleunigte Bewegung a a ( t ) a [ m s ] t[ s] ( t ) t 0 a dt ( t ) a t + 0 s 0 [ m ] s 0 t t [ s] [ s] t ( a t ) s ( t ) + 0 dt a s + ( t ) t + 0 t s 0 0 Einfühung in die Expeimentalphysik

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 1.1 Einodnung und liedeung de Technischen Mechanik 1.2 Idealisieende Annahmen und Veeinfachungen 1.3 De Begiff

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Dynamik. 4.Vorlesung EP

Dynamik. 4.Vorlesung EP 4.Volesung EP I) Mechanik. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft Vesuche: Raketenvesuche: Impulsehaltung

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Zusammenfassung der Vorlesung PPh (Einführung in die Physik für Pharmazeuten und Biologen) ohne Garantie auf Vollständigkeit

Zusammenfassung der Vorlesung PPh (Einführung in die Physik für Pharmazeuten und Biologen) ohne Garantie auf Vollständigkeit Zusammenfassung de Volesung PPh (Einfühung in die Physik fü Phamazeuten und Biologen) ohne Gaantie auf Vollständigkeit Inhalt: -Mechanik -Hydodynamik -Themodynamik -Elektizitätslehe -Optik Mechanik allgemein

Mehr

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m)

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m) Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Nullpunkt fei wählba (abh. von Masse m) d Potential: eldstäke: bezogen auf Pobemasse (unabh. von Masse

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

Repetition: Kinetische und potentielle Energie, Zentripetalkraft

Repetition: Kinetische und potentielle Energie, Zentripetalkraft Us Wyde CH-4057 Basel Us.Wyde@edubs.ch Repetition: Kinetische und entielle negie, Zentipetalkaft. in Kindekaussell deht sich po Minute viemal im Keis. ine auf dem Kaussell stehende Peson elebt dabei die

Mehr

1. Physikalische Grössen und Einheiten

1. Physikalische Grössen und Einheiten 101-1 1.1 Physikalische Gössen I. Mechanik 1. Physikalische Gössen und Einheiten 1.1 Physikalische Gössen Definition de physikalischen Gösse Physikalische Gössen sind fundamentale Elemente zu Bescheibung

Mehr

Physik 1. Stoßprozesse Impulserhaltung.

Physik 1. Stoßprozesse Impulserhaltung. Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Stichwote aus de 3. Volesung: inkelaße: Radiant und Steadiant die (gleichföige) Keisbewegung als beschleunigte Bewegung (Richtungsändeung von v) Dastellung de kineatischen Gößen duch die inheitsvektoen

Mehr

Physik 1, WS 2015/16 Musterlösung 4. Aufgabenblatt (KW 46)

Physik 1, WS 2015/16 Musterlösung 4. Aufgabenblatt (KW 46) Physik, WS 05/6 Mustelösung 4. Aufgabenblatt (KW 46 Aufgabe Welche de folgenden Aussagen sind ichtig, welche falsch und waum? (i Nu konsevative Käfte können Abeit veichten. (ii Solange nu konsevative Käfte

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts (3) O. on de Lühe und U. Landgaf Beispiele zu Ipuls- und Enegiesatz - Rakete Eine Rakete it de Masse fliegt it de Geschindigkeit i leeen, käftefeien Rau

Mehr

Biophysik für Pharmazeuten I. 2016/17

Biophysik für Pharmazeuten I. 2016/17 .09.06. Biophysik fü Phaazeuten I. 06/7 Mechanik Bioechanik Volesung Mechanik László Selle http://biofiz.sote.hu undlegende Begiffe de Physik, wie Kaft, Enegie,... Mechanik Kineatik (Bewegungslehe) Tanslation

Mehr

6a Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1

6a Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1 6a Dnamik Animation follows the laws of phsics unless it is funnie othewise. alsche Vostellung Kaftbild in de Antike Ansatz von Aistoteles: Käfte veusachen die Bewegung von Köpen Natülich fü einen Köpe

Mehr

Gesucht eine verlässliche physikalische Größe

Gesucht eine verlässliche physikalische Größe 07a Enegie 1 Neues Konzept Enegie Käfte beim Abschuss eines Pfeils mit einem Bogen Lösungsansatz fü Newtonsche Gleichungen Man beechne ie aiieenen Käfte Poblematisch mit Kaftansatz zu behaneln Gesucht

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

4.2 Allgemeine ebene Bewegung. Lösungen

4.2 Allgemeine ebene Bewegung. Lösungen 4. Allgemeine ebene Bewegung Lösungen Aufgabe 1: a) Massentägheitsmoment: Fü das Massentägheitsmoment eine homogenen Kugel gilt: J= 5 m Zahlenwet: J= 5 8 kg 0,115 m =0,0405 kgm b) Gleitstecke: Schwepunktsatz:

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Inhalt

Inhalt Inhalt 1.. 3. 4. 5. 6. 7. 8. Kaft und Impuls Ehaltung des Impulses Das zweite und ditte Newtonsche Gesetz Beziehung zwischen Kaft und Beschleunigung Reibung Dynamik, gekümmte Bewegung Dehimpuls, Dehmoment

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2 Physik - avitation. iwidz 8. Weltbilde Ptolemaios: eozentisches Weltbild (odell mit pizyklen). iwidz 8. Weltbilde. iwidz 3 8. Weltbilde Histoisch: Die Bewegung de Planeten wa übe Jahhundete nicht zu ekläen

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 28.11.2016 Heute: - Wiederholung und Fortsetzung: Arbeit, Energie, Leistung - Impuls - Stöße: elastisch und inelastisch http://xkcd.com/1758/ Prof. Dr. Jan

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

2.4 Dynamik (Dynamics)

2.4 Dynamik (Dynamics) .4 Dynaik (Dynaics) Def.: In de Dynaik wid die Kaft als Usache de Bewegung betachtet, hie wid die Statik (.) it de Kineatik (.3) zusaengefüht. Inhalt: Bewegungsgleichungen, Enegiesatz, Abeit, Leistung,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Cavendish Experiment

Cavendish Experiment 9b Rotation 1 Cavendish Expeiment Zusammenfassung Winkelgeschwindigkeit ω lim Δ t 0 ΔΘ Δt d dt Θ Einheit de Winkelgeschwindigkeit [ad/s] Zusammenhang lineae Geschwindigkeit v ω Rechte Hand Regel Winkelbeschleunigung

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 28.11.2016 Heute: - Wiederholung und Fortsetzung: Arbeit, Energie, Leistung - Impuls - Stöße: elastisch und inelastisch http://xkcd.com/1758/ Prof. Dr. Jan

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 27.11.2017 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 189263 Hammer and feather drop, revisited Für den Fall (vom Loslassen bis zum Aufschlag)

Mehr

5 Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1

5 Dynamik. Animation follows the laws of physics unless it is funnier otherwise. 1 5 Dynaik Aniation follows the laws of physics unless it is funnie othewise. Antikes Weltbild Gegenstände koen zu Ruhe, wenn keine äußeen Käfte eh wiken. Entspicht unsee alltägliche Efahung Autos halten

Mehr